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This paper investigates the polar slice sampler, a particular type of the Markov
chain Monte Carlo algorithm known as the slice sampler. This algorithm is shown
to have convergence properties which under some circumstances are essentially
independent of the dimension of the problem. For log-concave densities, the
algorithm provably converges (from appropriate starting point) to within 0.01
of stationarity in total variation distance in a number of iterations given as a
computable function of the spherical asymmetry of the density. In particular,
for spherically symmetric log-concave densities, in arbitrary dimension, with ap-
propriate starting point, we prove that the algorithm converges in at most 525
iterations. Simulations are done which confirm the polar slice sampler’s excellent
performance.

1. Introduction.

The slice sampler is a specialised type of Markov chain Monte Carlo (MCMC) aux-

iliary variable method (Swendsen and Wang, 1987; Edwards and Sokal, 1988; Besag and

Green, 1993; Higdon, 1998) that has been recently popularised by Neal (1997), Fishman

(1996), and Damien, Wakefield, and Walker (1999). In Roberts and Rosenthal (1999),

it is demonstrated that the slice sampler has rather robust theoretical properties. In

particular, the so-called simple slice sampler, with just a single auxiliary variable, is ge-

ometrically ergodic under very general conditions. This property contrasts strongly with

other Metropolis-Hastings algorithms, for which geometric ergodicity typically depends

strongly on the form of the target density (see for example Roberts and Tweedie, 1996).
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The simple slice sampler’s tractability to theoretical study stems from a stochastic

monotonicity property. This allows good bounds on total variation distance from con-

vergence to be obtained using the techniques developed in Roberts and Tweedie (1999,

1998), based on the work of Rosenthal (1995) and Lund and Tweedie (1996). Further-

more, convergence bounds can be given which are uniform over large classes of possible

target density. Roberts and Rosenthal (1999) show that for any target distribution satis-

fying a particular condition on its level sets (restated as (9) below), convergence to within

0.01 in total variation distance is guaranteed in at most 530 iterations, for any starting

values whose target density is at least 0.0025 of the modal density value. For other work

which uses the monotonicity properties of the slice sampler, see the perfect simulation

implementation in Mira, Møller, and Roberts (2001).

For applications, it is important to interpret the condition on the target density’s level

sets (equation (9) below) in terms of more recognisible criteria. Roberts and Rosenthal

(1999) demonstrate that for one-dimensional distributions having density with respect

to Lebesgue measure, the condition is implied by log-concavity of the density. This is

an appealing result since target distributions produced from statistical applications often

have this property. However, this result does not generalise beyond one dimension. More

precisely, it is not true that the simple slice sampler on log-concave densities in higher

dimensions satisfies the relevant condition (9) below.

This paper focuses closely on the relationship between the dimension of the target

density and certain level set conditions. In particular, we analyse simple slice sampler fac-

torisations on log-concave densities. The investigation leads to the introduction of the polar

slice sampler, an algorithm that effectively preserves the robust convergence properties of

the slice sampler for log-concave densities, for arbitrary dimensional distributions. Fur-

thermore, a simple comparison of computing time shows the polar slice sampler performing

well in comparison with the rejection sampler and the simple slice sampler.

A major limitation of all slice sampler algorithms is the fact that their implementation

is often difficult. In particular, the X-updating step often requires considerable additional

effort to perform. However, we demonstrate here that the polar slice sampler has very good

convergence properties, provided that the X-updating step can be feasibly implemented.
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Section 2 introduces the slice sampler and describes some if its basic properties, includ-

ing those developed in Roberts and Rosenthal (1999). In Section 3, the performance of the

uniform simple slice sampler (where each step samples a truncated uniform distribution)

in high dimensions is investigated, and it is shown empirically that even for spherically

symmetric, log-concave densities, the algorithm’s performance deteriorates markedly as di-

mension increases. The polar slice sampler is motivated and constructed in Section 4, and

studied theoretically in Section 5. Section 6 gives an empirical study of the performance of

the polar slice sampler for a particular example, and gives comparisons with the uniform

simple slice sampler and a corresponding rejection sampling algorithm. Section 7 offers

some concluding remarks.

2. The slice sampler and its convergence properties.

Let π : Rd → [0,∞) be a non-negative function having positive finite integral. Our

target distribution νπ(·) will be assumed to have density (with respect to d-dimensional

Lebesgue measure dx) proportional to π, i.e.

νπ(A) =

∫
A

π(x) dx∫
Rd π(x) dx

.

The simple slice sampler begins by choosing a factorisation of π, of the form

π(x) = f0(x) f1(x) . (1)

By renormalising π as necessary, we can (and do) assume without loss of generality that

sup
x∈Rd

f1(x) = 1 . (2)

The f0-simple slice sampler proceeds as follows. Given Xn, we sample a random

variable Yn+1, uniformly over the interval (0, f1(Xn)). We then sample Xn+1 from the

truncated probability distribution having density proportional to f0(·)1L(Yn+1)(·), where

L(y) =
{
x ∈ Rd ; f1(x) ≥ y

}
.

