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Abstract. We consider nearly-periodic Markov chains, which may have
excellent functional-estimation properties but poor distributional con-
vergence rate. We show how simple modifications of the chain (involving
using a random number of iterations) can greatly improve the distribu-
tional convergence of the chain. We prove various theoretical results
about convergence rates of the modified chains. We also consider a
number of examples, including a trans-dimensional MCMC example, a
card-shuffling example, and several antithetic Metropolis algorithms.

1. Introduction.

Consider a Markov chain Monte Carlo (MCMC) sampling algorithm X0, X1, X2, . . .

on a state space X , with updating probabilities P (x, ·) and stationary distribution π(·).

Such schemes are often used to estimate π(h) ≡
∫
X h dπ for various functionals h : X → R,

by e.g.

π̂(h) =
1
n

n∑
i=1

h(Xi) . (1)

Specific examples of MCMC algorithms include the Gibbs sampler and the Metropolis-

Hastings algorithm; for background see e.g. Smith and Roberts (1993), Tierney (1994),

and Gilks, Richardson, and Spiegelhalter (1996).

There are two different notions of such a sampling algorithm being a “good” one:

1. Distributional convergence. The MCMC algorithm is “good” if the chain con-

verges quickly in distribution, i.e. i does not have to be too large to make L(Xi)
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be close to π(·). (This implies in turn that the mean of π̂(h) above is close to

π(h).)

2. Asymptotic variance. Alternatively, the algorithm is “good” if the variance of

π̂(h) above is relatively small as n → ∞, when started in stationarity (i.e., with

X0 ∼ π(·)).

These two goals have been described as “conflicting”, and it has even been proposed

to begin with a rapidly-converging chain and then later switch to a small-variance chain

(e.g. Besag and Green, 1993; Mira, 2001). Indeed, it is true that if the underlying Markov

chain is (say) periodic or nearly periodic, then the convergence of L(Xi) to π(·) could be

slow, even though π̂(h) is a good approximation to π(h). This is particularly relevant

for antithetic chains, which introduce negative correlations to reduce asymptotic variance,

but at the expense of possibly introducing near-periodic behaviour which may slow the

distributional convergence (see e.g. Green and Han, 1992; Craiu and Meng, 2001).

On the other hand, in the present paper we argue that the above two goals are

not as conflicting as they might appear. In particular, we show that given a reversible

sampler with good asymptotic variance properties, a very slight modification of the sampler

(the binomial modification) will also have good distributional convergence properties. We

then generalise this idea to consider sampled chains of the form Pµ =
∑

m µ{m}Pm for

probability distributions µ on the non-negative integers. We prove various results about

the spectra and quantitative convergence rates of such chains. We also consider a number

of examples, including a trans-dimensional MCMC example, a card-shuffling example, and

several antithetic Metropolis algorithms.

2. A very simple example.

To motivate what follows, consider the simplest example of a periodic chain. Specifi-

cally, let X = {1, 2}, with transition matrix P given by

P =
(

0 1
1 0

)
.

That is, this Markov chain always moves from 1 to 2 and from 2 to 1. The stationary

distribution π(·) of this chain is given by the uniform distribution on X .
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This chain has excellent asymptotic variance properties. Indeed, if h : X → R, and if

X0 ∼ π(·), then we always have π̂(h) = π(h) exactly (so the variance is zero).

On the other hand, the chain has very poor distributional convergence properties.

Indeed, for any x ∈ X and any n ∈ N, the distribution Pn(x, ·) is always concentrated on

just one point, so it never converges to π(·) (it is periodic).

Now, let P be the Markov chain which either does nothing (with probability 1/2), or

does the same as P (with probability 1/2). Then P = 1
2 (I + P ) where I is the identity

matrix. (Similar such “mixtures” are considered elsewhere, e.g. in Proposition 3 of Tierney,

1994.) Hence, the matrix of P is given by

P =
(

1/2 1/2
1/2 1/2

)
.

We thus see that the chain P converges to π(·) immediately, and therefore has excellent

distributional convergence properties. Similarly, if we let P̂n equal either Pn or Pn+1 with

probability 1/2 each, then P̂n also converges immediately to π.

Furthermore, running P̂n is very similar to running Pn. Also, running P for 2n steps

is equivalent (in terms of the distribution of the final value obtained) to running P for a

random number of steps having distribution Binomial(2n, 1/2) ≈ n. Hence, we call P
2n

the binomial modification of Pn.

We thus see that minor modifications to the original, (which is periodic but good for

estimation) Markov chain results in new Markov chains which have excellent distributional

convergence properties. This theme is explored further herein.

In addition, Markov chain convergence rates can sometimes be proved by establishing

minorisation conditions such as

P (x, A) ≥ ε ν(A) , x ∈ X , A ⊆ X (2)

(abbreviated as P (x, ·) ≥ εν(·) for all x ∈ X ), for some probability measure ν(·) on X . For

the chain P given above, this is clearly impossible due to the periodicity problem. On the

other hand, for the modified chain P this is easy; in fact

P (x, A) ≥ π(A) , x ∈ X , A ⊆ X ,
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so we may take ε = 1 in that case. Issues of proving convergence rates of the modified

chain are explored later in this paper.

Finally, we note that the general idea of considering a random number of iterations is

not new. For example, if Tn ∼ Unif{1, 2, . . . , n} (as opposed to Bn ∼ Binomial(2n, 1/2)),

then the distance of L(XTn) to stationarity can be bounded using shift-coupling (Aldous

and Thorisson, 1993; Roberts and Rosenthal, 1997a; Roberts and Tweedie, 1999). How-

ever, the resulting shift-coupling bounds are O(1/n) rather than decreasing exponentially

with n, and are thus significantly weaker than the bounds considered here.

3. The Spectrum of P .

In this section we consider reversible Markov chain kernels P , and review two spectral

quantities, interval(P ) and gap(P ), which are closely related to the asymptotic variance

and convergence rates of P , respectively.

Let π(·) be stationary for a reversible Markov transition kernel P . Suppose the chain

is in stationarity, i.e. that L(Xn) = π(·) for every n ∈ Z. Then it is known (e.g. Geyer,

1992) that

lim
n→∞

1
n
Varπ

(
n∑

i=1

g(Xi)

)
=

∞∑
t=−∞

Cov (g(X0), g(Xt)) = Varπ(g)+2
∞∑

t=1

Cov (g(X0), g(Xt)) .

This asymptotic variance is also related to the spectrum of the operator P , as follows.

