
Random Rotations: Characters and Random Walks on SO(N)

(Appeared in Annals of Probability 22 (1994), 398–423.)

by

Jeffrey S. Rosenthal

University of Minnesota

Summary. We analyze a random walk on the orthogonal group SO(N) given by repeat-

edly rotating by a fixed angle through randomly chosen planes of RN . We derive estimates

of the rate at which this random walk will converge to Haar measure on SO(N), using

character theory and the Upper Bound Lemma of Diaconis and Shashahani. In some cases

we are able to establish the existence of a “cut-off phenomenon” for the random walk. This

is the first interesting such result on a non-finite group.

Key words and phrases: Random walk, Haar measure, Rate of convergence, Upper

bound lemma, Cut-off phenomenon.

MSC 1991 classification numbers: 60J05, 60B15, 43A75.

Running head: Random Rotations.

1



1. Introduction.

When studying convergence to a stationary distribution, Markov chain theory has

traditionally concerned itself with asymptotic issues, including the asymptotic exponential

rate of convergence. More recently, non-asymptotic convergence rates have become a topic

of interest. The question becomes, given a Markov chain and an initial distribution, how

many iterations are required before the chain is “close” to its stationary distribution? This

question has been motivated by such diverse areas as card shuffling (“How many times do

you have to shuffle a deck of cards to make it random?”; see [D] for background) and

stochastic algorithms (”How long do you have to run the algorithm until the answers are

satisfactory?”; see e.g. [GS] and [R]). In each case, it is desired to know how long a Markov

chain should be run until it has converged to the desired stationary distribution.

The study of non-asymptotic convergence rates often yields interesting results. The

best known of these is the “cut-off phenomonon” of Diaconis and Shashahani [DS1] (see

also [AD] and [D]) in which the variation distance to stationarity decreases sharply from

1 to 0 over a relatively short length of time. This phenomenon has been observed in

a number of random walks on finite groups, using such techniques as Coupling, Strong

Stopping Times, and Fourier Analysis. See Diaconis [D] for an excellent, extensive survey

of known examples and methods. See Hildebrand [H] for some recent results.

On a compact Lie group, many random walks converge in total variation distance to

(normalized) Haar measure. Again, one may ask how quickly the convergence occurs. The

finite-group methods mentioned above would appear to be applicable to compact groups.

In this paper, we present an analysis of a process of “random rotations” on the group

SO(N) of real, orthogonal, N ×N matrices with unit determinant. Roughly, this process

involves repeatedly picking a “random plane” in RN , and rotating the (N−1)-sphere SN−1

in that plane through an angle θ. Here θ is a fixed, pre-chosen angle of rotation. We show

that 1
2(1−cos θ)N log N such random rotations are necessary to get close to Haar measure

in total variation distance, to first order in N . We further show that in the case when θ

is 180 degrees, 1
4N log N rotations are also sufficient. This allows us to conclude a cut-off

phenomenon in this case; this is the first interesting such result on a non-finite group.

The method employed in proving these results is again Fourier Analysis. The necessity
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of doing 1
2(1−cos θ)N log N rotations is proved using the standard technique of showing that

if fewer rotations are done, then a certain character of SO(N) will have large expectation

value, while it should have expectation value 1 under Haar measure. Calculation of vari-

ances, and an appeal to Chebychev’s Inequality, then show that the variation distance to

Haar measure is large. The sufficiency of doing 1
4N log N rotations when θ is 180 degrees

is proved using the “Upper Bound Lemma” of Diaconis and Shashahani (see [DS1], [DS2],

[D]). This involves summing the squares of the expected values of all of the irreducible

characters of SO(N), and showing that this sum is small. To do this, a careful description

of the irreducible characters of SO(N) (evaluated at certain group elements) is required.

This is developed in Section 3 by means of the Weyl Character Formula.

This paper is organized as follows. Section 2 provides precise definitions of the process

being studied, as well as a precise statement of the results obtained. Section 3 describes the

irreducible characters of SO(N) in sufficient detail to be able to apply the Upper Bound

Lemma. Section 4 discusses Fourier analysis. It describes the Upper Bound Lemma of

Diaconis and Shashahani, and includes a proof for the case of conjugate-invariant measures

on a compact Lie group (the case at hand). Section 5 proves the necessity of doing
1

2(1−cos θ)N log N rotations, by considering the expectation values of a particular character

(namely, the ordinary trace). Section 6 applies the Upper Bound Lemma to prove the

sufficiency of doing 1
4N log N rotations when θ is 180 degrees.
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2. Definitions and Results.

Fix a non-zero angle θ. Let Rθ be the element of SO(N) defined by

Rθ =


cos θ − sin θ 0 . . . 0
sin θ cos θ 0 . . . 0

0 0
...

... IN−2

0 0

 ,

where IN−2 is the (N−2) × (N−2) identity matrix. We define the following random

process on SO(N). Let X0 be the N × N identity matrix. At each step k ≥ 1, choose

at random an element Bk of SO(N) in the conjugacy class of Rθ, and set Xk = BkXk−1.

(Here “at random” means according to the unique probability measure concentrated on

the conjugacy class of Rθ which is invariant under conjugation by SO(N). Equivalently,

we may set Bk = C−1
k RθCk, where Ck is an element of SO(N) chosen at random according

to Haar measure.)

Note that the process is equivalent to acting on the (N−1)-sphere SN−1 by means

of rotating it, at each step, by an angle θ through a random two-dimensional subspace of

RN .

If we write Qk for the probability measure on SO(N) for the random variable Xk (and

suppress the dependence on θ and N), we have that Q0 is the measure concentrated at the

identity matrix, that Q1 is the measure which is uniformly concentrated on the conjugacy

class of Rθ, and that for each k, Qk is the convolution of Q1 with Qk−1:

Qk(A) = (Q1 ∗Qk−1)(A) ≡
∫

SO(N)

Qk−1(s−1A) dQ1(s)

for each measureable set A ⊆ SO(N). This convolution defines a measure on the Borel

subsets of SO(N) – see Hewitt and Ross [HR], Theorems 19.6 and 19.11. Proceeding by

induction, we see that

(2-1) Qk = Q1 ∗Q1 ∗ . . . ∗Q1 ≡ Q∗k1 ,

the k-fold convolution of the measure Q1 with itself.
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Given two Borel probability measures µ and ν on a set X, we define their variation

distance ‖µ− ν‖ by

‖µ− ν‖ = sup
A⊆X

|µ(A)− ν(A)| ,

where the supremum is over all Borel subsets A of X. The variation distance is always

between 0 and 1. In terms of this variation distance, we may ask very precise questions

about our random processes above. Writing λ for normalized Haar measure on SO(N),

we may ask how large k has to be to make ‖Qk − λ‖ small. In this paper, we prove the

following results.

Theorem 2-1. For any non-zero angle θ, there exist constants Γ and ∆ (where ∆ may

depend on θ but Γ does not), such that for any positive integer N , and any positive real

number c, if k = 1
2(1−cos θ) (N log N − cN), then

‖Qk − λ‖ ≥ 1− Γe−2c −∆
(

log N

N

)
.