The key to the slice sampler is that the joint chain (Xn, Yn) has stationary density

proportional to f0(x)1{f1(x)≥y}. Hence, the marginal stationary distribution of Xn has
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density exactly proportional to π, the target density. In this way, the slice sampler can

be used to generate an approximate sample from the target distribution. It is thus an

example of a Markov chain Monte Carlo (MCMC) sampling algorithm.

If f0 is a constant, then we shall call the sampler a uniform simple slice sampler. In

particular, if f0 ≡ 1, then the stationary distribution of (Xn, Yn) is precisely the uniform

distribution on the region (in Rd×R) underneath the graph of the function π. (For related

results about samplers for uniform distributions on more general regions, see Roberts and

Rosenthal, 1998.)

In general, the transition density of the simple slice sampler is given by

P(Xn+1 ∈ dz |Xn = x) =

[
1

f1(x)

∫ f1(x)

0

f0(z)1{f1(z)≥y}

Q(y)
dy

]
dz , (3)

where

Q(y) ≡ Qf0,f1(y) =
∫
Rd

f0(z)1{f1(z)≥y}dz . (4)

Remarks.

1. We note that, in fact, Q(y) is the density (with respect to Lebesgue measure) of the

stationary distribution of Yn.

2. In the uniform case (f0 = constant), the quantity Q(y) coincides with the quantity

M(y) used to construct the monotone rearrangement of a function, as in Hardy et al.

(1934), p. 276.

The issue of which factorisation to choose in (1) is often decided by practical consid-

erations (though see Mira and Tierney, 2001, for some theoretical progress on this). In

this paper we shall be mostly concerned with how this choice should be affected by the

dimensionality of the target density.

The following result is central to all of our work here. To state it, recall that

‖P(Xn ∈ · |X0 = z)− νπ(·)‖ ≡ sup
A⊆Rd

|P(Xn ∈ A |X0 = z)− νπ(A)|

is the total variation distance to the stationary distribution νπ after n steps (when starting

from the point z).
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Proposition 1. The simple slice sampler’s convergence properties depend only on the

function values Q(y). Specifically, given a simple slice sampler {Xn}∞n=0 with corresponding

function f1, we have that

(a) The sequence {f1(Xn)}∞n=0 is itself a Markov chain, with transition probabilities that

depend only on the values Q(y).

(b) The conditional density of Xn, given {f1(Xm)}∞m=0, is proportional to

f0(x)1{f1(x)=f1(Xn)} . (5)

In particular, it depends only on the value of f1(Xn), and not on the other values

{f1(Xm)}m6=n.

(c) Suppose {Xn}∞n=0 and {X̃n}∞n=0 are two different simple slice samplers (perhaps in

different dimensions), with corresponding Q functions Q(y) and Q̃(y), with corre-

sponding f1 functions f1(x) and f̃1(x) (each satisfying (2)), and with corresponding

stationary distributions νπ(x) and ν
π̃
(x). Then if Q(y) = Q̃(y) for all y, and if

f1(z) = f̃1(z̃) for some particular choice of z and z̃, then

‖P(Xn ∈ · |X0 = z) − νπ(·)‖ = ‖P(X̃n ∈ · | X̃0 = z̃) − ν
π̃
(·)‖ . (6)

Proof. We compute that

P (f1(Xn+1) ≤ w | f1(X0) = h0, f1(X1) = h1, . . . , f1(Xn) = hn)

=
1
hn

∫ hn

0

1
Q(y)

(∫
f0(z)1{f1(z)≥y}1{f1(z)≤w}dz

)
dy

=
1
hn

∫ hn

0

1
Q(y)

max (0, Q(y)−Q(w)) dy .

This immediately proves (a), and indeed gives an explicit formula for the transition prob-

abilities.

Part (b) follows easily from the definition of the simple slice sampler. Indeed, by

Fubini’s Theorem, sampling Xn+1 from the density f0(·)1L(Yn+1)(·) is equivalent to first

sampling f(Xn+1) from its induced distribution, and then sampling Xn+1 from the con-

ditional distribution (5).
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In the language of Roberts and Rosenthal (2001a), part (b) implies that the chains

{Xn} and {f1(Xn)} are bisufficient. It thus follows from Corollary 2 of Roberts and

Rosenthal (2001a) that

‖P
(
Xn ∈ · |X0 = z

)
− νπ(·)‖ = ‖P

(
f1(Xn) ∈ · | f1(X0) = f1(z)

)
− (f1 ∗ νπ)(·)‖ , (7)

where (f1 ∗ νπ) is the induced stationary distribution of f1(Xn).

Now, if {Xn}∞n=0 and {X̃n}∞n=0 are two different distributions with identical Q func-

tions and identical f1(X0) values, then it follows from part (a) that the chains {f1(Xn)}∞n=0

and {f̃1(X̃n)}∞n=0 will be identically distributed. In particular, we have f̃1(z̃) = f1(z),

f̃1 ∗ ν
π̃

= f1 ∗ νπ, and

‖P
(
f̃1(X̃n) ∈ · | f̃1(X̃0) = f̃1(z̃)

)
− (f̃1 ∗ ν

π̃
)(·)‖

= ‖P
(
f1(Xn) ∈ · | f1(X0) = f1(z)

)
− (f1 ∗ νπ)(·)‖ .

