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Abstract

We prove that the Markov operator corresponding to the two-variable, non-reversible
Gibbs sampler has spectrum which is entirely real and non-negative, thus providing a first
step towards the spectral analysis of MCMC algorithms in the non-reversible case. We
also provide an extension to Metropolis-Hastings components, and connect the spectrum
of an algorithm to the spectrum of its marginal chain.

1 Introduction

This paper is inspired by the earlier paper [23], which discusses the importance of real,
non-negative spectra for MCMC algorithms, and proves this property for several different
reversible cases. In this paper, we extend that result to some common non-reversible MCMC
algorithms, as we shall explain.

Markov chain Monte Carlo (MCMC) algorithms, such as the Gibbs sampler [9, 8] and the
Metropolis-Hastings algorithm [16, 10, 26|, are an extremely active area of modern research,
with applications to numerous areas (see e.g. [3] and the references therein). Much of the
mathematical analysis of these algorithms centers around their convergence rate; i.e., how
long they need to be run before they produce accurate samples from the designated target
probability distribution (cf. [20]). Some of this analysis uses probabilistic techniques such as
coupling and minorisation conditions (e.g. [21, 4]). However, much of the analysis involves
considering the spectrum of the associated Markov operator (see Section 2.2). In such cases,
the Markov operator is nearly always assumed to be self-adjoint, corresponding to the Markov
chain being reversible (see e.g. [13, 24, 6, 5, 12]). The paradigm used is then roughly as follows:

1. Since the Markov operator is self-adjoint, its spectrum must be real (not complex), and
can often be shown (or forced) to be non-negative, cf. [23].

2. The corresponding spectral gap can then be bounded away from zero using various tech-
niques (Cheeger’s inequality, quadratic forms, etc.).

3. These spectral gap bounds then imply bounds on the operator’s norm, which in turn lead
to bounds on the Markov chain’s convergence rate.

However, if the Markov chain is not reversible, then much of this paradigm breaks down
(though the spectral radius formula is still of some relevance to step 3 above; see Section 2.2
below), and the analysis becomes much more difficult (see e.g. [17]). Some authors have
attempted to get around this difficulty by replacing the non-reversible Markov chain by its
“reversibilisation” [7], or by some other chain which provably has the same convergence prop-
erties [19]. However, there has been very little success at directly investigating the spectral
properties of non-reversible Markov chains themselves, despite the fact that many commonly
used MCMC algorithms (such as the systematic-scan Gibbs sampler) are not reversible and
thus not amenable to the above paradigm.



In this paper, we make a small start in this direction. We consider one of the simplest
common classes of non-reversible MCMC algorithms; namely, those which are a product of
two factors each of which is a reversible Markov chain. In particular, we consider the two-
variable systematic-scan Gibbs sampler, and prove step 1 of the above paradigm; i.e., that a
Markov operator corresponding to such a sampler must have spectrum which is real and non-
negative (Theorem 1). This implies (Corollary 2) that the corresponding auto-covariances
are also non-negative. We also consider a combination of a Metropolis-Hastings component
and a Gibbs Sampler component, and prove that the corresponding spectrum must still be
real in that case (Theorem 3). Finally, we consider the relationship between the spectra of
certain (non-reversible) systematic scan chains, and their corresponding (reversible) marginal
chains (Theorem 5). We hope that these results will lead to further efforts to extend the
above spectral analysis paradigm to non-reversible Markov chains.

2 Background

We begin with some background needed for our results.

2.1 Markov Chain

A (time-homogeneous) Markov chain on a measurable space (X, F) has a Markov kernel
P: X x F — [0,1], where P(z, A) represents the probability that, if the chain begins in the
state x € X, it will then “move” to a state in A € F on the next iteration. Formally, for each
fixed € X, the mapping A — P(x, A) is a probability measure on (X, F), and for each fixed
A € F, the mapping « — P(z, A) is a measurable function on X. A sequence of X-valued
random variables Xy, X1, Xo, ... is a Markov chain following the transitions P if for any n > 0
and all A € F, Prob[X, 1 € 4| Xy, X1,...,Xpn] = P(X,, A4).