Define the inner product 〈f, g〉 =
∫
X f(x)g(x)π(dx) for f, g ∈ L2(π), where

L2(π) = {f : X → R ; π(f2) < ∞} .

Assume P is reversible, so that P defines a self-adjoint operator on L2(π). Let P0 = P
∣∣
L2

0(π)

be the restriction of P to L2
0(π), where

L2
0(π) = {f : X → R ; π(f2) < ∞, π(f) = 0} .

(This restriction is made to exclude the non-zero constant functions, which are eigenvectors

corresponding to the eigenvalue 1 of stationarity.) Let σ(P0) be the spectrum of P0 (see

e.g. Conway, 1985; roughly, the spectrum corresponds to the set of eigenvalues of the
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matrix P0, but generalised to continuous state spaces). Assume P is φ-irreducible, so that

σ(P0) ⊆ [−1, 1) (as discussed in e.g. Mira and Geyer, 1999).

We shall see that the distance of the spectrum to the value 1 (in two senses, one with

absolute values and one without) is closely related to convergence and variance properties

of the corresponding MCMC algorithm. We begin with a result about asymptotic variance.

(All proofs are given in the Appendix.)

Proposition 1. Let P be the kernel for a reversible, φ-irreducible Markov chain {Xn},

and let Λ = Λ(P0) = supλ∈σ(P0) λ. Then

lim
n→∞

1
n
Var

(
n∑

i=1

g(Xi)

)
≤ 1 + Λ

1− Λ
π(g2) <

2
1− Λ

π(g2) .

We conclude from this Proposition that the quantity

interval(P ) ≡ 1− Λ(P0) ≡ 1− sup
λ∈σ(P0)

λ (3)

is very closely related to the asymptotic variance of empirical estimators of functionals as

in (1).

We next turn to distributional convergence. For a signed measure ν on X , we write

‖ν‖TV = supA⊆X |ν(A)| for total variation distance, and write ‖ν‖L2(π) =
∫
X ( dν

dπ )2 dπ for

L2(π) distance (with ‖ν‖L2(π) = ∞ if ν is not absolutely continuous with respect to π).

Then we have the following.

Proposition 2. Let P be the kernel for a reversible Markov chain. Let r(P0) =

supλ∈σ(P0) |λ| be the spectral radius of P0. Then

sup
‖ρ‖L2(π)<∞

lim
n→∞

1
n

log ‖ρPn(·)− π(·)‖TV = log r(P0) .

Proposition 2 says that for large n, we roughly have

‖ρPn(·)− π(·)‖TV ≈ C r(P0)n = C (1− (1− r(P0)))n

≈ C (e−(1−r(P0)))n = C (e−n(1−r(P0))) ,
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at least if r(P0) ≈ 1 as it usually would be. Hence, the quantity

gap(P ) ≡ 1− r(P0) ≡ 1− sup
λ∈σ(P0)

|λ| (4)

is a good measure of the distributional convergence rate of P . (Similar considerations are

also discussed elsewhere, see e.g. Schervish and Carlin, 1992.)

Comparing (4) with (3), we see that they differ only by the absolute values signs; and

this distinction characterises the difference between good distributional convergence, and

good asymptotic variance, properties of Markov chains.

4. Modifications for near-periodic chains.

The previous section showed that interval(P ) is a good measure of a chain’s asymp-

totic variance properties, while gap(P ) is a good measure of a chain’s distributional con-

vergence properties.

Now, clearly interval(P ) ≥ gap(P ). Also, these two quantities will often be similar

or identical. However, they could be very different if e.g. all λ ∈ σ(P ) are far from 1, but

one of them is close to −1, so interval(P ) is large but gap(P ) is small. On the other hand,

we now argue that simple modifications of the Markov chain itself allow us to deal with

this situation quite easily.

Let

Bn ∼ Binomial(2n, 1/2) ,

with {Bn} chosen independently of the Markov chain {Xn} itself. Then Bn/n → 1 with

probability 1 as n →∞, so Bn ≈ n for large n. Also
∑

m P(Bn = m)Pm = (P )2n, where

P = 1
2I + 1

2P . That is, P
2n

corresponds to running the original Markov chain P for Bn

steps instead of n steps. Hence, P
2n

is just a slight modification of Pn.

The following result shows that in the reversible case at least, if P has good asymptotic

variance properties, then P also has good convergence rate properties (and hence could be

used to generate a random variable having distribution very close to stationary). To state

it, let ζ(ε) = ε− 1
4ε2, so that ζ(ε) ≤ ε, and ζ(ε) ≈ ε for small ε.
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Theorem 3. If P is reversible, then gap(P
2
) = ζ(interval(P )), and r(P

2n

0 ) =
(
1 −

ζ(interval(P ))
)n

. [Hence, if interval(P ) is small, then gap(P
2
) ≈ interval(P ) and

r(P
2n

0 ) ≈
(
Λ(P0)

)n
. On the other hand, if interval(P ) ≈ 2 as for an extremely anti-

thetic chain, then gap(P
2
) ≈ 1, indicating extremely fast convergence.]

It follows from Theorem 3 that the convergence rate properties of P
2

are essentially the

same as the asymptotic variance properties of P . That is, the simple modification of using

P
2n

instead of Pn gives us distributional convergence which is as fast as would be indicated

by the asymptotic variance properties. The chain P
2n

is the binomial modification of Pn.

Next define P̂n by P̂n = 1
2 (Pn + Pn+1). That is, P̂n corresponds to running P for

Ln iterations, where P (Ln = n) = P (Ln = n + 1) = 1/2, with {Ln} chosen independently

of the Markov chain {Xn} itself. Set θn(λ) = 1
2λn + 1

2λn+1 = 1
2λn(1 + λ), so that if λ ≈ 1

then θx(λ) ≈ λn, while if λ ≈ −1 then θn(λ) ≈ 0. Then we have the following.

Theorem 4. If P is reversible, then

r(P̂n
0 ) = sup

λ∈σ(P0)

|θn(λ)| ≤ max
(

nn

2(n + 1)n+1
, θn (Λ(P0))

)
.

[Hence, if interval(P ) is small, then ignoring the nn

2(n+1)n+1 term, we will have r(P̂n
0 ) ≈(

Λ(P0)
)n

. Also, if interval(P ) ≈ 2 as for an extremely antithetic chain, then r(P̂n
0 ) ≈ 0 in-

dicating extremely fast convergence.] However, if − n
n+1 ∈ σ(P0), then r(P̂n

0 ) ≥ nn

2(n+1)n+1 .