But then, applying (7) separately to each chain, we see that (6) follows immediately.

In light of Proposition 1, all conditions regarding the target density π can be stated

solely in terms of the corresponding function Q. We shall at times require the following

two conditions on Q:

yQ′(y) is non-increasing for y ≤ Y (8)

for some 0 < Y ≤ 1; and

yQ′(y) is non-increasing for all y . (9)

The following result is proved in Roberts and Rosenthal (1999, Theorem 10).

Proposition 2. If (9) holds, then for all x such that f1(x)/ supw∈Rd f1(w) ≥ 0.0025

and for all n ≥ 530,

‖P(Xn ∈ · |X0 = x)− νπ(·)‖ ≤ 0.01 .
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Remark. Note that we have assumed in (2), by renormalising as necessary, that

supw∈Rd f1(w) = 1. Hence, it is not strictly necessary to divide by this quantity in

the statement of the Proposition; however we have done so to make the restriction on x

clear, and to make the statement correct even without renormalising.

Thus 530 iterations “suffice” for convergence from a wide range of starting values, pro-

vided that (9) holds. It is shown in Roberts and Rosenthal (1999) that all one-dimensional

log-concave densities satisfy (9), when f0 is chosen to be constant. Unfortunately this

property is not shared by higher dimensional log-concave densities, and the simulations

below demonstrate that the performance of the simple slice sampler on log-concave densi-

ties deteriorates quickly as dimension increases.

3. The uniform simple slice sampler in higher dimensions.

To better understand the uniform simple slice sampler convergence properties, we

consider on Rd the density (with respect to d-dimensional Lebesgue measure dx) equal

(up to a positive multiplicative constant) to π(x) = e−|x| (where |x| =
√

x2
1 + . . . + x2

d

is the usual L2-norm). This density is easily seen to be log-concave. However, we shall

see that the uniform simple slice sampler performs quite poorly on this density, in high

dimensions. In the next section, we will see that the poor performance can be overcome

by a judicious choice of f0.

To better understand the uniform simple slice sampler on the target density π(x) =

e−|x| on Rd, we note the following. By rotational symmetry, Z = |X| is itself a Markov

chain, and indeed is precisely a slice sampler Markov chain on the one-dimensional target

density

η(z) = zd−1e−z, z > 0 , (10)

with corresponding slice factorisation given by f0(z) = zd−1, f1(z) = e−z. However,

the further transformation u = zd makes this chain equivalent to the uniform simple

slice sampler on the one-dimensional density e−u1/d

. In other words, the d-dimensional

uniform simple slice sampler on the density π(x) = e−|x| (x ∈ Rd) is equivalent to the

one-dimensional uniform simple slice sampler on the density π(u) = e−u1/d

(u > 0).
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Now, the mean of the distribution with density proportional to e−u1/d

is (2d−1)!/(d−

1)! (as can be seen by the substitution t = u1/d), and the variance is (3d− 1)!/(d− 1)!−

((2d−1)!/(d−1)!)2. For large d, this density is heavy tailed, and certainly not log-concave.

This suggests that the uniform simple slice sampler may perform correspondingly badly.

We shall see that this is indeed the case.

We ran the uniform simple slice sampler on the density π(x) = e−|x|, in Rd for

different choices of dimension d. (In fact, we ran the equivalent one-dimensional uniform

simple slice sampler on the density π(u) = e−u1/d

(u > 0).) The logarithm of the chain

value (i.e., log u) was displayed. The results are summarised in Figure 1.

Figure 1. Some sample runs and some auto-correlation function (acf)
plots (for the series log u), for the uniform simple slice sampler on the
density e−u1/d

.

It is seen from Figure 1 that the auto-correlation function decreases more and more

8



slowly as the dimension increases. In particular, it does not appear to be bounded inde-

pendent of dimension. The large auto-correlations even after a lag of 30 or 40 iterations,

suggests that this sampler does not mix rapidly in higher dimensions.

Another way to explain why the uniform simple slice sampler performs worse as di-

mension increases is to analyse the Q function. Figure 2 shows the Q function and the

derived function yQ′(y). Only in dimension 1 is yQ′(y) non-increasing, as would be re-

quired for the application of Proposition 2. As dimension increases, the function yQ′(y)

increases more rapidly.

Figure 2. The functions Q(y) and yQ′(y) for the spherically symmetric
exponential example, in dimensions 1, 2, 5, and 10. yQ′(y) is non-
increasing only in dimension 1.

We thus see that the uniform simple slice sampler performs relatively poorly for this

example, at least in high dimensions (i.e. with a large value of d). (For an interactive
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simulation of this phenomenon over the internet, see Rosenthal, 1998.) We shall now

consider a way of overcoming this difficulty.

4. The polar factorisation.

The above analysis suggests a remedy to the curse of dimensionality for the density

π(x) = e−|x| (x ∈ Rd). Indeed, the function η given in (10) is itself log-concave, for any

choice of d ∈ N. Therefore, Proposition 2 can be applied to demonstrate rapid convergence

of the uniform simple slice sampler on η, independently of dimension.