In the case of MCMC algorithms, there is always a fixed probability measure 7 on (X, F)
which is stationary for P, meaning that (7P)(A4) = [ _, 7(dz) P(z,A) = m(A) for all
A € F. Under mild conditions, if the Markov chain is run repeatedly, then it will converge in
distribution to w. Indeed, this is the main motivation for MCMC algorithms, and indeed the
speed of this convergence is of great importance (see e.g. [20]).

One condition which guarantees that = is stationary for P is that the Markov chain is
reversible with respect to 7; i.e., that m(dz) P(x,dy) = =w(dy) P(y,dx) for all x,y € X.

2.2 Markov Operator

Such a Markov kernel P can also be viewed as a linear operator (see e.g. [22] for basic
facts about operators), which acts on functions f : X — C by

(Pf)(x) = f(y) Pz, dy),

yeX

so that (Pf)(x) is the conditional expected value of f when the Markov chain takes one step
starting at z.
The stationary probability measure 7 gives rise to an inner product (f, g) = [, f(z) g(x) 7(dx)

and norm || f|| = v/(f, f) on the Hilbert space

L2(r) = {f: X > C; /6X|f(x)|27r(dx)<oo}.



Then P acts on L?(r), and indeed it is easily seen (e.g. [2]) that we always have |[Pf|| < || f]l;
ie., |[P|| < 1;ie., Pis a (weak) contraction on L?(r). Similar comments also apply to P
acting on the subspace

L(Q)(ﬂ') ={f:X—>C; fe L2(7T), /ex f(x)w(dx) = 0},

which is more directly related to MCMC convergence (since it avoids the specific eigenvalue 1
for constant functions, corresponding to the fact that wP = x since 7 is a stationary distribu-
tion). The operator P is also related to the auto-covariance of the chain, which is important
in understanding the accuracy of MCMC samplers (see e.g. [15]). Indeed, for f : X — R,

k = k X X)) mlaxr = kl’ xT)mlax
(P*1L ) = /MP f(@) £ () w(dx) /$€X/yexf(y)P(7dy)f() (dz)

= E[f(Xx) f(Xo)] = Cov[f(Xy), f(Xo)],

where the expected value E is taken with respect to a Markov chain {X,,} started in stationary
and following the transitions P.

It is easily seen that P is reversible if and only if the operator P is self-adjoint; i.e.,
(Pf,g) = (f, Pg) for all f,g € L?(r). An operator P is positive if it is self-adjoint and also
(Pf,f) >0 for all fe L%(w). Any positive operator has a unique positive square-root; i.e., a
positive operator S := P/2 with S$? = P.

The spectrum of the operator P is defined, as usual, by

o(P) := {A € C; (M — P) is not invertible} .

(Here I is the identity operator on L?(7), and “invertible” means having an inverse within the
class of all bounded (i.e., continuous) linear operators on L?(7).) The corresponding spectral
radius is r(P) = sup{|z|; z € o(P)}. Since ||P|| < 1, it follows that r(P) < 1. In general, o(P)
consists of complex numbers. However, for self-adjoint operators (corresponding to reversible
Markov chains), the spectrum is well-known to contain only real numbers. And, for positive
operators, the spectrum is also non-negative; i.e., contained in [0, co).

It turns out (see e.g. [18]) that in the MCMC context, the spectral radius r(P) for the
operator P on L3(7) is of great importance to convergence rates. In the reversible case, this
is because r(P)"™ then equals the operator norm || P"||, and hence provides direct bounds on
|Pf|| for f € L3(w). For example, if f(z) = 1a(z) — m(A), then f € LE(x), and || f| < 1,
and (P"f)(x) = P"(z,A) — w(A), so [, |P"(x,A) — n(A)?n(dz) < ||P"[| < r(P)". In
the non-reversible case, that bound does not hold; however by the spectral radius formula
(e.g. [22], Theorem 10.13) we still have 7(P) = lim, . |P"||*/", so the bound still holds
asymptotically in this sense.