Theorem 4 thus says that, if P has good distributional convergence properties, then ig-

noring the nn

2(n+1)n+1 term, P̂n will have good asymptotic variance properties. However,

the nn

2(n+1)n+1 term is problematic for P̂n, since as n → ∞ it is asymptotically equal to
1

2en which is sub-exponential. This could be a problem if σ(P0) contains points arbitrarily

close to −1, which could be equal (or nearly equal) to − n
n+1 for arbitrarily large n.

Remark 5. A comparison of Theorems 3 and 4 indicates that if Λ(P0) ≈ 1 as it usually

would be, then to first order as n →∞, and ignoring the nn

2(n+1)n+1 term, both P
2n

and P̂n

have spectral radius
(
Λ(P0)

)n. That is, each of these modified schemes has distributional

convergence rate approximately as good as the asymptotic variance rate of the original

chain P , even if the original chain is periodic. Hence, in some sense P
2n

and P̂n are
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“equally good”. However, as noted above, the nn

2(n+1)n+1 term could be problematic for

P̂n. Furthermore, we shall see in Example 4 below that P
2n

is more “flexible” than P̂n,

and is therefore better in some sense.

The above results indicate that the modified chains P
2n

and P̂n provide good distribu-

tional convergence rates in the reversible case. However, to analyse non-reversible chains,

or to exploit the specific structure of certain reversible chains, additional modifications

may be called for. We therefore generalise our definitions as follows.

As a generalisation of P , we shall consider the chain Pµ ≡
∑

m µ{m}Pm, where µ is

some fixed probability measures on the non-negative integers (and where P 0 = I). That

is, (Pµ)n corresponds to taking T1 + . . . + Tn steps according to P , where {Ti} are i.i.d.

∼ µ and are chosen independently of the chain itself. Equivalently, (Pµ)n corresponds to

taking T steps according to P , where T ∼ µ∗n, the n-fold convolution of µ with itself. (In

the language of Meyn and Tweedie (1993), Pµ is a sampled chain.)

Thus, P = Pµ for the special case µ{0} = µ{1} = 1/2. On the other hand, if (say) P

were nearly periodic with period 3, then one might instead choose µ{0} = µ{1} = µ{2} =

1/3 (cf. Example 3 below). Similarly, to ensure that the chain always moves at least once,

we might consider µ{1} = µ{2} = 1/2 (cf. Example 1 below).

As a generalisation of P̂n, we shall consider µ̂Pn ≡ PµPn. That is, µ̂Pn corresponds

to taking one step according to Pµ, followed by n steps according to P . Equivalently, it

corresponds to taking n + T steps according to P , where T ∼ µ is chosen independently

of the chain.

Thus, P̂n = PµPn for the special case µ{0} = µ{1} = 1/2. In fact, running µ̂Pn on

an initial distribution ρ is precisely equivalent to running Pn on the initial distribution

ρPµ. Hence, modifications such as P̂ (as opposed to P ) correspond merely to choosing a

more intelligent initial distribution. Below we shall consider both (Pµ)n and µ̂Pn, however

we shall concentrate more on (Pµ)n, since initial distributions are really a separate topic,

and since by Remark 5, (Pµ)n is in some ways better than µ̂Pn anyway.
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Remark 6. In the special case where µ{0} = µ{1} = . . . = µ{d − 1} = 1/d for some

integer d ≥ 2, we see that µ̂Pn = 1
d

∑n+d−1
i=n P i, and corresponds to choosing uniformly

from among d consecutive values of the original chain. This modification is well-known

to be a way of guaranteeing convergence (though without specified quantitative rate) of a

Markov chain of period d, see e.g. p. 31 of Orey (1971), or p. 71 of Hoel et al. (1972). (For

more on this special case, see Theorem 9 below.) Hence, our µ̂Pn is a generalisation of a

well-known Markov chain modification.

5. Convergence rate bounds.

We now turn our attention to methods of proving convergence rates for Markov chains

with kernels of the form Pµ as above. We first recall a well-known fact about Markov

chains and minorisation conditions, which can be proved by coupling (see e.g. Doeblin,

1938; Doob, 1953; Griffeath, 1975; Pitman, 1976; Nummelin, 1984; Lindvall, 1992; Meyn

and Tweedie, 1993; Rosenthal, 1995a, 1995b).

Proposition 7. Let P be the transitions for a Markov chain on a state space X , having

stationary distribution π(·). Suppose P satisfies the minorisation condition Pm0(x, ·) ≥

εν(·) for all x ∈ X as in (2), where ε > 0 and where ν(·) is any probability measure on X .

Then

‖Pm(x, ·)− π(·)‖TV ≤ (1− ε)bm/m0c ,

where brc means the greatest integer not exceeding r.

Now, if P is (say) a nearly periodic chain, then it is unlikely we will have P (x, ·) ≥ εν(·)

for all x ∈ X for any non-negligible ε. On the other hand, it is more likely that we will

have Pµ(x, ·) ≥ εν(·) for all x ∈ X , where Pµ represents (as before) the same Markov

chain but run for a random number of iterations.

To proceed, let µ be any probability measure on the non-negative integers, and let

Pµ =
∑

m µ{m}Pm as before. The following result follows immediately by applying

Proposition 7 to the chain Pµ instead of the chain P .
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Theorem 8. Suppose (Pµ)m0(x, ·) ≥ εν(·) for all x ∈ X , where ε > 0 and where ν(·) is

any probability measure on X . Then for all x ∈ X ,

‖(Pµ)m(x, ·)− π(·)‖TV ≡ ‖L(XTm
|X0 = x)− π(·)‖TV ≤ (1− ε)bm/m0c ,

where Tm ∼ µ∗m is chosen independently of {Xn}.

Theorem 8 thus says that, if we have found a distribution µ such that Pµ satisfies a

minorisation condition, and we run our original Markov chain for an appropriate random

number of steps, then the resulting value will be very close to stationary. This provides a

simple, practical mechanism for obtaining a sample from a given distribution π(·), when-

ever an MCMC algorithm with good asymptotic variance properties is available (even if the

algorithm is periodic or nearly so). Some examples applying Theorem 8 are presented in

Section 6. We also note that minorisation conditions can sometimes be approximately veri-

fied numerically even when they are analytically intractable; see e.g. Cowles and Rosenthal

(1998), Cowles (2001).

Now, Theorem 8 can only be applied if Pµ is uniformly ergodic, i.e. satisfies a mi-

norisation condition on the entire state space X . On the other hand, there is also a great

deal of interest in convergence rates for non-uniformly ergodic chains (see e.g. Meyn and

Tweedie, 1994; Rosenthal, 1995b; Roberts and Tweedie, 1999; Jones and Hobert, 2001).