Theorem 2-2. For the case θ = π, there are positive constants Λ and γ such that for

any integer N ≥ 3 and any positive real number c, if k = 1
4N log N + cN , then

‖Qk − λ‖ ≤ Λe−γc .

Remark: Roughly speaking, Theorem 2-1 states that we need to do at least
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1
2(1−cos θ)N log N random rotations through an angle θ before we can possibly get close

to Haar measure, while Theorem 2-2 states that 1
4N log N random rotations through an

angle of 180 degrees is approximately enough to get close to Haar measure.

The representation theory needed to prove the above two theorems is developed in

the next two sections. Theorem 2-1 is proved in Section 5, and Theorem 2-2 is proved in

Section 6.

3. Character Theory of SO(N).

We present here the required character values of SO(N). For each irreducible charac-

ter, we require only its dimension and its value at the matrix Rθ defined above. We quote

without proof the Weyl Character Formula for compact Lie groups, as applied to SO(N).

The Weyl Character Formula for SO(N).

(A) Let N = 2n + 1 be odd. Then the irreducible characters of SO(N) can be indexed by

n “half-integers” a1, a2, . . . , an such that for each j, aj− 1
2 is an integer, aj+1 ≥ aj +1,

and a1 ≥ 1
2 . The value of the corresponding character on an element of SO(N) of the

form 

cos(2πx1) − sin(2πx1) . . . 0 0 0
sin(2πx1) cos(2πx1) . . . 0 0 0

...
...

. . .
...

...
...

0 0 . . . cos(2πxn) − sin(2πxn) 0
0 0 . . . sin(2πxn) cos(2πxn) 0
0 0 . . . 0 0 1


is

∑
τ∈Sn

∑
εm=±1

(1≤m≤n)

sgn(τ)

(
n∏

j=1

εj

)
exp

(
2πi

n∑
q=1

εqaτ(q)xq

)
∏

1≤s<r≤n

(exp (πi(xr + xs))− exp (−πi(xr + xs)))
×

× 1∏
1≤s<r≤n

(exp (πi(xr − xs))− exp (−πi(xr − xs)))
×

× 1∏
1≤r≤n

(exp (πixr)− exp (−πixr))
.
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(B) Let N = 2n be even. Then the irreducible characters of SO(N) can be indexed by

n integers a1, a2, . . . , an such that for each j, aj+1 ≥ aj + 1, and a1 ≥ −a2 + 1. The

value of the corresponding character on an element of SO(N) of the form


cos(2πx1) − sin(2πx1) . . . 0 0
sin(2πx1) cos(2πx1) . . . 0 0

...
...

. . .
...

...
0 0 . . . cos(2πxn) − sin(2πxn)
0 0 . . . sin(2πxn) cos(2πxn)


is

∑
τ∈Sn

∗∑
εm=±1

(1≤m≤n)

sgn(τ) exp

(
2πi

n∑
q=1

εqaτ(q)xq

)
∏

1≤s<r≤n

(exp (πi(xr + xs))− exp (−πi(xr + xs)))
×

× 1∏
1≤s<r≤n

(exp (πi(xr − xs))− exp (−πi(xr − xs)))
,

where
∗∑

means we sum only over those choices of the εm for which
∏
j

εj = 1.

Remarks: In the above expressions, the sums in the numerators are over all τ in the

permutation group Sn, and over n different choices of +1 or −1 (except that when N is

even, we must choose an even number of −1). Thus, the sums are over 2nn! (or 2n−1n!)

different terms. These sums correspond to summing over the “Weyl group” of SO(N). The

products in the denominators correspond to products over the “positive roots” of SO(N).

The values a1, . . . , an are related to the “highest weights”. The interested reader is refered

to Adams’s book [Ad] for background; see especially his Propositions 6.16 and 6.17 and

Lemma 5.58.

The Weyl Character Formula expresses the irreducible characters of SO(N), evaluated

on elements of the “maximal torus” of SO(N), as a quotient of two functions of the

arguments x1, . . . , xn. The functions vanish to high order as the xj approach 0, which is

where we need to evaluate them. However, since the characters themselves are continuous

functions on SO(N), we may evaluate the quotient at these singular points by taking
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limits. The rest of this Section is devoted to evaluating these limits; the results are given

in Proposition 3-1 below.

To evaluate the dimensions of the characters, we must evaluate the characters them-

selves at the identity matrix, i.e. when all the xj are 0. We do this as follows, say for

SO(2n+1). We set xj = bjt for each j, where b > 1 is some fixed number, and t is a

non-zero real number. We then let t → 0. Thus, writing d~a for the dimension of the

character indexed by ~a = (a1, . . . , an), we have

d~a = lim
t→0

∑
τ∈Sn

sgn(τ)
∑
εm

(∏
j

εj

)
exp

(
2πi

n∑
q=1

εqb
qtaτ(q)

)
(2i)n2 ∏

r>s
sin(π(br − bs)t) sin(π(br + bs)t)

∏
r

sin(πbrt)
.

Since t → 0, we need only evaluate the numerator and denominator to lowest order in t.

It is easily computed that the denominator is

(2i)n2
tn

2
πn2

(∏
r>s

(
b2r − b2s

))(∏
r

br

)
+ higher order terms ,

and that the coefficient of tn
2

in the numerator is

∑
τ∈Sn

sgn(τ)
∑
εm

∏
j

εj

 1
(n2)!

(
2πi

n∑
q=1

εqb
qaτ(q)

)n2

.

Now, in the sum over the εm in this coefficient, any term with an odd power of some εq

will sum to zero. Hence, the only surviving terms in the expansion of

∑
εm

∏
j

εj

( n∑
q=1

εqb
qaτ(q)

)n2

are those in which each factor εqb
qaτ(q) occurs an odd number of times. Furthermore, any

term in which two such factors occur exactly the same number of times cancels out when

we sum over τ . This means that the only surviving terms are those in which one such

factor occurs exactly once, another exactly three times, . . ., and one exactly 2n− 1 times.

This argument also shows that the coefficient of tp in the numerator is 0 for p < n2. Hence,

to lowest order in t, the numerator is

(2πit)n2 1
(n2)!

∑
τ∈Sn

sgn(τ)
∑
εm

∏
j

εj

( n2

1 3 . . . 2n− 1

) ∑
σ∈Sn

n∏
q=1

(
εqb

qaτ(q)

)2σ(q)−1
,
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where we have introduced a second sum over Sn to take into account the different ways in

which the powers 1, 3, . . . , 2n− 1 can be distributed over the factors εqb
qaτ(q), and where(

n2

1 3 ... 2n−1

)
is the appropriate multinomial coefficient. In this last equation, each εq is

raised to an even power, and hence the sum over the εm is now a sum of 2n identical terms.

Hence, to lowest order in t, the numerator is

(2πit)n2
2n 1

(n2)!

(
n2

1 3 . . . 2n− 1

) ∑
τ,σ∈Sn

sgn(τ)
n∏

q=1

(
bqaτ(q)

)2σ(q)−1

=
(2πit)n2

2n

1!3! . . . (2n− 1)!

