OPEN PROBLEM! PRIZE: FREE DINNER!!

As a function of N and a, how large does k need to be so that the sum

$$
\sum_{\lambda_{1}<\lambda_{2}<\ldots<\lambda_{N}}\left(\sum_{\substack{j=1 \\ \lambda_{j} \leq a}}^{N}(-1)^{j} \frac{\binom{-\lambda_{j}-a+N-2-2}{N-2-2 a}}{\prod_{r=j+1}^{N}\left(\lambda_{r}-\lambda_{j}\right) \prod_{r=1}^{j-1}\left(\lambda_{j}-\lambda_{r}\right)}\right)^{2 k}\left(\prod_{1 \leq r<s \leq N}\left(\lambda_{s}-\lambda_{r}\right)\right)^{2}
$$

is finite? Here the sum is taken over all N-tuples of (positive or negative) integers $\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{N}\right)$ satisfying $\lambda_{1}<\lambda_{2}<\ldots<\lambda_{N}$. Also N is a (large) positive integer, a is an integer between 0 and $(N-1) / 2$, and $\binom{-\lambda_{j}-a+N-2}{N-2-2 a}$ is a binomial coefficient.

PARTIAL RESULT: k needs to be at least as large as $\left(N^{2}-N+1\right) / 2(a+1)$.
Any other partial results of any kind would be appreciated!!
Contact Jeff Rosenthal, Sid Smith 6011, phone 978-4594, e-mail jeff@utstat.toronto.edu.
(By the way, this problem comes from analyzing random walks on the unitary group $U(N)$ iterated k times, and seeing whether they converge in L^{2} to Haar measure.)

Ursula Porod

Jeffrey Rosenthal
March 24, 1994.