We shall consider corresponding results about Pµ for non-uniform chains in subsequent

research.

Regarding µ̂Pn, convergence results are somewhat more awkward since the near-

periodicity part is dealt with only at the first iteration, rather than repeatedly at each

iteration as with (Pµ)n. However, in the exactly periodic case, with µ as in Remark 6, we

have the following simple result.

Theorem 9. Suppose a Markov chain P (x, ·) has stationary distribution π(·) and period

d ≥ 2, so the state space X can be partitioned as X = X1∪X2∪. . .∪Xd, with P (x,Xi+1) = 1

for all x ∈ Xi for 1 ≤ i ≤ d− 1, and P (x,X1) = 1 for all x ∈ Xd. Suppose that for each i

there is a probability measure νi(·) on X , such that for some fixed ε > 0,

Pm0(x, ·) ≥ ε νi(·) , x ∈ Xi , 1 ≤ i ≤ d− 1 . (5)
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Let µ{0} = µ{1} = . . . = µ{d− 1} = 1/d. Then

‖µ̂Pm(x, ·)− π(·)‖TV ≤ (1− ε)bm/m0c , x ∈ X .

Note that condition (5) requires a separate minorisation condition on each piece Xi, but

does not require a single minorisation condition valid on all of X . Furthermore, if P (x, ·) ≥

ε νj(·) for all x ∈ Xj for some fixed j, then it follows easily that (5) is satisfied with the

same ε, but with m0 = d. On the other hand, it is non-trivial to generalise Theorem 9

to bound the distributional convergence of µ̂Pn when the chain is nearly periodic but not

exactly periodic; for in that case, it does not follow that π(Xi) = 1/d for each i, which is

required for the proof.

Remark. As observed in Roberts and Rosenthal (2000), small-set conditions of the

form P (x, ·) ≥ εν(·) for all x ∈ C, can be replaced by pseudo-small conditions of the form

P (x, ·) ≥ ενxy(·) and P (y, ·) ≥ ενxy(·) for all x, y ∈ C, where νxy can depend on the specific

pair (x, y), without affecting any bounds which use coupling (such as Theorems 8 and 9

above). So, this provides an immediate generalisation of the above results; though for ease

of exposition, we do not pursue that here.

6. Examples.

We now present a number of examples, to which we apply the theory of the previous

sections.

Example 1. A periodic continuous chain.

Let X = [0, 2], and define P as follows. For x ∈ [0, 1], P (x, ·) = Unif[1, 2], while for

x ∈ (1, 2], P (x, ·) = Unif[0, 1]. This chain is reversible with respect to π(·) = Unif[0, 2].

This example is simple enough that we can understand its spectrum exactly. Indeed,

note that Ph = h if h is constant; Ph = −h if h(x) = C for x > 1 and h(x) = −C for

x ≤ 1 for some constant C; and Ph = 0 if
∫ 1

0
h =

∫ 2

1
h = 0. This shows that P has a one-

dimensional eigenspace corresponding to the eigenvalue 1, a one-dimensional eigenspace

corresponding to the eigenvalue −1, and an infinite-dimensional eigenspace corresponding

to the eigenvalue 0. Furthermore, since every measurable function can be written as a
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linear combination from these three eigenspaces, we see that this completely specifies the

spectrum of P . Thus, σ(P ) = {−1, 0, 1} and σ(P0) = {−1, 0}.

Hence, interval(P ) = 1 while gap(P ) = 0. In words, we see that this example (like

that of Section 2) has excellent asymptotic variance properties, but very poor distributional

convergence properties.

On the other hand, by Theorem 3, we see that gap(P ) = ζ(1) = 3/4, i.e. the binomial-

modified chain P
m

converges to π(·) extremely quickly, as does P̂m. (Note, however, that

unlike the simple example of Section 2, this chain will not converge exactly after one

iteration, since for any m, P
m

always includes probability 2−2m of not moving at all.)

To apply Theorem 8, we see that we cannot have P k0(x, ·) ≥ εν(·) with ε = 1, for all

x ∈ X for any k0 and ν(·). Rather than settle for ε < 1 here, we resort to a trick by setting

µ{1} = µ{2} = 1/2. We then have Pµ(x, ·) = π(·) for all x ∈ X , so we can take ε = 1 in

Theorem 8, to get that ‖(Pµ)m(x, ·)− π(·)‖TV = 0 for any m ≥ 1 and all x ∈ X .

We conclude that in this example, the binomially-modified chain P converges at rate

(1/4)n, and in fact the chain Pµ with µ{1} = µ{2} = 1/2 converges exactly in just one

iteration, even though the original chain is periodic.

Example 2. A nearly-periodic chain.

Again let X = [0, 2], and suppose now that we only know there are some δ1, δ2 > 0

such that for x ∈ [0, 1], P (x, ·) ≥ δ1Unif[1, 2], while for x ∈ (1, 2], P (x, ·) ≥ δ2Unif[0, 1].

(This means that e.g. for x ∈ [0, 1] and 1 ≤ a < b ≤ 2, P (x, [a, b]) ≥ δ1(b−a).) Suppose the

chain has some stationary (though perhaps non-uniform) distribution π(·). (The previous

example corresponds to δ1 = δ2 = 1 and π(·) = Unif[0, 2].) Since we know less about this

chain, it is more difficult to directly understand its spectral properties.

On the other hand, we can still use Theorem 8. Indeed, we have P (x, ·) ≥ δ2Unif[0, 1]

for x ∈ (1, 2], and P 2(x, ·) ≥ δ1δ2Unif[0, 1] for x ∈ [0, 1]. Similarly P (x, ·) ≥ δ1Unif[1, 2]

for x ∈ [0, 1], and P 2(x, ·) ≥ δ1δ2Unif[1, 2] for x ∈ (1, 2]. Hence, with µ{1} = µ{2} = 1/2,

we have Pµ(x, ·) ≥ ε ν(·) for all x ∈ X , where ε = min[δ1, δ2, δ1δ2] = δ1δ2, and ν(·) =

Unif[0, 2].

Hence, by Theorem 8, ‖(Pµ)m(x, ·)− π(·)‖TV ≤ (1− δ1δ2)m. This provides a bound
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on how many iterations of Pµ should be done (or equivalently, what random number

of iterations of P should be done), to get sufficiently close to (say, within 0.01 of) the

stationary distribution π(·).

Example 3. A chain of period D ≥ 3.