∑
τ,σ∈Sn

b

(
n∑

q=1

q(2σ(q)−1)

)
sgn(τ)

n∏
q=1

(
aτ(q)

)2σ(q)−1
.

Hence,

d~a =
2n

1!3! . . . (2n− 1)!

∑
τ,σ∈Sn

b

(
n∑

q=1

q(2σ(q)−1)

)
sgn(τ)

n∏
q=1

(
aτ(q)

)2σ(q)−1

∏
r>s

(b2r − b2s)
∏
r

br

=
2n

1!3! . . . (2n− 1)!

∑
τ,σ∈Sn

b

(
n∑

q=1

q(2σ(q)−1)

)
sgn(τ)

n∏
q=1

(
aτ(q)

)2σ(q)−1

∏
r>s

(b2r − b2s)
∏
r

br
.

Now, this is true for any b > 1. Hence, we can let b →∞. To evaluate this limit, we need

only the highest power of b in both the numerator and denominator. In the numerator,

this power arises precisely when σ is the identity permutation, and one then obtains the

coefficient of b

(
n∑

q=1

q(2q−1)

)
. The denominator has the same highest power of b, with unit

coefficient. We conclude that

d~a =
2n

1!3! . . . (2n−1)!

∑
τ∈Sn

sgn(τ)
n∏

q=1

(
aτ(q)

)2q−1
.

We claim that this is the same as writing

d~a =
2n

1!3! . . . (2n−1)!

(
n∏

q=1

aq

)∏
r>s

(
a2

r − a2
s

)
.
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Indeed, all terms occuring in the first expression occur in the second. There are some extra

terms in the second expression, corresponding to two or more of the aq being raised to the

same power, but these terms precisely cancel out.

The computation of the dimensions of the representations for even N is very similar.

The main point of departure is that while above, each term
(
εqb

qaτ(q)

)
had to be raised

to an odd power in a surviving term of the sum over the εm, in the even N case we only

require that either each εq be raised to an odd power, or that each εq be raised to an even

power. The lowest-order term in t in the numerator arises when one term
(
εqb

qaτ(q)

)
is

raised to the power 0, another to the power 2, . . ., and another to the power 2n− 2. After

letting t → 0, we let b →∞ as above, and finally conclude that

d~a =
2n−1

0!2!4! . . . (2n−2)!

∏
r>s

(
a2

r − a2
s

)
.

In addition to the dimensions, we also require the values of the characters at the

conjugacy class of the matrix Rθ defined above. This corresponds to letting each xq

approach 0 with the exception of x1, which we will eventually set to θ/2π. The computation

is somewhat similar to the above dimensions computations, but there are some differences.

We proceed as follows, say for SO(2n + 1). We set xj = bjt, for 2 ≤ j ≤ n, where again

b > 1 and t → 0. In the Weyl Character Formula, to lowest order in t the denominator is

(−1)n−1 (2i sin(πx1))
2n−1 (2πit)(n−1)2

∏
r>s>1

(
b2r − b2s

)∏
r>1

br .

The coefficient of t(n−1)2 in the numerator is

∑
τ

sgn(τ)(2i) sin(2πaτ(1)x1)
∑
εm

m=2,3,...,n

 n∏
j=2

εj

 1
(n− 1)2!

(
2πi

n∑
q=2

εqb
qaτ(q)

)(n−1)2

=
1

(n− 1)2!

∑
τ

sgn(τ)(2i) sin(2πaτ(1)x1)
∑
εm

(2πi)(n−1)2
∑

σ∈Sn−1

n∏
q=2

(
bqaτ(q)

)2σ(q−1)−1

=
2ni(2πi)(n−1)2

1!3! . . . (2n− 3)!

∑
τ

sgn(τ) sin(2πaτ(1)x1)
∑

σ∈Sn−1

n∏
q=2

(
bqaτ(q)

)2σ(q−1)−1
,
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where we have again considered only terms in which each term
(
εqb

qaτ(q)

)
is raised to a

distinct odd power. We conclude, writing c~a for the value of the character indexed by ~a

evaluated at the matrix Rθ, that

c~a =
1

2n−11!3! . . . (2n− 3)!(sin(πx1))2n−1

∑
τ

sgn(τ) sin(2πaτ(1))
∑

σ∈Sn−1

n∏
q=2

(
bqaτ(q)

)2σ(q−1)−1

∏
r>s>1

(b2r − b2s)
∏

r>1
br

.

As before, we let b →∞ and consider only the highest power of b in both numerator (i.e.

when σ is the identity permutation) and denominator, and conclude that

c~a =
1

2n−11!3! . . . (2n− 3)!(sin(πx1))2n−1

∑
τ

sgn(τ) sin(2πaτ(1)x1)
n∏

q=2

(
aτ(q)

)2q−3
.

We now claim that this is the same as

c~a =
1

2n−11!3! . . . (2n− 3)!(sin(πx1))2n−1

n∑
j=1

(−1)j−1 sin(2πajx1)

∏
r 6=j

ar

 ∏
s<r

s,r 6=j

(a2
r − a2

s) .

We leave the verification to the reader.

The computation of c~a for N = 2n is similar, with the points of departure from the

above being similar to those for d~a. One difference is that while for N = 2n + 1, we could

factor out in the numerator an expression of the form

exp(2πiaτ(1)x1)− exp(−2πiaτ(1)x1) = 2i sin(2πaτ(1)x1) ,

for N = 2n we want to factor out an expression of the form

exp(2πiaτ(1)x1) + exp(−2πiaτ(1)x1) = 2 cos(2πaτ(1)x1) .

This last factorization cannot be done directly because the condition
∏
j

εj = 1 is affected,

but this does not affect the result provided n > 1. We leave the details to the reader.

We summarize the results here (writing θ for 2πx1).

Proposition 3-1. Let d~a and c~a be, respectively, the dimension and the value at the

matrix Rθ defined above, of the irreducible representation of SO(N) corresponding to the

index ~a = (a1, . . . , an). Then for N = 2n + 1,

d~a =
2n

1!3! . . . (2n−1)!

(
n∏

q=1

aq

)∏
r>s

(
a2

r − a2
s

)
11



and

c~a =
1

2n−11!3! . . . (2n− 3)!(sin(θ/2))2n−1

n∑
j=1

(−1)j−1 sin(ajθ)

∏
r 6=j

ar

 ∏
s<r

s,r 6=j

(a2
r − a2

s) .

For N = 2n,

d~a =
2n−1

0!2!4! . . . (2n−2)!

∏
r>s

(
a2

r − a2
s

)
and (for n > 1)

c~a =
1

2n−10!2!4! . . . (2n− 4)! (sin(θ/2))2n−2

n∑
j=1

(−1)j−1 cos(ajθ)
∏
s<r

s,r 6=j

(
a2

r − a2
s

)
.

To make these characters more concrete, we mention the following. For N = 2n + 1,

the smallest possible values of ~a are a1 = 1
2 , a2 = 3

2 , . . . , an = n− 1
2 . This corresponds to

the trivial representation of SO(N), and so both d~a and c~a are 1. The next lowest values of

~a are when we change an to n+ 1
2 and leave the other aj the same. This corresponds to the

natural representation of SO(N) (i.e. the representation in which each element of SO(N)

is sent to itself as a matrix), and so d~a = N and c~a = (N − 2) + 2 cos(θ). Similarly, for

N = 2n, the trivial representation corresponds to setting a1 = 0, a2 = 1, . . . , an = n − 1,

and the natural representation corresponds to changing an to n and leaving the other aj

the same.
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4. Fourier Analysis and the Upper Bound Lemma.