However, the one-dimensional uniform simple slice sampler on η corresponds precisely

to a d-dimensional slice sampler on π with f0(x) = |x|−(d−1) (and therefore with f1(x) =

|x|d−1π(x)). This suggests that f0(x) = |x|−(d−1) is a good choice of factorisation for this

example.

We illustrate the situation schematically, as follows:

Figure 3. A schematic illustration of the uniform and polar factorings,
for the target density π(x) = e−|x| in d dimensions, and their one-
dimensional equivalents.

Thus, using the polar slice sampler on a d-dimensional log-concave target density

is equivalent to a uniform simple slice sampler on a corresponding one-dimensional log-

concave density (in our case, zd−1e−z). This allows us to apply the convergence results of

Roberts and Rosenthal (1999) directly in this case.
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In general, without spherical symmetry, |X| will not be Markov, so the above argument

cannot be used directly. Moreover, the specific calculations of Roberts and Rosenthal

(1999) will not be of use in this case. However, the argument still suggests the natural

factorisation for the multidimensional case.

Thus, the polar factorisation amounts to setting

f0(x) = |x|−(d−1) , (11)

and therefore setting f1(x) = |x|d−1π(x), in the factorisation (1).

The polar slice sampler thus proceeds, given Xn, by choosing Xn+1 by the following

two-step procedure:

(i) sample Yn+1 ∼ Unif [0, |Xn|d−1π(Xn)];

(ii) sample Xn+1 from the density proportional to |x|−(d−1)1|x|d−1π(x)≥Yn+1 .

We have already seen that this polar slice sampler will perform well on the example

density π(x) = e−|x| (x ∈ Rd). In the next section, we shall see that this sampler has

generally good theoretical convergence properties. In Section 6, we shall present numerical

evidence that this sampler performs very well for particular choices of π.

Remark. Step (ii) above can often be performed by rejection sampling, working in polar

coordinates. Indeed, if we write Xn+1 = Rn+1θn+1, where Rn+1 ≥ 0 and where θn+1 is on

the unit sphere in Rd (i.e. |θn+1| = 1), then step (ii) can be carried out as follows:

(iia) sample Rn+1 ∼ Unif [0, R∗
n+1], for some R∗

n+1 ≥ sup{|x| ; |x|d−1π(x) ≥ Yn+1};

(iib) sample θn+1 uniformly from the unit sphere in Rd (e.g. by setting

θn+1 =
(Zn+1,1, Zn+1,2, . . . , Zn+1,d)√

Z2
n+1,1 + . . . + Z2

n+1,d

where Zn+1,1, Zn+1,2, . . . , Zn+1,d are i.i.d. standard normal);

(iic) set Xn+1 = Rn+1θn+1.

(iid) if |Xn+1|d−1π(Xn+1) ≥ Yn+1 then accept this choice of Xn+1; other-

wise return to step (iia) and repeat.
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Under this scheme, the factor |x|−(d−1) of step (ii) emerges naturally as the Jacobian of

the polar-coordinate transformation, and does not need to be mentioned explicitly. That

is, it is automatically incorporated by the requirement in (iia) that the choice of Rn+1 be

made uniformly (rather than with density |x|d−1).

5. Theoretical analysis.

In this section, we investigate theoretical bounds on the rates of convergence of the

polar slice sampler algorithms. To do this, we require the following result from Roberts

and Rosenthal (1999, Theorem 9). [This result uses general quantitative bound results

developed in Roberts and Tweedie (1999, 1998), based on the work of Rosenthal (1995)

and Lund and Tweedie (1996).] Recall also that the renormalisation condition (2), which

states that supx∈Rd f(x) = 1, is assumed throughout.

Proposition 3. Consider the simple slice sampler for the target density π(x), with any

factorisation π(x) = f0(x) f1(x). If (8) holds for some 0 < Y ≤ 1, then for all x ∈ Rd, and

for all n ≥ ξ, we have

‖P(Xn ∈ · |X0 = x)− νπ(·)‖ ≤ K(n + η − ξ)ρn .

Here

K =
e y∗(1− y∗)−ξ/η

η
(where e = 2.71828 . . .) ,

ξ =
log

(
f1(x)−β + b

1−λ − 1
)

log(λ−1)
, η =

log
(

λs+b−y∗
λ(1−y∗)

)
log(λ−1)

,

s = y−β , and ρ = (1− y∗)η−1
. Furthermore,

λ ≡ 1
(1− β)(1 + αβ)

+
αβ(y∗/Y )β

1 + αβ

and

b =
Y −β(1 + αβ(1− β))

(1− β)(1 + αβ)
− λ .

