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0. Introduction
It is often useful to know that the distribution of a Markov process converges to a

stationary distribution, and if possible to know how rapidly convergence takes place. Such
rates of convergence are of particular interest when running stochastic algorithms such
as Markov chain Monte Carlo (see Gelfand and Smith, 1990; Tierney, 1994), since they
indicate how long the algorithm should be run before it gives satisfactory answers. Related
convergence questions have been studied in an operator-theoretic context (Orey, 1962;
Ornstein and Sucheston, 1970; Baxter, 1978), and more recently to obtain quantitative
bounds by probabilistic methods (Meyn and Tweedie, 1993b; Rosenthal, 1993).

The Markov processes in applications such as Markov chain Monte Carlo often have the
property that they are everywhere-positive, in the sense that there is a σ-finite reference
measure with respect to which the transition kernel P (x, ·) has an everywhere-positive
density for each x. That such processes eventually converge to a stationary distribution (if
one exists) follows from standard results (e.g. Tierney, 1994, Theorem 1). We investigate
the rates of convergence for such processes here.

We will use total variation norm to measure the closeness of two measures. Theo-
rem 1, stated below, establishes convergence in total variation norm at a geometric rate,
for everywhere-positive processes such that the Markov transition operator is a compact
operator on an appropriate Hilbert space. Theorem 1 was proved by Schervish and Carlin
(1992) for the specific case of the Gibbs sampler, under additional assumptions; see also
Liu, Wong, and Kong (1991a, 1991b). The proof we give here seems to be simpler as well
as more general. This is presented in Section 1 below.

Unfortunately, the compactness assumption need not be satisfied in general, and it is
easy to see that geometric convergence of the sort established in Theorem 1 is not always
possible. As a partial replacement for Theorem 1, in Theorem 2 we provide an estimate giv-
ing a (non-geometric) quantitative rate of convergence valid for general Markov processes
having everywhere-positive transition densities. This estimate is proved in Section 2.

Before stating our results more precisely we define some notation.
Let (X ,B) be a measurable space, and consider a Markov process with state space

(X ,B). We will denote the Markov transition function as usual by P , so that P (x, ·) is a
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probability measure on B for each x ∈ X , and P (·, A) is a B-measurable function for each
A ∈ B.

The Markov operator associated with the Markov transition function P will also be
denoted by P . We recall that P acts to the right on functions and to the left on measures,
so that

µP (A) =
∫

P (x,A) µ(dx), Pf(x) =
∫

f(y) P (x, dy).

For background on general Markov chains, see Revuz (1984) and Meyn and Tweedie
(1993a). For background on operator theory, see Reed and Simon (1972) or Rudin (1991).

Throughout this note we assume that there exists an invariant probability measure π
for P , so that πP = π. A simple application of Jensen’s Inequality then gives the following
standard fact:

Lemma 1. For every r, 1 ≤ r ≤ ∞, P is a weak Lr(π)-contraction. That is,

‖Pf‖r ≤ ‖f‖r

for every f ∈ Lr(π).

Indeed, for r < ∞ we have∫
|Pf |r dπ ≤

∫ ( ∫
|f(y)|P (x, dy)

)r

π(dx)

≤
∫ ∫

|f(y)|r P (x, dy) π(dx)

=
∫
|f(y)|r π(dy),

as claimed. For r = ∞, we note first that πP = π implies that for any π-null set A,
{x : P (x,A) > 0} is also a π-null set. Thus f ≤ g (π-a.e.) implies Pf ≤ Pg (π-a.e.) and
the lemma follows.

It is easy to see that if ν is a probability measure which is absolutely continuous with
respect to π, then νP is also absolutely continuous with respect to π. Let λ denote any
σ-finite measure which is mutually absolutely continuous with respect to π. We will denote
the density of π with respect to λ by ϕ. We can use λ as a reference measure, and express
the operation of P on measures as an operation on densities with respect to λ, as follows.
For any f ∈ L1(λ), let ν be the signed measure whose density with respect to λ is f . Define
Tλf to be the density of νP with respect to λ. The operator Tλ represents the action of P
on those measures which are absolutely continuous with respect to λ. We write S for Tπ.

Since P is obviously a weak contraction with respect to total variation norm on mea-
sures, it is easy to see that Tλ is an L1(λ)-contraction. Also, for any f ∈ L1(λ) and any
bounded measurable function g, we have∫

(Tλf)g dλ =
∫

f Pg dλ,
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and hence Tλ agrees on Ls(λ) with the adjoint of P on Lr(λ), for any r with 1 ≤ r < ∞
such that P is a bounded operator on Lr(λ), where 1/r + 1/s = 1. It follows in particular
that

Corollary to Lemma 1 Tπ is a weak Ls(π)-contraction for every s, 1 ≤ s ≤ ∞.