Let G be a compact Lie group with irreducible representations ρ1, ρ2, . . ., and corre-

sponding characters χ1, χ2, . . .. Recall that these characters are orthonormal with respect

to the inner product

〈χi, χj〉 =
∫
G

χiχj dλ ,

where λ is normalized Haar measure. Given a finite measure µ on G, the Fourier transform

of µ is defined by

µ̂(ρj) =
∫
G

ρj dµ ,

and the Fourier coefficients by

µ̂(χj) =
∫
G

χj dµ = trace µ̂(ρj) .

(This terminology may not be completely standard.) It is easily verified that

µ̂ ∗ ν(ρj) = µ̂(ρj)ν̂(ρj) ,

i.e. that Fourier transforms change convolutions into ordinary matrix products.

Now, if µ is conjugate-invariant (in the sense that µ(g−1Ag) = µ(A) for all g ∈ G and

all measurable A ⊆ G), then it is easily verified that µ̂(ρj) commutes with ρj(g) for all

g ∈ G, so that Schur’s Lemma implies µ̂(ρj) is a scalar multiple of the identity matrix. In

this case, the scalar is easily seen (by taking traces) to be trace (µ̂(ρj))
dim(ρj)

, so

µ̂(ρj) =
(

trace (µ̂(ρj))
dim(ρj)

)
I ,

where I is the appropriately sized identity matrix. Hence,

µ̂∗k(ρj) =
(

trace (µ̂(ρj))
dim(ρj)

)k

I .

In particular, for the measures Qk defined on SO(N) in Section 2, with ρ~a the representa-

tion corresponding to the index ~a, with c~a and d~a as in Proposition 3-1, and using equation

(2-1),

Q̂k(ρ~a) = Q̂∗k1 (ρ~a) =

(
trace (Q̂1(ρ~a))

dim(ρ~a)

)k

I =
(

trace (ρ~a(Rθ))
dim(ρ~a)

)k

I =
(

c~a

d~a

)k

I ,
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and so

(4-1) Q̂k(χ~a) =
(

c~a

d~a

)k

d~a .

We require the following standard result from harmonic analysis.

Lemma 4-1 (Fourier Inversion Theorem). Let G be any compact Lie group, with µ

any conjugate-invariant Borel measure on G. Let `j = µ̂(χj), and suppose
∑
j

|`j |2 is finite.

Then µ is absolutely continuous with respect to Haar measure λ, and in fact dµ = f dλ

where f is the L2 function on G defined by

f(g) =
∑

j

`j χj(g) .

Proof. Let ν be the measure defined by dν = f dλ. Then ν and µ are two conjugate-

invariant measures which are easily seen to have the same Fourier coefficients. The Fourier

Uniqueness Theorem (cf. [HR], Theorem 31.5) then implies that µ = ν.

As an illustration of a use of this Lemma, we have

Remark 4-2. Let g ∈ G, with G an (infinite) compact Lie group. Then
∑
j

|χj(g)|2 is

infinite, and so
∑
j

|χj(g)| is infinite.

Proof. Let µ be the unique conjugate-invariant Borel probability measure on G which

is concentrated on the conjugacy class of g. Then µ̂(χj) = χj(g). If
∑
j

|χj(g)|2 were finite,

the measure µ would be absolutely continuous with respect to Haar measure, which is

clearly false since the conjugacy class of g has µ-measure 1 but Haar-measure 0.

The following Lemma was developed and used extensively by Diaconis and Shashahani

(see [DS1], [DS2], [D]). We include a statement and proof here for the case of a conjugate-

invariant measure on a compact Lie group.
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Lemma 4-3 (Upper Bound Lemma). Let G be a compact Lie group, with normalized

Haar measure λ, and let µ be any conjugate- invariant probability measure on G. Let

`j = µ̂(χj) =
∫
G

χj dµ. Then

‖µ− λ‖2 ≤ 1
4

∑
j

|`j |2 − 1

 ,

where ‖ · ‖ denotes the variation distance defined in Section 2.

Proof. The statement is vacuous if
∑
j

|`j |2 is infinite, so we assume it is finite. Then,

with f as in Lemma 4-1,

4‖µ− λ‖2 =

∫
G

|f − 1| dλ

2

≤
∫
G

|f − 1|2 dλ

=
∫
G

|f |2dλ − 1

=
∑

j

|`j |2 − 1

where the inequality is Cauchy-Schwarz, and the final equality uses the fact that the irre-

ducible characters form an orthonormal basis for the L2 class functions on G.

Remark. If χ1 is the character corresponding to the trivial representation, then `1 = 1,

so the Upper Bound Lemma can be written ‖µ− λ‖2 ≤ 1
4

∑
j 6=1

|`j |2 .

We shall apply the Upper Bound Lemma to the problem at hand in Section 6.
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5. Proof of Theorem 2-1.

We fix N ≥ 5 (smaller N can be easily handled by modifying the constant ∆ as

necessary). We let χ1 be the irreducible character of SO(N) corresponding to the natural

representation (see the end of Section 2). We shall compute the expectation and variance

of χ1 under the measures λ and Qk (with k = 1
2(1−cos θ) (N log N − cN)). We have that

Eλ(χ1) =
∫

SO(N)

χ1 dλ = 〈χ1, 1〉 = 0

and

V arλ(χ1) =
∫

SO(N)

|χ1|2 dλ = 〈χ1, χ1〉 = 1 ,

using orthonormality. Also, from equation (4-1),

EQk
(χ1) =

(
Q̂1(χ1)

N

)k

N

=
(

N − 2(1− cos θ)
N

)k

N

= N

(
1− t

N

) 1
t N log N (

1− t

N

)− 1
t cN

,

where we have written t for 2(1− cos θ). Now, it is easily checked that(
1− t

N

)− 1
t cN

> ec .

Also, using the fact that

log
(

1− t

N

)
= − t

N
− t2

2N2
− t3

3N3
− . . .

≥ − t

N
− t2

2N2
− t3

2N3
− . . .

= − t

N
− t2

2N2

(
1

1− t
N

)
for −1 < t

N < 1, it is not hard to show that

N

(
1− t

N

) 1
t N log N

≥ 1
5

,

16



for N ≥ 5 and −4 ≤ t ≤ 4. We conclude that

EQk
(χ1) >

1
5
e−c .

It remains only to compute the variance of χ1 under the measure Qk. We have the

following.

Lemma 5-1.

V arQk
(χ1) ≤ 1 +

16
1− cos θ

exp
(

2
1− cos θ

)
e2c

(
log N

N

)
.

Assuming the Lemma, we complete the proof as follows. We have that

EQk
(χ1) ≥

1
5
ec .