2.3 Gibbs Sampler

Suppose now that (X, F) = (X1, F1) X (Xo, Fa) X ... X (Xg, Fa) is a d-fold product mea-
surable space, and that \; is some o-finite reference measure on (X;, F;) for each i¢. (The
most common case is where each \; equals Lebesgue measure on X; = R.) Suppose further
that the stationary probability distribution 7 has a density ¢ with respect to A; i.e., 7 < A
with ‘;—’/{ = ¢. Then the i*" component Gibbs sampler is the Markov kernel G; which leaves
all coordinates besides 7 unchanged, and replaces the i*" coordinate by a draw from the full



conditional distribution of 7 conditional on all the other components. That is, for x € X and
A; e Fi,if
Seia, = {yeX; y; =a; for j #4, and y; € 4;},

then
_ -];GAi (;5(131, e ,xi_l,t,$i+1, cee ,l'n) )\z(dt)

B ftEXi (b(xl? ce 7Ii—17tazi+17 cee axn) Az(dt) .

These single-component Gibbs samplers G; are easily seen to be reversible Markov chains
corresponding to self-adjoint operators. In fact, they are projection operators, i.e. (G;)? = Gj,
so their spectra consist entirely of the values 0 and 1, and in particular their spectra are real
and non-negative.

The single-component Gibbs samplers G; are then combined together to form a complete
MCMC algorithm P. There are two main ways of doing this. The first is the systematic-
scan Gibbs sampler, defined by P = G1Gs...Gy, corresponding to cycling through all of
the different coordinates in order. The second is the random-scan Gibbs sampler, defined by
%(Gl + Gy + ...+ Gy), corresponding to choosing a coordinate uniformly at random and
updating that coordinate only. Now, it is easily seen that the random-scan Gibbs sampler is
reversible, so that its spectrum can be analysed in various ways (see e.g. [23]). However, the
systematic-scan Gibbs sampler is more commonly used in applications, and it is definitely not
reversible. (For example, if d = 2 and the support of 7 is an “L” shape, then with G1Gs it
is possible to move from the lower-right corner to the upper-left corner, but not to move the
other way.)

In this paper, we focus on the two-variable systematic-scan Gibbs sampler; i.e., the case
where d = 2 and P = G1G2 (equivalent to the data augmentation algorithm introduced in
[25]), which is arguably the simplest common non-reversible MCMC algorithm.

Gi(x, Sz4,4,)

2.4 Metropolis-Hastings Algorithm

Let d, X;, F;, \i, @ be as above. When some of the Gibbs sampler kernels G; cannot be
feasibly implemented, practitioners sometimes instead use Metropolis-Hastings components,
defined as follows. Let ); be an arbitrary Markov kernel on & which leaves all coordinates
besides the i*® one unchanged; i.e., such that in the above notation Q;(S;; x;) = 1. Assume
that Q;(z,-) has a density ¢; ,(t) with respect to A;, in the sense that

Qe Sein) = [ aaN@0),

Then the i*" component Metropolis-Hastings algorithm is the Markov kernel M; corresponding
to “proposing” a new state y € X according to @Q;, and then accepting this new state with
probability «;(x;y) := min(1, %), otherwise with probability 1 — a;(z,y) the new
state is rejected so the Markov chain remains at the state x. In terms of Markov operators,
writing x[i,t] := (z1,...,2i—1,t,Zi11,...,Zq), this corresponds to setting

(Mif)(z) = T(w)f($)+/ Qi (t) i, wli, 1]) f([i, 1)) Ai(dt)

tex;

where 7(z) = 1 — [,_y ¢ix(t) iz, z[i,t]) Ai(dt) is the overall probability of rejecting the
proposal.



Now, the acceptance probabilities ;(x,y) have been chosen precisely (see e.g. [26, 20]) to
ensure that each kernel M; is reversible with respect to m, so 7 is stationary for M;. Hence,
the operator M; is self-adjoint, though it might not be a positive operator.