Suppose now that X = {1, 2, . . . , D}, where D ≥ 3. Suppose further that P (i, {i +

1}) = 1 for 1 ≤ i ≤ D − 1, and P (D, {1}) = 1. This chain has stationarity distribution

π(·) = Unif(X ). However, the chain is periodic of degree D. Hence, it does not converge

in distribution at all.

We note that the modification P̂ from Section 4 does not help. Indeed, P̂n(i, {j}) = 0

unless j ≡ i + n (mod D) or j ≡ i + n + 1 (mod D). Indeed, the distribution P̂n(i, ·)

always satisfies ‖P̂n(i, ·)− π(·)‖ = (D − 2)/D, and does not go to zero as n →∞.

The modification P from Section 4 does indeed help. In that case, the distribution

P
n
(i, ·) is equal to the distribution of Yn = Bn+i (mod D) where Bn ∼ Binomial(2n, 1/2).

Hence, ‖Pn
(i, ·)− π(·)‖ = ‖L(Yn)− π(·)‖, which goes to zero, gradually, as n →∞.

Even better is to consider Pµ, where µ is uniform on {0, 1, 2, . . . , D− 1}. In that case

Pµ(i, ·) = π(·) for any i, so ‖(Pµ)m(i, ·) − π(·)‖ = 0 for any i ∈ X and any m ≥ 1. That

is, Pµ converges to stationarity in just one step.

For this choice of µ, we can take ε = 1 in Theorem 9, and this shows that the chain
µ̂Pn also converges to stationarity in just one step. Thus, for this example, (Pµ)n and µ̂Pn

work equally well, when µ is uniform on {0, 1, 2, . . . , D − 1}.

Example 4. A misspecified µ distribution.

Consider the previous example with D = 3, but suppose we have erroneously set

µ{0} = µ{1} = 1/2. That is, suppose the chain has period 3, but we mistakenly thought

it had near-periodicity problems corresponding to period 2.

In this case, we will have ‖µ̂Pn(x, ·) − π(·)‖TV = 1/3, for any x ∈ X and any n ≥ 0.

This is because µ̂Pn(x, ·) will always be concentrated equally on some two of the three

points in X . Hence, in particular, ‖µ̂Pn(x, ·) − π(·)‖TV 6→ 0, so that µ̂Pn(x, ·) does not

converge in distribution at all.
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On the other hand, consider (Pµ)n. We see by inspection that, say, (Pµ)2(x, ·) ≥ ε π(·)

for all x ∈ X if ε = 3/4, since e.g. (Pµ)2(1, ·) has distribution (1/4, 1/2, 1/4). Hence, it

follows from Theorem 8 that

‖(Pµ)n(x, ·)− π(·)‖TV ≤ (1− 3/4)bn/2c = (1/4)bn/2c ,

so that ‖(Pµ)n(x, ·)− π(·)‖TV → 0, and quite quickly at that.

We conclude from this that (Pµ)n is more “flexible” than µ̂Pn, since it converges

quickly even if µ is misspecified.

Example 5. A trans-dimensional Metropolis-Hastings algorithm.

Consider the chain of Lemma 1 of Brooks, Guidichi, and Roberts (2002). This is a

very simple example of a trans-dimensional Metropolis-Hastings algorithm, in the spirit of

e.g. Norman and Filinov (1969), Preston (1977), and Green (1995).

The Markov chain is defined as follows. Let X = {e} ∪ [0, 1], and π({e}) = p, and

π(dy) = (1 − p)f(y) for y ∈ [0, 1], where 0 < p < 1 and
∫ 1

0
f(y)dy = 1. (Here e is a

“0-dimensional” single point, with e 6∈ [0, 1].) We run a Metropolis-Hastings algorithm

for π(·), with proposal kernel {Q(x, ·)}x∈X defined by Q(y, {e}) = 1 for y ∈ [0, 1], and

Q(e, dy) = q(y)dy for y ∈ [0, 1], where
∫ 1

0
q(y)dy = 1.

It seems reasonable to try to get a minorisation condition with ν({e}) = 1, i.e. to

show that P (x, {e}) ≥ ε for all x ∈ X , or perhaps that Pµ(x, {e}) ≥ ε for all x ∈ X .

We compute that

S ≡ P (e, {e}) = 1− P (e, [0, 1]) = 1−
∫ 1

0

min
[
1,

(1− p)f(y)
p

1
q(y)

]
q(y)dy .

If q ≡ f , then S = max[0, 2p−1
p ]. Also,

I ≡ inf
0≤y≤1

P (y, {e}) = inf
0≤y≤1

min
[
1,

p

(1− p)f(y)
q(y)
1

]

= min
[
1,

p

(1− p)
inf

0≤y≤1

q(y)
f(y)

]
.

If q ≡ f , then I = min[1, p
1−p ].
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We therefore see that P (x, {e}) ≥ ε for all x ∈ X , where ε = min[S, I]. However, if

e.g. q ≡ f (as suggested by Brooks et al., 2002) and p ≤ 1/2, then S = 0 and so ε = 0.

In fact, if q ≡ f and p = 1/2, then the chain is periodic, always accepting its moves and

therefore always jumping back and forth between {e} and [0, 1]. Hence, in this case we

will never have P k0(x, {e}) ≥ ε for all x ∈ X , for any ε > 0.

On the other hand, obviously P 0(e, {e}) = 1 (by definition, in fact). Hence, if µ{0} =

µ{1} = 1/2, then Pµ(x, {e}) ≥ I for all x ∈ X . Hence, by Theorem 8, we have

‖(Pµ)m(x, ·)− π(·)‖ ≤ (1− I)m , x ∈ X ,

so that ‖L(XBn)−π(·)‖ ≤ (1−I)m regardless of the initial distribution L(X0) (where Bn ∼

Binomial(2n, 1/2) is independent of {Xn}). Note that if q ≡ f , then 1− I = max[0, p
1−p ],

so in that case we obtain

‖(Pµ)m(x, ·)− π(·)‖ ≤ max[0, (
p

1− p
)m] , x ∈ X .

Example 6. A multi-dimensional antithetic Metropolis algorithm.

Let X = R50 be fifty-dimensional space. Let π(dx) = f(x) dx, where

f(x) ∝ e
−
∑50

j=1
(xj−γ sign(

∑
i
xi)1)2

, x ∈ R50 ,

where γ > 0 and 1 = (1, 1, . . . , 1). The distribution π(·) is thus a “merging” of two normal

distributions, with modes at ±γ1.