Hence, from Chebychev’s Inequality,

ProbQk

(
χ1 ≤

1
10

ec

)
≤ 100e−2c +

1600
1− cos θ

exp
(

2
1− cos θ

)
log N

N
.

Also

Probλ

(
χ1 ≥

1
10

ec

)
≤ 100e−2c .

Hence,

‖Qk − λ‖ ≥ Probλ

(
χ1 <

1
10

ec

)
− ProbQk

(
χ1 <

1
10

ec

)
= 1− Probλ

(
χ1 ≥ 1− 1

10
ec

)
− ProbQk

(
χ1 <

1
10

ec

)
≥ 1− 200e−2c − 1600

1− cos θ
exp

(
2

1− cos θ

)
log N

N

as required.

Proof of Lemma 5-1. Let ρ1 be the natural representation of SO(N) (so χ1 = trace ρ1).

Then χ2
1 = trace ρ1⊗ρ1. Now, ρ1⊗ρ1 acts on RN ⊗RN . Under the natural identification

of this space with the space MN (R) of real, N ×N matrices, the action of ρ1⊗ρ1 becomes

the following. For g ∈ SO(N) and B ∈ MN (R),

(ρ1 ⊗ ρ1)(g)B = gtBg ,

17



where gt denotes the transpose of g as a matrix. It immediately follows that MN (R) decom-

poses into the direct sum of three subspaces invariant under ρ1 ⊗ ρ1: the one-dimensional

subspace M0
N consisting of scalar multiples of the identity matrix, the N(N−1)

2 -dimensional

subspace M−
N consisting of the skew-symmetric matrices, and the

(
N(N+1)

2 − 1
)

-dimensional subspace M+
N consisting of the symmetric matrices with trace 0. We claim

that each of these subspaces is irreducible under ρ1⊗ρ1. Indeed, it is obvious that the action

of ρ1⊗ρ1 on M0
N is the trivial representation. It is a well-known fact that M−

N is invariant,

and in fact the action of ρ1⊗ ρ1 on M−
N is isomorphic to the representation corresponding

to the index ~a− given by a1 = 1
2 , a2 = 3

2 , . . . , an−2 = n− 5
2 , an−1 = n− 1

2 , an = n + 1
2 for

N = 2n+1, and given by a1 = 0, a2 = 1, . . . , an−2 = n−3, an−1 = n−1, an = n for N = 2n.

We further claim that the action of ρ1⊗ρ1 on M+
N is isomorphic to the representation cor-

responding to the index ~a+ given by a1 = 1
2 , a2 = 3

2 , . . . , an−2 = n− 5
2 , an−1 = n− 3

2 , an =

n+ 3
2 for N = 2n+1, and given by a1 = 0, a2 = 1, . . . , an−2 = n−3, an−1 = n−2, an = n+1

for N = 2n. Indeed, the dimensions are equal, so it is enough to show that M+
N contains

the approprate “highest weight”. Specifically, we must show that there exists a matrix B∗

in the complexification of M+
N , such that if g ∈ SO(N) is of the form

g =


0 0

∗
...

...
0 0

0 . . . 0 cos α − sinα
0 . . . 0 sinα cos α


where α is any angle, and ∗ indicates an arbitrary (N−2)× (N−2) matrix, then

gtB∗g = ei(2α)B∗ .

The matrix

B∗ =


0 . . . 0 0 0
...

. . .
...

...
...

0 . . . 0 0 0
0 . . . 0 1 i
0 . . . 0 i −1


is easily seen to satisfy this requirement.

We conclude that

ρ1 ⊗ ρ1 ' (trivial rep.)⊕ ρ~a− ⊕ ρ~a+ ,
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and so
EQk

(χ2
1) = EQk

(1 + χ~a− + χ~a+)

= 1 +
(

c~a−

d~a−

)k

d~a− +
(

c~a−

d~a−

)k

d~a−

.

Thus, writing ~a1 for the index corresponding to χ1,

(5-1)

V arQk
(χ1) = EQk

(χ2
1)− (EQk

(χ1))
2

= 1 +
(

c~a−

d~a−

)k

d~a− +
(

c~a−

d~a−

)k

d~a− −

((
c~a1

d~a1

)k

d~a1

)2

=

(
1−

(
c~a1

d~a1

)2k
)

+

((
c~a−

d~a−

)k

−
(

c~a1

d~a1

)2k
)

d~a−+((
c~a+

d~a+

)k

−
(

c~a1

d~a1

)2k
)

d~a+

(using the fact that (d~a1)
2 = 1 + d~a− + d~a+). Now, we have that d~a1 = N and c~a1 =

N − 2 + 2 cos θ. Using the basis

{ei ⊗ ej − ej ⊗ ei|i 6= j}

for M−
N , one sees that d~a− = N(N−1)

2 and c~a− = (N−2)(N−3)
2 +2(N −2) cos θ+1. Similarly,

using the basis

{ei ⊗ ej + ej ⊗ ei|i 6= j} ∪ {ej ⊗ ej + en ⊗ en|1 ≤ j < n}

for M+
N , one sees that d~a+ = N(N+1)

2 − 1 and

c~a+ =
(

(N − 2)(N − 3)
2

+ 2(N − 2) cos θ + cos 2θ

)
+
(
(N − 3) + 2 cos2 θ

)
.

From these facts, one easily obtains for N ≥ 5 the bounds∣∣∣∣∣ c~a−

d~a−

−
(

c~a1

d~a1

)2
∣∣∣∣∣ ≤ 30

N2

∣∣∣∣∣ c~a+

d~a+

−
(

c~a1

d~a1

)2
∣∣∣∣∣ ≤ 26

N2∣∣∣∣ c~a−

d~a−

∣∣∣∣ ≤ 1−
4(1− cos θ)− 4

N

N − 1
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and
∣∣∣∣ c~a+

d~a+

∣∣∣∣ ≤ 1−
4(1− cos θ)− 6

N

N − 1
.

If we then use the general fact

∣∣xk − yk
∣∣ = ∣∣(x− y)(xk−1 + xk−2y + . . . + yk−1)

∣∣ ≤ |(x− y)| k (max(|x|, |y|))k

(with y =
(

c~a1
d~a1

)2

) and recall that k = 1
2(1−cos θ) (N log N − cN), we obtain that

∣∣∣∣∣
(

c~a−

d~a−

)k

−
(

c~a1

d~a1

)2k
∣∣∣∣∣ d~a− ≤

8
1− cos θ

exp
(

2
1− cos θ

)
e2c

(
log N

N

)

and ∣∣∣∣∣
(

c~a+

d~a+

)k

−
(

c~a1

d~a1

)2k
∣∣∣∣∣ d~a+ ≤ 8

1− cos θ
exp

(
2

1− cos θ

)
e2c

(
log N

N

)
.

Also (
1−

(
c~a1

d~a1

)2k
)
≤ 1 .

Hence, from equation (5-1),

V arQk
(χ1) ≤ 1 +

16
1− cos θ

exp
(

2
1− cos θ

)
e2c

(
log N

N

)
,

as required.

Remarks.

1. We have been a bit sloppy with the constants above. The key point, however, is that

for large N , the variance of χ1 under the measure Qk is not much larger than 1.