For general λ, the operator Tλ is a weak contraction on L1(λ) but, unlike Tπ, the
operator Tλ is not in general a weak contraction on Ls(λ) for s > 1. However, following
Schervish and Carlin (1992), we shall have occasion to consider the space L2(µ), where µ
is the measure with density 1/ϕ with respect to λ. A simple computation shows that Tλ

is a weak contraction with respect to L2(µ).

Theorem 1 Given a Markov process on X with transition function P and stationary
distribution π, suppose there is a σ-finite measure λ, mutually absolutely continuous with
respect to π, such that
(i) the transition function P for the process is such that for each x ∈ X the measure P (x, ·)
is absolutely continuous with respect to λ, and there is a jointly measurable function p(x, y)
on X × X such that p(x, ·) is the density of P (x, ·) with respect to λ for each x ∈ X ,
p(x, ·) > 0 λ-almost everywhere for each x, and
(ii) the restriction of the operator Tλ to L2(µ) is a compact operator, where µ is defined
by dµ

dλ =
(

dπ
dλ

)−1
as above.

Then
(a) there exists a constant α with 0 ≤ α < 1 such that ‖Tλf‖2 ≤ α‖f‖2 for every f ∈ L2(µ)
with

∫
f dλ = 0, and

(b) for any initial probability measure ν, if for some time m the distribution νPm has a
density with respect to π which is square-integrable then νPn converges to π geometrically
fast in total variation norm as n →∞.

We will give a proof of a slightly more general version of Theorem 1 in the next section.
In Section 2 we will prove the next result, in which the compactness assumption is

dropped.

Theorem 2 Suppose that assumption (i) of Theorem 1 holds. For any real s with s > 1
and any ε > 0, there is a number β with 0 ≤ β < 1, such that
(a) if f ∈ Ls(π) and

∫
f dπ = 0, then for all n such that ‖Sn−1f‖1 ≥ ε‖f‖s we have

‖Snf‖1 ≤ βn‖f‖1, and
(b) If ν is an initial probability distribution and νPm has a density g with respect to π for
some m, where g ∈ Ls(π), then ‖νPm+k − π‖ ≤ βk‖νPm − π‖ for all k ≥ 0 such that
‖νPm+k−1 − π‖ ≥ ε‖g − 1‖s.

Since ‖νPm+k − π‖ is nonincreasing, this theorem asserts that the convergence to
the stationary distribution is geometric with convergence factor β until ‖νPm+k − π‖ is
sufficiently small.
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1. Compactness of the Markov Operator
In this section we prove Theorem 1, with a slightly more general version of the second

assumption. The idea is that we can find a “worst” function f , and then argue that since
Tλ is everywhere-positive, there must be some “cancellation” in obtaining Tλf from f , so
that Tλf must have smaller norm that f .

We first reduce the theorem to the case in which λ = π. Indeed, the map W : L2(µ) →
L2(π) defined by Wf = f/ϕ is an isometry such that WTλW−1 = Tπ = S. Hence Tλ

is compact if and only if S is. Furthermore, if assumption (i) holds for some λ which is
mutually absolutely continuous with respect to π, then it must hold for λ replaced by π.
Thus it is enough to establish the theorem in the case that λ = µ = π, so that Tλ = S.

Let s be real with 1 < s < ∞, and let V be a closed subspace of Ls(π) such that∫
f dπ = 0 for every f ∈ V . (In Theorem 1 we take s = 2 and let V be the whole space of

functions f with
∫

f dπ = 0.) Let K be the set of f ∈ V with ‖f‖s ≤ 1. We suppose that
the operator S is compact on V in the sense that SK is a precompact subset of Ls(π).
Under this assumption we show

Lemma There is a number α with 0 ≤ α < 1 such that ‖Sf‖s ≤ α‖f‖s for every f ∈ V .

Proof. The space V is convex and closed with respect to the norm topology, hence weakly
closed. Since Ls(π) is reflexive, the unit ball K is weakly compact by Alaoglu’s Theorem.
Since S is bounded, S is weakly continuous. Hence SK is weakly compact, and hence is
closed. We have assumed that SK is precompact, hence it is in fact compact with respect
to the norm topology. Let α denote the supremum of the numbers ‖Sf‖s, as f ranges
over K. The compactness of SK implies at once that there is some element f in K with
‖Sf‖s = α. In other words, the operator S on V assumes its norm on V .

Suppose α > 0. We may write f = g − h, where g, h are the positive and negative
parts of f . Since p > 0 π-almost everywhere, it is easy to see that Sg ∧ Sh > 0 π-almost
everywhere, and hence in particular that ‖(Sf)+‖s < ‖Sg‖s and ‖(Sf)−‖s < ‖Sh‖s. Thus∫

|Sf |sdπ =
∫

((Sf)+)s dπ +
∫

((Sf)−)s dπ

<

∫
(Sg)s dπ +

∫
(Sh)s dπ

≤
∫

gs dπ +
∫

hs dπ =
∫
|f |s dπ.