Consider running a Metropolis algorithm X0,X1, . . . for π(·), with one of two different

proposal distributions: Q1(x, ·) = N(x, σ2 I), and Q2(x, ·) = N(−x, σ2 I). That is, the

proposals are normally distributed, with variance σ2 times the identity matrix, and with

mean either x or −x. Hence, Q1 is a non-antithetic proposal, while Q2 is an antithetic

proposal.

We simulated this chain numerically with γ = 10 and σ = 0.01, starting at the

mode γ1. With proposal Q1, the chain is essentially unable to reach the other mode, and

indeed even after a million iterations there is not a single time n with
∑

i Xn,i < 0 (where

Xn = (Xn,1, . . . , Xn,d)). Hence, with proposal Q1, the chain converges very, very slowly.

15



With proposal Q2, the chain is antithetic, and jumps between the two modes very

easily. In this case, the autocorrelations of x1 (say) are essentially zero. (The autocor-

relations of (x1)2 are not zero but are still very small, since they are equivalent to the

autocorrelations within a single mode which are very small.)

On the other hand, even with proposal Q2, the chain converges quite slowly in distri-

bution. This is because there are so few rejections (since σ is so small, and f is symmetric)

that the chain exhibits near-periodic behaviour. This is corrected by the use of the schemes

P and P̂ from Section 4, each of which effectively causes convergence.

We simulated this model in dimension 50, with γ = 10 and σ = 0.01, for each of the

proposals Q1 and Q2, and for each of the sampling schemes Pn, P
2n

, and P̂n. For each of

the six combinations, we ran 100,000 separate runs, each for n = 20 iterations started at

the mode γ 1, and computed the mean of the resulting distribution of X20,1 (which should

be zero in stationarity). We summarise our results in Table 1.

Pn P
2n

P̂n

Q1 9.999944 10.000033 9.999950

Q2 8.127410 0.038961 0.048713

Table 1. Means of the quantity X20,1 (which should have mean zero in
stationarity), under each of the proposals Q1 and Q2, and for each of the
schemes Pn, P

2n
, and P̂n. Here n = 20 and µ{0} = µ{1} = 1/2. Note

that the means are computed only from the final iteration n, as opposed
to averaging over all iterations from 0 to n, to examine the distribution
at time n rather than estimator properties.

We thus see that, regardless of which scheme is used, the non-antithetic proposal Q1

is unable to produce a simulatation of X20,1 whose distribution is close to the stationary

distribution (which would have a mean of zero). Rather, it always concentrates around the

mean γ = 10 of the mode in which it starts, and fails to mix properly. For the antithetic

proposal Q2, the original chain P is nearly periodic, so again the simulation of X20,1 is far

from stationarity and has an incorrect mean. However, the modified schemes P and P̂ ,
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used in combination with the antithetic proposal Q2, each produce a simulation which is

very close to stationarity (having mean close to zero).

This provides numerical support, in high dimensions, for the claim that the modifi-

cations P
2n

and P̂n are useful to produce good distributional convergence from nearly-

periodic original chains Pn.

Example 7. A Bayesian posterior distribution.

Consider the following statistical model. Suppose that conditional on Z, the variables

{Yi}J
i=1 are conditionally i.i.d., with P (a < Yi − Z ≤ b) =

∫ b

a
C e−

√
|x| dx for a < b,

for appropriate normalising constant C. Take the prior distribution Z ∼ Cauchy, so

P (a < Z ≤ b) =
∫ b

a
dx

π (1+x2) ). Let π(·) be the posterior distribution of Z, conditional on

the observed data Y1, . . . , YJ ; that is, π(·) = L(Z |Y1, . . . , YJ). The formula for π(·) is

π(dz) ∝ dz

π (1 + z2)

J∏
i=1

e−
√
|z−Yi| .

Thus, π(·) is a simple example of a Bayesian posterior distribution, for which MCMC

algorithms are very widely used.

Suppose, as in Example 6, that we run a Metropolis algorithm for π(·), with the

antithetic proposal Q(z, ·) = N(−z, σ2). This ensures good asymptotic variance properties

of the algorithm. But how quickly does this algorithm converge to π(·) in distribution?

For many values of the data {Yi}, the Metropolis algorithm will not have any near-

periodicity problems. However, suppose that the data happens to be approximately sym-

metric around 0. In that case, π(·) will also be approximately symmetric, so there will be

very few rejections. In this case, it is possible that the algorithm could jump back and

forth between very positive and very negative values, exhibiting near-periodic behaviour

and therefore poor distributional convergence properties. Use of either P or P̂ should

alleviate this problem.

Suppose for definiteness that J = 80, with Y1 = . . . = Y40 = −50, and Y41 = . . . =

Y80 = +50. We begin our Markov chain at X0 = −40, and run {Xn} as a Metropolis

algorithm with proposal Q(z, ·) = N(−z, σ2) where σ = 0.01, for 20 iterations, under the

three schemes P 20, P
40

, and P̂ 20.
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Under this scheme, we compute (by running the algorithm for 100,000 repetitions

and averaging) that with P 20, we have E(X) .= −10.25, which is very far from its mean

of 0, indicating poor distributional convergence. On the other hand, with P
40

, we have

E(X) .= 0.113 which is very close to 0. Similarly, with (P̂ )20, we have E(X) .= −0.258

which is again very close to 0.

We conclude from this that, for this Bayesian model and data, the schemes P and P̂

both have excellent distributional convergence properties, even though the original chain P

has major problems of near-periodicity, and even though computing P
40

and P̂ 20 requires

virtually no additional computation compared to P 40.

Example 8. Card-shuffling by random transpositions.

Diaconis and Shashahani (1981), see also Diaconis (1988), consider the following model

for shuffling a deck of cards (of size D). The deck’s state is represented as an element σ of

the symmetric group SD of permutations of {1, 2, . . . , D}. Given a state σn at time n, the

state σn+1 at time n + 1 is chosen as follows. With probability p, we do nothing, so that

σn+1 = σn. Otherwise, with probability 1− p, we choose a pair (i, j) uniformly at random

from the set {(i, j); 1 ≤ i < j ≤ D}. We then transpose cards i and j in the deck, leaving

the other cards fixed, so that σn+1(i) = σn(j), σn+1(j) = σn(i), and σn+1(k) = σn(k) for

k 6= i, j.