2. It is a fact that in many of the examples studied, including those on finite groups, the

variance as above is small; see Diaconis [D]. It is an open problem to explain why this

is so.
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6. Proof of Theorem 2-2.

We have from the Upper Bound Lemma (Lemma 4-3) and equation (4-1) that

4‖Qk − λ‖2 ≤
∑
~a

(
c~a

d~a

)2k

d2
~a − 1 ,

where the sum is over all values of ~a = (a1, . . . , an) allowed by the Weyl Character Formula.

Hence, we need only show that

∑
~a

(
c~a

d~a

)2k

d2
~a − 1 ≤ 4

(
Λe−γc

)2
.

We restrict ourselves to the odd N case; the even N case is very similar. Thus N = 2n+1,

and k ≥ 1
2n log n + 2cn.

From Proposition 3-1,

d~a =
2n

1!3! . . . (2n−1)!

(
n∏

q=1

aq

)∏
r>s

(
a2

r − a2
s

)
and

c~a

d~a
=

(2n− 1)!
(2 sin(θ/2))2n−1

n∑
j=1

(−1)j−1 sin(ajθ)

aj

n∏
r=j+1

(
a2

r − a2
j

) j−1∏
s=1

(
a2

j − a2
s

) .

Now, when θ is 180 degrees, sin(θ/2) = 1, and sin(ajθ) = (−1)aj− 1
2 (for aj a half-integer).

Hence
c~a

d~a
=

(2n− 1)!
(2)2n−1

n∑
j=1

(−1)aj−j+ 1
2

aj

n∏
r=j+1

(
a2

r − a2
j

) j−1∏
s=1

(
a2

j − a2
s

) .

Thus, for the trivial representation, we have

1 =
c~a

d~a
=

(2n− 1)!
22n−1

n∑
j=1

 1

aj

n∏
r=j+1

(
a2

r − a2
j

) j−1∏
s=1

(
a2

j − a2
s

)
 .

Let

r~a =
(2n− 1)!

22n−1

n∑
j=1

 1

aj

n∏
r=j+1

(
a2

r − a2
j

) j−1∏
s=1

(
a2

j − a2
s

)
 .
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Then | c~a

d~a
| ≤ r~a for all ~a by the triangle inequality, with r~a = 1 for the trivial representation.

We shall use r~a as an upper bound for | c~a

d~a
|, and we shall approximate it by considering by

what fraction it changes as the index ~a changes from the index for the trivial representation

to other values.

We begin by noting that it is sufficient to prove the Theorem for sufficiently large

values of N and c; the constant Γ can be adjusted to make the Theorem vacuous for

smaller values of N and c.

The key computational fact we shall require is the following.

Proposition 6-1. There is a constant K such that for sufficiently large n, and for any

allowable index ~a = (a1, . . . , an) with an < 8n,

d~ark
~a ≤

(
Ke−c/8

)b1+b2+...+bn

,

where bj = aj − (j − 1
2 ) is the amount that aj differs from its value for the trivial repre-

sentation. (In fact, we can take K = 252.)

Assuming Proposition 6-1, and writing q for
(
Ke−c/8

)2
, we have that

∑
~a

(an<8n)

d2
~ar2k

~a ≤
8n∑

b1=0

b1∑
b2=0

. . .

bn−1∑
bn=0

qb1+b2+...+bn

≤
∞∑

b1=0

b1∑
b2=0

. . .

bn−1∑
bn=0

qb1+b2+...+bn

=
∞∑

g1=0

∞∑
g2=0

. . .
∞∑

gn=0

qng1+(n−1)g2+...+gn

where we have set gn = bn, and gj = bj − bj+1 for 1 ≤ j ≤ n− 1. Hence,∑
~a

(an<8n)

d2
~ar2k

~a ≤
n∏

j=1

(
1

1− qj

)

≤ 1
∞∏

j=1

(1− qj)

=
1

1− q − q2 + q5 + . . .

= 1 + q + 2q2 + . . .

≤ 1 + 2q
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for q sufficiently small, i.e. for c larger than some universal constant c0. (The key point

here is that
∞∏

j=1

(1− qj) is analytic in q for |q| < 1, so the power series makes sense.) Hence

∑
~a

(an<8n)

d2
~ar2k

~a − 1 ≤ 2q = 2K2e−2c/8 .

This is almost exactly what we need; once Proposition 6-1 is proved, we need only worry

about those ~a with an > 8n. That is done at the end of this Section.

To prove Proposition 6-1, we make use of the following lemmas.

Lemma 6-2. Let d(T ) stand for the dimension of the character corresponding to the

index in which aj = j − 1
2 for 1 ≤ j ≤ n− 1, and in which an = T . Then

d(T + 1)
d(T )

=
(

1 +
1
T

)(
1 +

2n− 2
T − n + 3

2

)
.

Proof. This is a straightforward computation. If we change an from T to T + 1, the

only factors of d~a which are affected are those of the form

an

n−1∏
s=1

(
a2

n − a2
s

)
= an

n−1∏
s=1

(an − as)
n−1∏
s=1

(an + as) .

Hence
d(T + 1)

d(T )
=

T + 1
T

n−1∏
s=1

(
T + 1− as

T − as

) n−1∏
s=1

(
T + 1 + as

T + as

)
.

Each of these two products is a “collapsing product” which can easily be evaluated.

Lemma 6-3. Choose any ` with 0 ≤ ` ≤ n − 1. Let ~a = (a1, . . . , an) be any allowable

index with aj = T +n− j, for `+1 ≤ j ≤ n. If we increase each of a`+1, a`+2, . . . , an by 1,

then d~a is multiplied by an amount which is less than or equal to the binomial coefficient(
2n+1
n−`

)
.

Proof. A computation similar to that for Lemma 6-2 above shows that d~a is multiplied by

exactly
(
2n+1
n−`

)
in the case when T = n− 1

2 (i.e. if we started at the trivial representation).

Now, the only factors in d~a which are affected are those of the form

a`+1 . . . an

∏
r>s>`

(ar + as)
∏

r>`≥s

(ar + as)
∏

r>`≥s

(ar − as) .
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Now, if T is larger than n− 1
2 , and if the values of a1, . . . , a` get more “spread out”, then

it is easily verified that each factor of d~a is multiplied by less than it was for the trivial

representation. This gives the inequality.

Corollary 6-4. Under the hypothesis of Lemma 6-3 above, with n ≥ 2, d~a is multiplied

by an amount which is less than or equal to 8e2n.

Proof. This follows immediately from Lemma 6-3 and a weak form of Sterling’s Ap-

proximation. Indeed, for any integer p,

e
(p

e

)p

< p! < pe
(p

e

)p

(cf. [Ar], p. 20). Hence, (
2n + 1
n− `

)
≤
(

2n + 1
n

)
=

(2n + 1)!
n!(n + 1)!

<
e(2n + 1)

(
2n+1

e

)2n+1

e
(

n
e

)n
e
(

n+1
e

)n+1 ,

and this last expression is easily seen to be less than 8e2n for n ≥ 2.