Remark. It is also possible to define a full-dimensional Metropolis-Hastings algorithm, which
acts on all components simultaneously. In the above notation, that corresponds to the case
d = 1; i.e., to letting X} be the entire state space and setting P = M;. This approach is quite
common, though we do not pursue it here.

3 Main Results

In terms of the above background, our first main result is as follows.

Theorem 1. Consider a two-variable systematic-scan Gibbs sampler P = G1G2 as above
(or any other product P = G1G2 for any positive Markov operators G1 and G3). Then the
spectrum of P is real and non-negative, with o(P) C [0, 1].

As discussed in the Introduction, this theorem extends step 1 of the reversible Markov
chain paradigm to a non-reversible case.

Then, since (P*f, f) = Cov[f(Xy), f(Xo)] for real-valued f as noted above, it follows
immediately that:

Corollary 2. Let {X,,} be a random sequence started in stationary and following the tran-
sitions P = G1G2 of a two-variable systematic-scan Gibbs sampler as above. Then for any
real-valued f € L?(m) and k € N, Cov[f(Xk), f(Xo)] > 0.

We also consider the case of a combination of a Gibbs sampler component and a Metropolis-
Hastings component, as follows.

Theorem 3. Consider a two-variable systematic-scan combination of a Metropolis-Hastings
component and a Gibbs sampler component, of the form P = MG or P = G1M>, with G;
and M; as above (or any other positive Markov operator G; and any other reversible Markov
operator M;). Then the spectrum of P is real, with o(P) C [—1,1].

4 Proofs of Main Results

Our proofs rely on the following known operator theory facts, following [11].

Proposition 4. (i) Let A and B be two self-adjoint operators on a Hilbert space H, with
B positive. Then the spectra of the product operators AB and BA are equal and real; i.e.,
o(AB) =o(BA) CR.

(ii) If, in addition to the above, A is also positive, then the spectra of the product operators
are non-negative; i.e., 0(AB) = o(BA) C [0, 00).

Proof. By Proposition 1 of [11], 0(AB) = 0(BA) = 0(SAS), where S = B'/? is the (unique)
positive square root of the operator B (see Appendix for a discussion of the proof from [11]).
But SAS is self-adjoint by inspection. Hence, 0(AB) = o(BA) = o(SAS) C R, proving (i).
Furthermore, if A is also positive, then (SASf, f) = (ASf,Sf) > 0 by the positivity of A, so
that 0(AB) = o(SAS) C [0, 00), proving (ii).



Proof of Theorem 1. Applying Proposition 4(ii) with A = G; and B = G2 shows that
o(P) = 0(G1Gs) C [0,00). But we know that 7(P) < 1, whence o(P) C [0,1], as claimed. W

Remark. Theorem 1 does not extend directly to Gibbs samplers with d > 2 coordi-
nates. Indeed, we have checked numerically that if X = {1,2}3, with 7(i,j, k) o< i +j + k,
then the corresponding three-variable systematic-scan Gibbs sampler has non-real eigenvalues
0.0002515 £ 0.0014018 4, among others. Indeed, it is well-known (see [1]) that even Proposi-
tion 4 does not extend to three operators. Daniel Rosenthal has pointed out a simple example:

if
10 11 2 1
a=(y 9) m=(1 5) mac=(2 ).

then A and B and C are each positive matrices, but the product ABC has complex eigenvalues

3 (10 + i £ /75 + 20i).

Proof of Theorem 3. Applying Proposition 4(i) with A = M; and B = G2 shows that
o(M1G2) C R, or with A = My and B = G; shows that ¢(G1M3) C R, so either way we
have o(P) C R. But we know that r(P) < 1, whence o(P) C [—1,1], as claimed. [ |

5 The Marginal Chain

We now consider the connection between the spectrum of P, and the spectrum of the
marginal chain P, defined as follows.