This model defines a Markov chain on SD, whose stationary distribution π(·) is the

uniform distribution on SD. Diaconis and Shashahani (1981) prove that, if p = 1/D,

then ‖P 1
2 D log D+cD(σ, ·) − π(·)‖TV ≤ ae−2c for some constant a, implying that roughly

1
2D log D + O(D) iterations are necessary to converge to π(·). On the other hand, if

p = O(D−2), then more than O(D2) iterations are needed for convergence (see Diaconis,

1988, p. 44), and in general the closer p gets to 0, the closer to periodic the chain becomes.

Suppose now that p = 0, so that there is no holding probability at all. In that case,

the sign of the permulation σn keeps alternating, so that ‖Pn(σ, ·)− π(·)‖TV ≥ 1/2 for all

n (regardless of σ), and Pn does not converge in distribution at all.

However, use of either P
2n

or P̂n again solves this convergence problem. We ran each

of the three schemes for D = 52 (as for an ordinary deck of cards), beginning in the identity
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state (corresponding to a completely sorted deck), and with n = 1143 .= 1
2D log D + 20D.

For each scheme, we computed (by averaging 100,000 repetitions) the mean values of σ(1)

(the position of the Ace of Spades), and of sign(σ). We compared these to the known

means under π(·). The results are summarised in Table 2.

π(·) Pn P
2n

P̂n

σ(1) 26.5 26.526790 26.465390 26.541590

sign(σ) 0 −1.000000 0.001180 0.005020

Table 2. Means of the quantities σ(1) (the position of the Ace of
Spades), and of sign(σ) (the permutation’s sign), in the stationary dis-
tribution π(·), and under each of the schemes Pn, P

2n
, and P̂n. Here

D = 52, and n = 623, and µ{0} = µ{1} = 1/2.

We see from Table 2 that σ(1) converges well under all schemes. However, sign(σ) fails

to converge under Pn, but converges well under P
2n

and P̂n. Hence, once again, P and

P̂ manage to alleviate the periodicity problems inherent in P , with very little additional

computational effort.

Example 9. A random-effects model.

Finally, we consider the random-effects model studied analytically in Rosenthal (1996),

using the baseball data of Efron and Morris (1975) and Morris (1983). Here m and A are

parameters with prior distributions flat and InverseGamma(−1, 2), respectively. Then

θi |m,A ∼ N(m,A), with {θi}K
i=1 conditionally independent. Finally, Yi | {θj}K

j=1 ∼

N(θi, V ) with {Yi}K
i=1 conditionally independent, and with V = 0.00434 estimated di-

rectly from the data. We condition on the baseball data {Yi}, with K = 18, as presented

in Table 1 of Morris (1983). This gives rise to a posterior distribution π(·) on R20, corre-

sponding to the 20-tuple (A,m, θ1, . . . , θK).

We run a Gibbs sampler on (A,m, θ1, . . . , θK) for this π(·). It was proved in Rosenthal

(1996) that, if we begin with θi = 1
K

∑
j Yj for all i, then this Markov chain satisfies
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‖P 140(x, ·)−π(·)‖TV < 0.01, i.e. it converges in distribution after 140 iterations. So, there

are no problems with distributional convergence of the original chain. However, we here

examine the distributional convergence of the P and P̂ schemes as well. The results are

summarised in Table 3.

Pn P
2n

P̂n

A 0.320066 0.319072 0.319450

m 0.265295 0.266219 0.266159

θ1 0.392684 0.393402 0.393401

θ5 0.312400 0.312379 0.312134

θ18 0.149678 0.149867 0.149684

Table 3. Means of various quantities, for the Gibbs sampler for the
random-effects model, for each of the schemes Pn, P

2n
, and P̂n. Here

n = 140 and µ{0} = µ{1} = 1/2. Note that the means are approxi-
mately equal under all three schemes.

We see from Table 3 that, in this case, all variables converge well under all three of

the schemes. Hence, for this model, it is not necessary to use P or P̂ to achieve good

distributional convergence. On the other hand, no harm is done either, indicating that

there is no problem with using P or P̂ even if your chain turns out not to have any

near-periodicity problems at all.

7. Discussion and Conclusion.

It is true that nearly-periodic Markov chains may have very low asymptotic variance

when estimating functionals, even though they have very slow distributional convergence

to stationarity. However, we have argued in this paper that simple modifications of such

chains (involving a random number of iterations) can produce chains which in addition

have excellent converence properties. We have also provided a number of theoretical results

concerning the distributional convergence rates of such chains.
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It is possible that these ideas can best be used in conjunction with the creation of

antithetic chains. Indeed, it may be possible (as in Example 6 above) to first modify

the transitions of a given chain to create an antithetic chain with the same stationary

distribution, and then to randomly modify (as described herein) the number of iterations

of the antithetic chain to create a chain with excellent convergence properties.

From the practical point of view, the proposed Markov chain modifications raise a

number of issues. When should a user bother with such modifications? If you do use

them, should you use (Pµ)n or µ̂Pn? And, what choice of µ should be made?

We would answer these questions as follows. For routine uses of MCMC algorithms

(especially for Metropolis algorithms with many rejections), periodicity-related problems

might not arise. So, it is not necessary to use these modifications on a routine basis.

However, even when there are no periodicity-related problems, these modifications do no

harm (cf. Example 9 herein), and there is very little additional work required to use them

(e.g. just sampling from one binomial distribution), so there is no particular reason not to

use them on a routine basis, either.

More significantly, if there is any hint or possibility of periodicity-related problems,

then these modifications should be used. Indeed, they might well provide greatly improved

distributional convergence (cf. Examples 1 through 8 herein).

As for which of (Pµ)n and µ̂Pn to use: Often they are both equally good at overcoming

periodicity problems (cf. Example 3), in which case either one could be used. However, as

discussed in Remark 5, (Pµ)n has better guaranteed convergence properties. Furthermore,

as seen in Example 4, (Pµ)n is more flexible if µ is incorrectly specified. Thus, overall we

recommend (Pµ)n over µ̂Pn, though often either one will suffice.

As for the choice of µ: If it is known that the chain is approximately periodic with

period d, then it makes sense to let µ be uniform on {0, 1, . . . , d− 1} as in Remark 6. Or,

if it is know that the chain has special structure that can be exploited, then it is wise to

choose µ on that basis (cf. Example 1 herein). However, in the absense of such additional

information, we recommend the simplest case of choosing µ{0} = µ{1} = 1/2, so that Pµ

reduces to the binomial modification P . This modification is simple to implement, and is

flexible enough to handle a variety of periodicity-related problems (cf. Example 4 herein).
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In conclusion, we feel that the proposed Markov chain modifications protect against

periodicity-related distributional convergence problems, while doing no harm and requir-

ing minimal effort to implement. Thus, they appear to be worthwhile, to ensure good

distributional convergence in various MCMC applications.