Proof of Proposition 6-1. Note that r~a is a positive linear combination of terms of

the form

t
(j)
~a =

1
aj

∏
r>j

(a2
r − a2

j )
∏
s<j

(a2
j − a2

s)
,

and recall that r~a0 = 1 where ~a0 is the index corresponding to the trivial representation.

Hence, for any permissible index ~a,

r~a =
r~a

r~a0

≤ max
1 ≤ j ≤ n

t
(j)
~a

t
(j)
~a0

,

so it suffices to show that

d~a r
(j)k
~a ≤

(
Ke−c/8

)b1+...+bn

, j = 1, 2, . . . , n,
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where r
(j)
~a = t

(j)
~a

t
(j)
~a0

.

To this end, we fix j ∈ {1, 2, . . . , n}, and fix an index ~a∗ = (a∗1, a
∗
2, . . . , a

∗
n). We shall

proceed by moving the values of ~a from their initial values of ~a0 to the final values of ~a∗.

The outline is as follows. We shall first increase each of the indices aj+1, . . . , an enough

to get the differences ar − aj right for r > j. In other words, we shall increase an from its

value of n− 1
2 for the trivial representation to the value a∗n − a∗j + (j − 1

2 ). We shall show

that the value of d~a r
(j)k
~a decreases by a factor of at least (Ke−c/8) each time we increase

an by 1. We shall do the same for each of aj+1, . . . , an−1. We shall then increase all of the

indices a1, . . . , an simultaneously until a1 takes on its correct value, and we shall show that

d~a r
(j)k
~a decreases by a factor of at least (Ke−c/8)n each time we increase each of a1, . . . , an

by 1. Once a1 has its correct value, we shall increase each of a2, . . . , an simultaneously

until a2 takes on its correct value, and we shall again get a decrease in d~a r
(j)k
~a by a factor

of at least (Ke−c/8)n. We continue in this manner. When finally aj takes on its correct

value, we are done. The rest of this proof is merely an ellaboration of these ideas.

We begin with an (assuming j < n). We move it, one step at a time, from its initial

value of n− 1
2 to the value (j − 1

2 ) + a∗n − a∗j (to get the value of an − aj right). We claim

that each such “move” decreases d~a r
(j)k
~a by a factor of

(
Ke−c/8

)
or better. Indeed, from

Lemma 6-2, d~a is multiplied each time by an amount(
1 +

1
an

)(
1 +

2n− 2
an − n + 3

2

)
< 2

(
1 +

2n

an − n + 3
2

)
.

Also the only term in r
(j)
~a which is affected is the term 1

(a2
n−a2

j
)

which is multiplied by an

amount
a2

n − a2
j

(an + 1)2 − a2
j

≤ a2
n

(an + 1)2

=
1

(1 + 1
an

)2
.

Now, it is easily verified that for 0 ≤ x ≤ 1,

(1 + x)ex2/2 ≥ ex .

Hence,
1

1 + x
≤ e−xex2/2 .
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Thus r
(j)k
~a is multiplied by an amount which is less than 1(

1 + 1
an

)2


k

≤

(
1

1 + 1
an

)(n log n+4cn)

≤
(
e−1/ane1/2(an)2

)(n log n+4cn)

For n ≥ 20, this is less than

2ec/9 exp(−(n log n + 4cn)/an) .

Hence, writing bn = an − (n− 1
2 ), we have that d~a r

(j)k
~a is multiplied by less than

4ec/9

(
1 +

2n

an − n + 3
2

)
exp(−(n log n + 4cn)/an)

≤ 4ec/9

(
1 +

2n

bn + 1

)
exp(−(n log n + 4cn)/(n + bn))

= 4ec/9

(
1 +

2n

bn + 1

)
exp((−(n + bn) log n + bn log n− 4cn)/(n + bn))

= 4ec/9

(
1
n

+
2

bn + 1

)
exp ((bn log n− 4cn)/(n + bn)) .

Now, if bn < n
log n , this amount is less than

12ec/9 exp ((n− 4cn)/2n) = 12ec/9 exp
(

1− 4c

2

)
< 10e−c

which is smaller than is required. If n
log n < bn < 0.1n, this amount is less than

12 ec/9(
n

log n

) exp ((0.1n log n− 4cn)/1.1n) ≤ 12 log n

n0.9
e−c ≤ 12e−c ,

which is again smaller than required. Finally, if 0.1n ≤ bn ≤ 8n, then writing t for bn/n,

so that 0.1 ≤ t ≤ 8, we have that this amount is less than

12 ec/9

(
1
n

)(
1 +

2
t

)
exp ((tn log n− 4cn)/((1 + t)n)) = 12 ec/9

(
1
n

)(
1 +

2
t

)
n

t
1+t e−

4c
1+t

= 12 ec/9

(
t + 2

t

)
n
−1
1+t e−

c
1+t

< 252 e−c/3 ,
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which is smaller than is required.

To summarize, we have moved an from its initial value of n− 1
2 to the value a∗n−a∗j +

(j − 1
2 ), by increasing the value of an in steps of 1 in such a way that the value of d~a r

(j)k
~a

was multiplied by a factor smaller than Ke−c/8 each time.

We now move an−1 from its initial value of n − 3
2 to the value a∗n−1 − a∗j + (j − 1

2 ),

in steps of 1. The process is the same as the above, and the same argument shows that

d~a r
(j)k
~a is multiplied by a factor smaller than Ke−c/8 each time. In fact, the argument is

a bit less delicate, since d~a is actually multiplied by a bit less than it was when we moved

an, while r~a is actually decreased by a bit more.

We continue in this manner, moving each of an−2, an−3, . . . , aj+1 in turn, by steps of

1. When we are done, we have that am−aj = a∗m−a∗j for j +1 ≤ m ≤ n, and furthermore

that d~a r
(j)k
~a has been multiplied by an amount less than

(
Ke−c/8

)bj+1+...+bn , where bm

represents the amount am has been increased so far.

To complete the proof of Proposition 6-1, we proceed as follows. We increase each

of a1, a2, . . . , an by 1, simultaneously. Under such a move, d~a is multiplied by less than

8e2n, by Corollary 6- 4. Also, the terms in r
(j)
~a which are affected are those of the form

1

aj

∏
r 6=j

(ar+aj)
. They are multiplied by

(
aj

aj + 1

)∏
r 6=j

(
ar + aj

ar + aj + 2

)
≤

(
1

1 + 1
an

)n

.

Reasoning as before, this is less than(
2ec/9e1/an

)n

.

Hence, d~a r
(j)k
~a is multiplied by an amount which is less than

8(2ec/9)ne2n
(
e−n/an

)k

< 8(2ec/9)n exp
(

2n − n(
1
2
n log n + 2cn)/8n

)
= 8(2ec/9)n exp

(
2n − 1

16
n log n − cn/4

)
.

Now, if we choose n so large that 2n− 1
16n log n < 0, this is less than

8(2ec/9)n(e−c/4)n < (16e−c/8)n .
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This is less than the factor (Ke−c/8)n which was required.