The quantities α, β, and y∗ may be chosen freely, provided that α > 1, that 0 < β <

min
(

α−1
α , 1

α

)
, and that y∗ ∈ (0, Y ).
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This result has many parameters in it, making it difficult to understand. To simplify

it, we shall normally chose y∗ = Y/10, and shall choose β = 0.1 and α = 10. Furthermore,

we shall generally assume that f1(x) ≥ 0.01, i.e. that we begin the sampler at a point

whose f1 density value is at least 1% of the modal value. (Note that some restriction on

the initial value f1(x) is unavoidable, since the slice sampler will not in general be uniformly

ergodic so that any upper bound on its time to stationarity will necessarily depend upon

the starting point.)

Using these choices, and given any value of Y with 0 < Y ≤ 1, we can define an integer

n∗(Y ) to be a value such that ‖P(Xn ∈ · |X0 = x) − νπ(·)‖ ≤ 0.01 whenever n ≥ n∗(Y )

(assuming that f1(x) ≥ 0.01 and that (8) is satisfied for this value of Y ). That is, n∗(Y )

represents a number of iterations that is sufficient for the sampler to have converged to

within 0.01 of its stationary distribution in total variation distance (a convergence criterion

suggested in Cowles and Rosenthal, 1998).

Thus, using Proposition 3, we compute convergence times n∗(Y ), as a function of Y

from (8), to be as follows:

Y n∗(Y )

1.0 525

0.9 615

0.8 728

0.5 1,400

0.33 2,395

0.25 3,475

0.1 10,850

0.01 160,000

0.001 2,075,000

Table 1. Convergence times n∗(Y ) as a function of Y .

To make the meaning of n∗(Y ) completely clear, we record:
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Corollary 4. If (8) holds for some value of Y with 0 < Y ≤ 1 (i.e., if yQ′(y) is non-

increasing for y ≤ Y ), then for all x such that f1(x)/ supw∈Rd f1(w) ≥ 0.01 and for all

n ≥ n∗(Y ) with n∗(Y ) as in Table 1, we have that

‖P(Xn ∈ · |X0 = x)− νπ(·)‖ ≤ 0.01 .

Remark. Since f1(0) = 0, we see that it is not permitted to use a starting value x which

is at or very close to the origin.

As can be seen from Table 1, the convergence times n∗(Y ) are quite “reasonable” (in

the sense of generally being quite feasible to run on a computer) for values of Y which are

close to 1. However, they become rather unreasonable as the value of Y decreases towards

0 (which is not surprising, since condition (8) gives less information for smaller values of

Y ). In particular, in the case Y = 1, we obtain:

Corollary 5. If (9) holds (i.e., if yQ′(y) is non-increasing for all values of y), then for

all x such that f1(x)/ supw∈Rd f1(w) ≥ 0.01 and for all n ≥ 525,

‖P(Xn ∈ · |X0 = x)− νπ(·)‖ ≤ 0.01 .

Thus 525 iterations “suffice” for convergence from a wide range of starting values,

provided that (9) holds. (Note that the slight numerical difference between 525 iterations

here, and 530 iterations in Proposition 2, is due to a slightly different restriction on initial

point x.)

Now, it is shown in Roberts and Rosenthal (1999) that, for the uniform simple slice

sampler, all one-dimensional log-concave densities satisfy (9), when f0 is chosen to be

constant. Unfortunately this property is not shared by higher dimensional log-concave

densities, and the simulations above demonstrate that the performance of the simple slice

sampler on log-concave densities deteriorates quickly as dimension increases.

However, the polar slice sampler (i.e. choosing f0(x) = |x|−(d−1) instead of choosing

f0(x) = constant) shall still satisfy (8) for suitable choice of Y . Specifically, given a density

π on Rd, set f0(x) = |x|−(d−1) and f1(x) = π(x)/f0(x) = |x|d−1π(x) as in (11), and define

M(f1, θ) = sup{f1(tθ) ; t ≥ 0}
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for each θ on the unit sphere in Rd. Then define the asymmetry parameter

A(f1) = inf
θ

M(f1, θ) / sup
θ

M(f1, θ)

(As in the remark following Proposition 2, we will have by (2) that supθ M(f1, θ) = 1, so

it is not strictly necessary to divide by this quantity, but we do so for clarity.)

Lemma 6. With the factorisation (11), if π(x) is log-concave (at least along rays em-

anating from the origin), then (8) holds for Y = A(f1), i.e. yQ′(y) is non-increasing for

y ≤ A(f1).

Proof. The Q-function in this case is given by:

Q(y) =
∫
Rd

|z|−(d−1)1{f1(z)≥y}dz . (12)

Let us do the polar coordinate transformation z 7→ (r, θ) (where r = |z| =
√

z2
1 + . . . + z2

d,

and where |θ| = 1). Then the Jacobian is given by dz = rd−1drdθ, where dθ is Lebesgue

measure on the surface of the unit sphere in Rd. Thus, from (12), we have

Q(y) =
∫
Rd

1{f1(r,θ)≥y}dr dθ . (13)

Now, let us define R+(y, θ) = sup{r; f1(r, θ) ≥ y} and R−(y, θ) = inf{r; f1(r, θ) ≥ y}

to be the two radii, along the ray from the origin having direction vector θ, at which the

function f1 crosses the value y. Also, let us write f ′1(r, θ) = ∂
∂rf1(r, θ); by log-concavity,

this derivative exists for almost all (r, θ). In terms of these quantities, we compute using

the inverse function theorem that, for y ≤ A(f1),

Q′(y) =
∫ [

1
f ′1(R+(y, θ), θ)