Appendix: Proofs of Theoretical Results

Proof of Proposition 1. Let EP0(·) be the resolution of the identity associated with P0,

as in the spectral theorem (see e.g. Conway, 1985; Reed and Simon, 1972; Geyer, 1992;

Chan and Geyer, 1994; Mira and Geyer, 1999), so that

g(P0) =
∫

σ(P0)

g(λ)EP0(dλ) ,

for every bounded Borel-measurable function g : σ(P0) → R. Given a bounded Borel-

measurable function g, let Eg,P0 be the spectral measure associated with g and P0, so that

Eg,P0(A) = 〈g, EP0(A) g〉 and

〈g, h(P0)g〉 =
∫

σ(P0)

h(λ)Eg,P0(dλ) , (6)

for every bounded Borel-measurable function h : R → R. In particular, setting h(P0) ≡ 1

in (6), we see that

〈g, g〉 = π(g2) =
∫

σ(P0)

Eg,P0(dλ) . (7)

Then it is known (Kipnis and Varadhan, 1986; see also Geyer, 1992; Chan and Geyer, 1994;

Mira and Geyer, 1999) that

lim
n→∞

1
n
Var

(
n∑

i=1

g(Xi)

)
=
∫

σ(P0)

1 + λ

1− λ
Eg,P0(dλ) .

Now, since λ → 1+λ
1−λ is an increasing function for λ ∈ σ(P0) ⊆ [−1, 1), we have from

the above that

lim
n→∞

1
n
Var

(
n∑

i=1

g(Xi)

)
=
∫

σ(P0)

1 + λ

1− λ
Eg,P0(dλ)
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≤
∫

σ(P0)

1 + Λ
1− Λ

Eg,P0(dλ) =
1 + Λ
1− Λ

∫
σ(P0)

Eg,P0(dλ) =
1 + Λ
1− Λ

π(g2)

by (7). Also Λ < 1, so 1 + Λ < 2.

Proof of Proposition 2. It follows from Roberts and Rosenthal (1997b) (cf. Roberts and

Tweedie, 2000, Theorem 3) that

sup
‖ρ‖L2(π)<∞

lim
n→∞

1
n

log ‖ρPn(·)− π(·)‖TV = sup
‖ρ‖L2(π)<∞

lim
n→∞

1
n

log ‖ρPn(·)− π(·)‖L2(π) ,

i.e. that we can replace TV distance by L2(π) distance in the statement of the Proposition.

We have

‖ρPn(·)− π(·)‖L2(π) ≤ ‖ρ(·)− π(·)‖L2(π)‖Pn
0 ‖L2(π)

≤ ‖ρ(·)− π(·)‖L2(π)r(P0)n .

Hence, taking logs, dividing by n, and letting n →∞, we see that

sup
ρ∈L2(π)

lim
n→∞

1
n

log ‖ρPn(·)− π(·)‖L2(π) ≤ log r(P0) .

Conversely, by the spectral radius formula (e.g. Conway, 1985), we have

r(P0)n = ‖Pn
0 ‖n = sup{

(‖Pnf‖L2(π)

‖f‖L2(π)

)1/n

; f ∈ L2
0(π)}

≤ sup{
(‖Pn(g − 1)‖L2(π)

‖g − 1‖L2(π)

)1/n

; g ∈ L2(π), g ≥ 0, π(g) = 1}

= sup{

(
‖Pn(d(ρ−π)

dπ )‖L2(π)

‖d(ρ−π)
dπ ‖L2(π)

)1/n

; ρ prob dist, ‖ρ‖L2(π) < ∞}

= sup{
(‖(ρ− π)Pn‖L2(π)

‖ρ− π‖L2(π)

)1/n

; ρ prob dist, ‖ρ‖L2(π) < ∞} .

Hence, taking logs, dividing by n, and letting n →∞, we see that

log r(P0) ≤ sup
ρ∈L2(π)

lim
n→∞

1
n

log ‖ρPn(·)− π(·)‖L2(π) .
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The result follows.

Proof of Theorem 3. We have that

P
2

=
(

I + P

2

)2

.

Now, let η(λ) = ( 1
2 (1 + λ))2. Then since P is self-adjoint, we have (see e.g. Conway, 1985)

that

σ(P
2

0) = σ

((
I0 + P0

2

)2
)

= {(1
2
(1 + λ))2 ; λ ∈ σ(P0)} = {η(λ) ; λ ∈ σ(P0)} .

Note that for λ ∈ σ(P0) ⊆ R, we have η(λ) ≥ 0. Also, η(λ) is an increasing function of λ

for λ ∈ σ(P0) ⊆ [−1, 1]. Hence,

r(P
2

0) = sup
λ∈σ(P

2
0)

|λ| = sup
λ∈σ(P

2
0)

|η(λ)| = sup
λ∈σ(P0)

η(λ) = η

(
sup

λ∈σ(P0)

λ

)
.

The statement now follows since 1− η(x) = ζ(1− x).

Proof of Theorem 4. We have using self-adjointedness of P that

σ(P̂n
0 ) = {1

2
λn +

1
2
λn+1 ; λ ∈ σ(P0)} = {θn(λ) ; λ ∈ σ(P0)} .

The equally then follows by taking absolute values and supremums. The inequality and

final statement follow since sup−1≤x≤0 |θn(x)| = nn

2(n+1)n+1 , with the sup occurring at

x = − n
n+1 , and θn(x) is non-negative and increasing for x ≥ 0.

Proof of Theorem 9. It follows from the hypotheses that π(Xi) = 1/d for all i. Choose

Y0 ∼ π(·), and let j be such that Y0 ∈ Xj . Then let 0 ≤ T ≤ d − 1 be such that

PT (x,Xj) = 1. It then follows that T ∼ µ(·).
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We now let X0 = x, and then run {Xn+T }∞n=0 and {Yn}∞n=0 jointly. It follows from

the minorisation condition that we can force them to have probability ε of becoming equal,

once every m0 iterations. We conclude that we can define them jointly to ensure that

P (Xm0n+T 6= Ym0n) ≤ (1− ε)n. It then follows from the standard coupling inequality (see

e.g. Lindvall, 1992; or Rosenthal, 1995a, Appendix) that ‖L(Xm0n+T ) − L(Ym0n)‖TV ≤

(1− ε)n. But L(Xm0n+T ) = ̂µPm0n, and by stationarity L(Ym0n) = π(·). The result follows

by setting n = bm/m0c.
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