We continue to increase each of a1, a2, . . . , an by 1 until a1 = a∗1. Each time we

pick up a factor smaller than
(
16e−c/8

)n
. Once we have a1 = a∗1, we then move each of

a2, a3, . . . , an by 1 until a2 = a∗2. The argument above shows that for each of these moves,

we again pick up a factor smaller than
(
16e−c/8

)n
. Indeed, each time d~a is multiplied by an

amount bounded just as it was above. As for r
(j)
~a , the factor 1

a1+aj
in r

(j)
~a is not decreased

by as much as it was above, but the factor 1
aj−a1

, which remained the same before, now

decreases by enough to compensate.

Once we have a2 = a∗2, we then increase each of a3, a4, . . . , an by 1 until a3 = a∗3. We

continue in this manner until finally we are increasing only each of aj , aj+1, . . . , an by 1

to make aj = a∗j . When this is done, we have that ~a = ~a∗. Furthermore, we have picked

up a factor of
(
252e−c/8

)
or smaller for each time we have increased any am by 1. This

completes the proof of the Proposition.

To complete the proof of Theorem 2-2, we need only bound the sum of terms d2
~ar2k

~a

with an ≥ 8n. We do this as follows. For 1 ≤ m ≤ n, and for any permissible index

~a = (a1, . . . , an), we set

d
[m]
~a =

2m

1!3! . . . (2m− 1)!

m∏
r=1

ar

m∏
r=2

r−1∏
s=1

(
a2

r − a2
s

)
and

r
[m]
~a =

(2m− 1)!
22m−1

m∑
j=1

1
m∏

r=1
r 6=j

ar

m∏
r=j+1

(
a2

r − a2
j

) j−1∏
s=1

(
a2

j − a2
s

) .

In other words, d
[m]
~a and r

[m]
~a are the values of d~a and r~a if we replace n by m and consider

only the indices a1, . . . , am. It is easily verified that

d
[m]
~a ≤ 2

(2m− 1)!
(am+1)2m−1d

[m−1]
~a

and

r
[m]
~a ≤ m

am
r
[m−1]
~a .
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We wish to prove that

(6-1)
∑

a1,...,am

d
[m]2
~a r

[m]2k
~a ≤ 1 + (2K2 + 1)e−c/4, m = 2, 3, . . . , n ,

for sufficiently large n and c, with K as in Proposition 6-1. (If we prove this, then Theorem

2-2 follows by setting m = n. Note, however, that we are not proving Theorem 2-2 for

all values of m, since the value of k ≥ 1
2n log n + 2cn does not get smaller with m.) We

proceed by induction on m. For m = 2,

d
[2]
~a =

2
3
a1a2(a2

2 − a2
1) ≤ a1a

3
2

and

r
[2]
~a =

3
4

(
1

a1(a2
2 − a2

1)
+

1
a2(a2

2 − a2
1)

)
≤ 3

2
1

a1a2
.

The sum ∑
a1,a2

d
[2]2
~a r

[2]2k
~a

may now easily be bounded by a double integral (after summing the first few terms di-

rectly), and made to be much smaller than is required.

For the induction step, we first note that the argument given earlier in this Section

shows that the sum

∑
a1,...,am
(am<8n)

d
[m]2
~a r

[m]2k
~a ≤ 1 + 2q, m = 2, 3, . . . , n ,

for c larger than some universal constant c0, where q = K2e−c/4. Indeed, Proposition 6-1

still holds if we replace d~a by d
[m]
~a and r~a by r

[m]
~a , and set br = 0 for m+1 ≤ r ≤ n. To see

this, note that this replacement clearly makes d~a smaller. As for r~a, the only two estimates

we made for changes in r
(j)
~a during the proof of Proposition 6-1 were the estimates

1
(1 + 1

an
)2

and (
1

(1 + 1
an

)2

)n

.
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The first of these is actually made smaller by our replacement. As for the second, our

replacement will leave it smaller than(
1

(1 + 1
an

)2

)m

,

which is all that we require since in Corollary 6-4 we may now replace n by m.

Hence, we need only bound the sum∑
a1,...,am
(am>8n)

d
[m]2
~a r

[m]2k
~a .

We have that

∑
a1,...,am
(am>8n)

d
[m]2
~a r

[m]2k
~a ≤

 ∞∑
am=8n+ 1

2

(
m

am

)2k

a2m
m

 ∑
a1,...,am−1

d
[m−1]2
~a r

[m−1]2k
~a

where we now allow a1, . . . , am−1 to take on all admissible values, not just those which are

less than some specified value of am. But by induction, the sum over the a1, . . . , am−1 is

1 + something small, so in any case we may take it to be less than 2. We then have that

∑
a1,...,am
(am>8n)

d
[m]2
~a r

[m]2k
~a ≤ 2

 ∞∑
am=8n+ 1

2

(
m

am

)2k

a2m
m


≤ 2n2k

∞∫
8n−1

x2n−2k dx

= 2n2k(8n− 1)2n−2k+1/(2k − 2n− 1)

< 2n2k(8n− 1)2n−2k+1

= 2 exp
(
−2(

1
2
n log n + cn) log(8− 1

n
) + (2n + 1) log(8n− 1)

)
< e−2cn log 8 ,

for sufficiently large n, where we have used the fact that log(8− 1
n ) > 2 and 2k−2n−1 > 1.

This is smaller than, say, e−c/4, establishing (6-1). This completes the induction step, and

therefore the proof of Theorem 2-2.

Remarks:
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1. The cutoff phenomenon. Theorems 2-1 and 2-2 provide an example of the “cutoff”

or “threshold” phenomenon (for θ = π), whereby the variation distance from Haar

measure jumps from being near 1 to being near 0 over a relatively short interval

of values of k (the number of rotations being done). See Diaconis [D], Aldous and

Diaconis [AD], and Hildebrand [H] for a discussion of this phenomenon and for other

examples, especially on finite groups. It is an open problem to explain why this

phenomenon occurs in so many of the examples of random processes on finite and

compact groups which have been studied.

2. Other values of θ. One suspects that the “cutoff phenomenon” described above also

occurs for values of θ other than 180 degrees. Specifically, one suspects that if we do
1

2(1−cos θ)N log N + cN rotations through an angle θ, then the variation distance to

Haar measure will decrease to 0 exponentially as c increases, uniformly in N . The

methods used in this section should suffice to show this, but the computations appear

to be somewhat more difficult. Choosing θ from a more complicated distribution (say,

uniform on (0, π/2)) is also possible.

3. Connection with Random Reflections. As mentioned in the Introduction, Diaconis

and Shashahani [DS2] have carried out a similar analysis for a process of “random

reflections” on O(N). They determine that 1
2N log N such reflections suffice to get

close to Haar measure in total variation distance. This value is precisely twice the

value obtained in Theorem 2-2 above. This is not surprising. Doing two consecutive

reflections through axes making an angle α with each other is precisely the same as

doing a rotation through an angle 2α in the plane spanned by the two axes. For

large N , two random axes will make an angle of approximately 90 degrees with each

other with high probability, and so 2α will be close to 180 degrees, so that two random

reflections is roughly the same as one random rotation through an angle of 180 degrees.

4. Possible Extensions. The methods used in this paper would appear to be applicable

to any conjugate-invariant random process on any compact Lie group. For example,

the unitary and symplectic groups are promising candidates for further analysis.
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