For the two-variable systematic-scan Gibbs sampler P = G1 G5, the Markov chain proceeds
by first (via G1) “replacing” the first coordinate by a fresh value depending only on the
second coordinate. This means that P(z, A) does not depend on the first coordinate of z; i.e.,
P((y,x2),A) = P((z,22), A) for all y,z € X;. Hence, also the function Pf depends only on
x2. That in turn implies the existence of a “marginal” Markov chain which only keeps track of
the second coordinate; i.e., which has state space (X, F3), and transition kernel P defined by
IS(IQ,AQ) = P(z,{(y1,y2) € X;ya2 € As}) for x5 € X5 and Ay € Fy. (Usually, a function of a
Markov chain will not itself be a Markov chain, but rather a hidden Markov model.) In this
case, it turns out [15, 18, 12] that P is reversible with respect to the marginal distribution of
7 on Xa, defined by 7(A2) = n{(z1,x2) € X;22 € As}, and furthermore the convergence rate
of P to 7 is identical to the convergence rate of P to w. So, that provides a different avenue
to studying convergence of two-variable Gibbs samplers, using the methodology of reversible
chains.

The above facts for the two-variable Gibbs sampler also extend ([14], Section 2.4) to the
case P = G1 M3 of a combination of a Gibbs sampler component followed by a Metropolis-
Hastings component; i.e., it also has a marginal chain P which is reversible with respect to 7
with the same convergence rate.

The identical convergence rates of the full and the marginal chain in these cases suggest
that there might be a connection between their spectra. Indeed, we have the following.

Theorem 5. Let P = GGy or P = G1Ms as above, and let P be the corresponding (re-
versible) marginal chain as above. Then o(P) = o(P) U {0}; i.e., P and P have identical
(real) spectra except perhaps for A = 0.



To prove Theorem 5, we require another operator theory result.

Proposition 6. Let A be an operator on a Hilbert space H. Suppose M is a proper closed
linear subspace of H which contains the range of A; i.e., such that Af € M whenever f € H.
Let B be the restriction of A to M; i.e., B = A|M. Then o(A) = o(B) U{0}.

Proof. Let Mt = {f € H;(f,g) =0 Vg € M} be the subspace of functions “perpendicular”
to M. Then the entire space H can be written as the direct sum M @ M=*. Hence any
operator D can be decomposed in block-matrix form as

D11 | Dig
D =
( Doy | Daa )
meaning that D(f1 & f2) = (D11f1 + D12f2) ® (D21 f1 + Daa f2). With respect to this decom-
position, we must have (since M contains the range of A) that

- G

for some operator C' : M+ — M. Then

N <)\IM—B -C >

0 | Mue

where Iy and I,. are the identity operators on M and M respectively.
Now, if A # 0 and A € o(B), then it can be checked directly that

where X = (M — B)"'C(A™' ). So, AI — A is invertible, and hence A\ € o(A). This
shows that o(A) C o(B) U {0}.

Also, since range(A) C M, A is not surjective, and therefore 0 € o(A).

Finally, suppose A € o(A). Then (Al — A) has an inverse, of the form

(A —A)L = (%)

My — B)W —CY | My — B)X —CZ
Y | IV '

Then

I = M-AWN-A)"" = (

It follows that AY = 0, so Y = 0 (since A & o(A) so A # 0). It then follows that (Alapg —
B)W — CY = I ie., that (M — B)W = I. Also,

I = (M-A)""\-4) = (W(”M—B)WC—AX )

XY -YB | YO-Z

from which it follows that W (A y — B) = Inq. Combining these two facts, (Ayp — B)W =
W(Mm — B) = Ipm, so (M — B) is invertible (with inverse W). Hence, A &€ o(B). This



shows that o(B) C o(A). The result follows. [ |

Proof of Theorem 5. Let J be the set of all functions which depend only on the second
coordinate; i.e., J = {f € L3(n); f(z1,22) = g(z2) Vo1 € &) and 25 € X, for some g :
Xy — C}. Then as discussed above, due to the nature of P we must have Pf € J for all
f € L?(r). Hence, we can apply Proposition 6 with A = P and M = J, to obtain that
o(P) = 0(P|j) U {0}.