− 1
f ′1(R−(y, θ), θ)

]
dθ (14)

Now, note that (by continuity, which holds by log-concavity), we have f1(R+(y, θ), θ) = y

and f1(R−(y, θ), θ) = y. Hence, we obtain that

yQ′(y) =
∫ [

f1(R+(y, θ), θ)
f ′1(R+(y, θ), θ)

− f1(R−(y, θ), θ)
f ′1(R−(y, θ), θ)

]
dθ

=
∫ (

1/
∂

∂r
(log f1)(R+(y, θ), θ)

)
dθ −

∫ (
1/

∂

∂r
(log f1)(R−(y, θ), θ)

)
dθ (15)
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However, since π is log-concave, and since |x|d−1 is log-concave (at least along rays

from the origin), it follows that f1(x) = π(x)|x|d−1 is also log-concave along rays from

the origin. Hence, ∂
∂r (log f1)(r, θ) is non-increasing as a function of r. Now, if y increases,

then R+(y, θ) decreases, so that ∂
∂r (log f1)(R+(y, θ), θ) is non-decreasing as a function of

y. Moreover, R−(y, θ) increases as a function of y, so that − ∂
∂r (log f1)(R−(y, θ), θ) is also

non-decreasing as a function of y. Hence, taking reciprocals, we see that each of the inte-

grals in (15) is non-increasing. We therefore conclude that yQ′(y) is non-increasing in this

case, as claimed.

Remark. Intuitively, the polar factorisation (11) helps because it precisely cancels out

the Jacobian term rd−1 when switching to polar coordinates. That is why the resulting

formula (13) does not have any powers of r in it, thus simplifying the analysis and allowing

yQ′(y) to more easily be non-increasing.

Remark. It is quite subtle why the proof of Proposition 6 does not work for y > A(f1).

In fact, the problem here is that R+(y, θ) and R−(y, θ) will be undefined (or, ∞ and −∞,

respectively) for some θ when y > A(f1). The integral in (14) should then be taken only

over those θ such that M(f1, θ) ≥ y, with the other θ not contributing. Since the integrand

in (14) is negative, it follows that omitting certain θ values will actually increase the value

of the integral. Thus, it may not be true that yQ′(y) is non-increasing in this case.

This result allows us to state the following result.

Theorem 7. Suppose that π is a d-dimensional density which is log-concave (at

least along rays emanating from the origin). Set f1(x) = |x|d−1π(x), and let Y =

A(f1) be its asymmetry parameter as above. Then for any initial value x such that

f1(x)/ supw∈Rd f1(w) ≥ 0.01, and for all n ≥ n∗(Y ) (with n∗(Y ) as in Table 1), the polar

slice sampler satisfies that

‖P(Xn ∈ · |X0 = x)− νπ(·)‖ ≤ 0.01 .

i.e. it will be within 1% of its target distribution after at most n∗(Y ) iterations.
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Proof. Lemma 6 implies that condition (8) holds with Y = A(f1). Hence, the result

follows from Corollary 4.

Note in particular that the values n∗(Y ) depend only on the asymmetry parameter

A(f1), and are otherwise completely independent of dimension.

Remark 8. If π(x) is spherically symmetric, then so is f1(x) = |x|d−1π(x). Hence,

A(f1) = 1 in this case, so that Theorem 7 applies with Y = 1 and with n∗(Y ) = n∗(1) =

525.

6. A numerical example.

To illustrate the performance of the various sampling schemes that we have discussed,

we consider the following example:

π(x) = (x2
1 + . . . + x2

d) e−
∑d

i=1
αix

2
i /2 , x ∈ Rd .

We have considered this example for various values of the parameters α1, . . . , αd:

[A] αi = 1 + (i− 1)/d, 1 ≤ i ≤ d;

[B] αi = 1 + 4(i− 1)/(d− 1), 1 ≤ i ≤ d;

[C] αi = 1 + 10(i− 1)/(d− 1), 1 ≤ i ≤ d.

(In the special case d = 1, for all three choices we simply take α1 = 1.) Note in particular

that we always have αi ≥ 1.

Note that these examples are not spherically symmetric. In fact, it is easily computed

that M(f1, θ) will be largest when θ is along the x1-axis, and smallest when θ is along

the xd-axis. Since supt>0 t4e−at2/2 = 16e−2/a2, we compute that we will have A(f1) =

(1 + (d− 1)/d)−2 ≈ 0.25 for case [A], and A(f1) = 4−2 = 0.0625 for case [B], and A(f1) =

10−2 = 0.01 for case [C]. Hence, in light of Corollary 4, we might expect to find that the

polar slice sampler will converge quickest in case [A], and slowest in case [C].