It follows that α < 1 as claimed, proving the lemma.
The lemma implies part (a) of Theorem 1 at once. For part (b) we set f = g − 1,

where g is the density of νPm. Using the Cauchy-Schwarz inequality, and with α as in
part (a), we have

‖νPn − π‖TV =
1
2
‖Sn−mf‖1 ≤

1
2
‖Sn−mf‖2 ≤

1
2
αn−m‖f‖2 ,

which goes to 0 exponentially quickly, establishing part (b).

Remarks
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(I) Our argument clearly works for any operator S satisfying (i) that assumes its norm
on V .

(II) In the case of the Gibbs sampler, Schervish and Carlin (1992) assume that S is Hilbert-
Schmidt, i.e. that ∫

p(x, y)2 π(dx) π(dy) < ∞.

As they note, the Hilbert-Schmidt property is a sufficient condition for the compact-
ness of S. This might be the most convenient way to check whether Theorem 1 is
applicable.

(III) The compactness assumption in Theorem 1 is indeed necessary. There are many
known examples of non-geometric, everywhere-positive Markov chains. For one simple
example, let X be the set of positive integers, let P (i, {j}) = i

2j
1

2i∨j for i 6= j, and
take π({i}) proportional to 1

i2 . Then πP = π, and P is everywhere-positive, but it is
easily seen that (with initial distribution concentrated at the point 1, say) the total
variation distance to π goes down only at rate 1/k.

2. An Estimate for Convergence
In this section we prove Theorem 2. The idea of the proof is that since Sn−1f has

large enough L1-norm, when we apply S to it, its positive and negative parts will cancel
each other out to some extent. We now proceed to quantify this cancellation.

For any δ > 0, let
A(δ) = {(x, y) : p(x, y) ≥ δ},

and for any δ > 0 and any y ∈ X let

A1(δ, y) = {x : p(x, y) ≥ δ}.

Suppose that µ is any probability on B. As a consequence of assumption (i), µ ×
π(A(δ)c) ↘ 0 as δ ↘ 0.

Set
b = µ× π(A(δ)c).

Since

µ× π(A(δ)c) =
∫

µ(A1(δ, y)c)π(dy),

we see that
π({y : µ(A1(δ, y)) ≤ 1/2}) ≤ 2b.

Hence

π({y :
∫

p(x, y) µ(dx) ≤ δ/2}) ≤ 2b. (1)

In other words, the set on which the density of µP is smaller than δ/2 has π-measure no
larger than 2b.
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Now let u, v be any nonnegative functions in L1(π) such that
∫

u dπ =
∫

v dπ = 1.
Let µ be the measure with density u with respect to π, and let ν be the measure with
density v. By Hölder we have (recalling that 1/r + 1/s = 1)

µ× π(A(δ)c) ≤ ‖u‖s(π × π(A(δ)c))1/r, ν × π(A(δ)c) ≤ ‖v‖s(π × π(A(δ)c))1/r.

Recall that Su is simply the density of µP . Hence by (1) we have Su ≥ δ/2 on a set
which has π-measure at least 1 − 2‖u‖s(π × π(A(δ)c))1/r, and a similar statement holds
for Sv. Thus

‖(Su) ∧ (Sv)‖1 ≥
δ

2
(1− 2(‖u‖s + ‖v‖s)(π × π(A(δ)c))1/r).

By normalizing, we can extend this inequality to the case of any nonnegative measurable
functions u, v such that

∫
u dπ =

∫
v dπ. In this case we have

‖(Su) ∧ (Sv)‖1 ≥
δ

2
(‖u‖1 − 2(‖u‖s + ‖v‖s)(π × π(A(δ)c))1/r).

Now let n be such that ‖Sn−1f‖1 ≥ ε‖f‖s, where f is the function described in
Theorem 2. Let u = (Sn−1f)+, v = (Sn−1f)−. Since ‖Sn−1f‖s ≤ ‖f‖s, we find that

‖(Su) ∧ (Sv)‖1 ≥
δ

2
(‖u‖1 − 4‖f‖s(π × π(A(δ)c))1/r).

Clearly ‖u‖1 = (1/2)‖Sn−1f‖1 ≥ (ε/2)‖f‖s. Choose δ such that 4(π×π(A(δ)c))1/r ≤ ε/4.
Then

‖(Su) ∧ (Sv)‖1 ≥
δε

8
‖f‖s ≥

δε

4
‖u‖1

and hence ‖Snf‖1 ≤ (1 − δε/4)‖Sn−1f‖1. This proves part (a) of Theorem 2 with β =
1− δε/4. Part (b) follows by taking f = g − 1.

Remark Since our formula for β is in some sense explicit, it might be useful computation-
ally. However, the estimation of the π-measure of sets required to choose δ seems difficult
to carry out.
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