But P|j is essentially the same as P: if f e J, with f(xy,22) = g(xs) for all z; and
o, then (Pg)(z2) = (Pf)(z1,x2). More formally, let J = L2(%) be the collection of square-

integrable functions on X5, and z, be any fixed elenlent of X1, and define S : j — J
by (Sf)(z2) = f(z«,22), with inverse St J — J by (S7lg)(z1,72) = g(x2). Then

P = S*1P|jS, so P is similar to P|j. In particular, o(P) = 0(P|j). The result follows. W

Remark. It is known that for the two-variable systematic-scan Gibbs sampler P = G1Gs,
the marginal chain is positive and thus has positive spectrum [15]; and for the combined
chain P = G1M>, the marginal chain is reversible and thus has real spectrum [14]. Using
this, Theorem 5 in turn provides an alternative proof of Theorems 1 and 3 — though it also
strengthens them by providing a specific description (of sorts) of the spectra o(P) in those
two cases.

6 A Self-Contained Operator Theory Proof

Our Proposition 4 above, which is essential to the proofs of Theorems 1 and 3, makes heavy
use of Proposition 1 of [11]. The corresponding proof presented in [11] is brief, but it relies
on several other operator theory concepts and theorems, and hence is not easily accessible to
non-experts. For completeness, we provide here a self-contained proof, following [11].

Proposition 7. ([11]) Let A and B be two self-adjoint operators on a Hilbert space H, with
B positive. Let S := BY? be the (unique) positive square root of B. Then o(AB) = o(BA) =
o(SAS).

We prove this Proposition using a few simple lemmas. The first was proved by Nathan
Jacobson years ago; James Fulford has pointed out that there is a nice discussion of this topic
at [27].

Lemma 8. For any operators C' and D on a Hilbert space H, the spectra o(CD) and o(DC)
differ by at most {0}; i.e., if A € C and XA # 0, then A € o(CD) if and only if X € o(DC).

Proof. By replacing C by C/\, it suffices to assume that A = 1. Thus, it suffices to prove
that I — DC' is invertible if and only if I —CD is invertible. But this follows from the identity

(I-DC)y™t = I+D(I-CD)'C,

which can be verified by multiplying I + D(I — CD)~'C by I — DC (on either the left or the
right side) and getting the result 1. [ |



Remark. The displayed identity in the proof of Lemma 8 is suggested intuitively (see
e.g. [27]) by substituting in the (unjustified) expansions

(I-CD)™ = = 14+CD+(CD)*+ (CD)* + ...

1-CD

and
1

f— _1 —
(I —DC) T~ DC

= 1+ DC + (DC)* + (DO)* + ...

Lemma 9. For any operators C' and D on a Hilbert space H, if D is self-adjoint, and C D
is invertible, then C' and D and DC' are each invertible.

Proof. Since CD is invertible, it must be injective; i.e., if f # 0 then (CD)f # 0. Hence
also Df # 0. So, D is also injective.

Then, since CD is invertible, so is its adjoint (C'D)*. In particular, its adjoint must be
surjective; i.e., for each g € H there is f € H with (CD)*f = g. But (CD)* = D*C* = DC*
since D is self-adjoint. So, D(C*f) = ¢g. Hence, D is also surjective.

Thus, D is both injective and surjective, and hence invertible as a linear mapping H — H.
It then follows from the Open Mapping Theorem (see e.g. Corollary 2.12(b) on page 49 of
[22]) that its inverse is a continuous (i.e., bounded) linear operator; i.e., D is invertible as a
bounded linear operator on .

The remaining claims then follow from the fact that the product of invertible operators is
invertible. [ |

Corollary 10. ([11]) For any operators C and D on a Hilbert space H, if D is self-adjoint,
then o(CD) = o(DC).

Proof. Lemma 8 above shows that ¢(C'D) and o(DC) agree except possibly for the value 0,
and Lemma 9 shows that 0 € o(CD) if and only if 0 € o(DC). [ |

Proof of Proposition 7. The first equality follows directly from Corollary 10. The second
equality also follows from Corollary 10, by noting that o(AB) = o(AS?) = o((AS)S) =
o(S(AS)) since S is also self-adjoint. [ |
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