For our simulations, it is necessary to compute a bounding value R∗
n+1 in order to

use rejection sampling as in step (iia) above. We do this rather crudely, by simply noting
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that, for any δ > 0, since δs ≤ eδs, we have

|x|2π(x) = |x|4e−
∑d

i=1
αix

2
i /2 ≤ |x|4e−

∑d

i=1
x2

i /2 = (|x|2)2e−|x|
2/2 = δ−2(δ |x|2)2e−|x|

2/2

≤ δ−2e2δ|x|2e−|x|
2/2 = δ−2e(2δ− 1

2 )|x|2 .

Hence, in step (ii′) above, for any 0 < δ < 1
4 we may simply solve for

Yn+1 = δ−2e(2δ− 1
2 )(R∗n+1)

2
,

to obtain that

R∗
n+1 =

√
1

2δ − 1
2

log (δ2Yn+1) .

An approximately optimal choice of δ, to make the algorithm run faster and mix faster,

was determined by informal experimentation. (Typically, we used a value of δ around

0.05.)

For comparison purposes, we have compared the polar slice sampler to the uniform

simple slice sampler, and also to an ordinary rejection sampling algorithm, and to a Ran-

dom walk Metropolis algorithm with spherically symmetric full-dimensional Gaussian pro-

posal. We examined the performance of all 4 methods for case [A] above. The uniform

simple slice and rejection algorithms also required bounds involving δ, whose value was

approximately optimised similarly to the above. The random walk Metropolis algorithm

was considered as a benchmark standard MCMC method, and was optimally tuned to have

acceptance rate of about 0.234 (cf. Roberts et al., 1997; Roberts and Rosenthal, 2001b).

The results are summarised in Table 2. We have presented the amount of CPU time

required. We have also presented the larger of two different auto-correlation times, for

the functional |x|2 and for the functional x2
1 respectively. (Recall that the auto-correlation

time for a functional g is defined by ACT = 1+2
∑∞

k=1 Corr (g(Xn), g(Xn+k)), where Xn

is taken to be in stationarity.)
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Rejection Uniform Slice Polar Slice RWM

dim CPU ACT C∗A CPU ACT C∗A CPU ACT C∗A CPU ACT C∗A

1 0.14 1 0.14 0.11 1.56 0.17 0.06 1.53 0.091 0.03 8.01 0.24

2 0.22 1 0.22 0.15 1.79 0.27 0.12 1.36 0.163 0.04 13.26 0.53

10 2.9 1 2.9 0.99 8.90 14.4 1.47 1.18 1.73 0.09 31.8 2.9

20 34.4 1 34.4 8.32 16.88 140 5.1 1.35 6.9 0.14 98 13.8

40 3660 1 3660 – – – 31.0 1.48 49.9 0.25 188 47

Table 2. A comparison of the rejection sampler, the uniform simple slice sampler, and

the polar slice sampler, all run on the target density π(x) = |x|2e−
∑

αix
2
i /2 with αi as

in case [A] above. Here CPU the processor time used per thousand simulated iterations,

in seconds. ACT is the larger of the auto-correlation times for the functional x2
1 and the

functional |x|2. C∗A is the product of these two quantities, describing the time needed to

obtain a sample having sampling variance equivalent to that of 1000 i.i.d. draws from π.

In Table 2, C∗A is a measure of the time required to acquire the equivalent of 1000

i.i.d. samples from the target distribution, according to the criterion of variance of ergodic

estimates. As can be seen from Table 2, the ordinary rejection sampler takes much more

CPU time to execute, especially in higher dimensions. This more than compensates for

the fact that it (of course) has an auto-correlation time of 1, i.e. produces i.i.d. samples.

The uniform simple slice sampler executes reasonably quickly in moderate dimensions,

with a reasonably small auto-correlation time. However, it takes longer and longer to run

as the dimension increases, and indeed appears to get “stuck” and be unusable in dimension

40. Furthermore, its auto-correlation times, while fairly small, are clearly increasing with

dimension.

By contrast, the polar slice sampler executes reasonably quickly, even in dimensions

as high as 40. Furthermore, its auto-correlation times are extremely small, and do not

appear to be growing with dimension. This is consistent with Corollary 4, which applies

here with Y = 0.25, and which proves that the mixing time for the polar slice sampler in

this example is bounded independent of dimension. (Of course, the running time of the
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polar slice sampler will grow in dimension, due to rejections from the substep (iid) above.)

We conclude from this that the polar slice sampler performs very well on this example.

The (optimally tuned) random walk Metropolis method is known to have a conver-

gence time which is approximately linear in dimension but is relatively inexpensive to

implement. As a result its performance is substantially inferior to that of the polar slice

sampler as measured by its auto-correlation time. When computing time is taken into

account, we see that the random walk Metropolis algorithm performs very similarly to the

polar slice sampler in 40 dimensions, but is considerably worse in all smaller dimensions.

Note that auto-correlation times for various other functionals (including higher mo-

ments of x1 and log |x|) were also investigated, in order to avoid over-optimistic assessment

of the slice sampler algorithms. These auto-correlation times were no larger than those

reported here.

We next consider the entire auto-correlation functions for the uniform simple slice

sampler and the polar slice sampler. We have done this for two functionals, x2
1 and |x|2,

respectively. (Note that, by ± symmetry, the auto-correlations would be 0 for functionals

of the form xi.) The results are presented in Figures 4, 5, 6 and 7, respectively.
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Figure 4. The auto-correlation function (acf) for the uniform sim-
ple slice sampler, using the functional x2

1, for the example π(x) =
|x|2e−

∑
αix

2
i /2, with the parameters as in case [A].

Figure 5. The auto-correlation function (acf) for the uniform sim-
ple slice sampler, using the functional |x|2, for the example π(x) =
|x|2e−

∑
αix

2
i /2, with the parameters as in case [A].
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Figure 6. The auto-correlation function (acf) for the polar slice sam-
pler, using the functional x2

1, for the example π(x) = |x|2e−
∑

αix
2
i /2,

with the parameters as in case [A].

Figure 7. The auto-correlation function (acf) for the polar slice sam-
pler, using the functional |x|2, for the example π(x) = |x|2e−

∑
αix

2
i /2,

with the parameters as in case [A].
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We see from Figure 4 that the uniform simple slice sampler appears to be mixing very

well, for this example, based on the functional x2
1. However, the functional |x|2, which

captures the covariance structure more accurately, shows that the uniform simple slice

sampler is in fact not mixing well in high dimensions (similar to the example in Section

3 above). Note that this highlights the dangers of monitoring one-dimensional summaries

of Markov chain output for convergence assessment – an issue which has implications for

convergence diagnostic procedures for MCMC in general (see e.g. Cowles and Carlin, 1996;

Robert, 1996; Brooks and Roberts, 1998).

On the other hand, we see from Figures 6 and 7 that the polar slice sampler is mixing

very well indeed, even in high dimensions. Furthermore its low auto-correlation values

are consistent across different choices of functional (x2
1, |x|2, and others not shown). This

is consistent with Theorem 7 above, which suggests that the convergence time of the

polar slice sampler should grow only with the asymmetry parameter A(f1), but should not

otherwise grow with dimensionality.

This simulation thus confirms the extremely good performance of the polar slice sam-

pler, in this example at least.

We have also done a comparison of the polar slice sampler in the different cases [A],

[B], and [C] above, all in dimension 10. The results are presented in Figures 8 and 9.
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Figure 8. A polar slice run showing the values x2
1, and auto-correlation

function (acf) using the functional x2
1, for the example π(x) = |x|2e−

∑
αix

2
i /2,

with the parameters as in cases [A], [B], and [C] respectively. The di-
mension is 10 throughout.
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Figure 9. A polar slice run showing the values |x|2, and auto-correlation
function (acf) using the functional |x|2, for the example π(x) = |x|2e−

∑
αix

2
i /2,

with the parameters as in cases [A], [B], and [C] respectively. The di-
mension is 10 throughout.

We see from Figures 8 and 9 that the polar slice sampler mixes very quickly in case

[A], and more slowly in cases [B] and [C]. In light of Corollary 4, this is consistent with

the observation that A(f1) ≈ 0.25 in case [A], that A(f1) = 0.0625 in case [B], and that

A(f1) = 0.01 in case [C].

We thus observe that, as expected, the polar slice sampler performs very well on

reasonably symmetric target densities, but less well as the target density becomes more

and more asymmetric.
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7. Conclusion.

Our simulation results, together with our theoretical investigations, suggest that the

polar slice sampler is likely to perform well in a large variety of fairly high-dimensional

problems. Even in 40 dimensions in our example, it took an optimally tuned random walk

Metropolis algorithm to give comparable performance taking into account computation

times. It is of course true that the implementation of the slice sampler will be more

difficult in more complicated examples, however the method of choosing Rn+1 uniformly,

and then obtaining θn+1 by rejection sampling, would appear to be promising in some

cases at least.

The theoretical results show that if implementation is possible, convergence is rapid.

For suitable classes of densities (e.g. log-concave), uniform control over convergence times is

possible in a way that is surprisingly unaffected by the dimension of the problem. Of course

implementation time of these algorithms is very much affected by dimension, although our

simulations demonstrate that in our examples the computational cost (at least in moderate

dimensional problems) is not prohibitive.

Although the focus of this paper has very much been on log-concave densities (mo-

tivated by their widespread occurrence in statistical applications), the techniques of this

paper could equally well be applied to other classes of densities, for instance those with

y1+ 1
α Q′(y) non-increasing for some α > 0. Bounds for this broader class of densities will

necessarily be larger, of course.

The numerical comparisons in Section 6 between the polar slice sampler and some of

its competitors (the uniform simple slice sampler, the rejection sampler, and a random-walk

Metropolis algorithm) are quite favourable. Of course, it should be noted that other imple-

mentations (for example, adaptive rejection sampling, see e.g. Gilks and Wilde, 1992) may

well be available in other contexts. Therefore, we have to be cautious of over-extrapolating

our conclusions from this limited study.

However, overall we are reasonably optimistic that the polar slice sampler can be ap-

plied successfully to many different high-dimensional target distributions π, and can thus

be used as a promising MCMC algorithm for understanding difficult probability distribu-

tions.
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