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Abstract

Bayesian inference and Markov chain Monte Carlo methods are vigorous areas

of statistical research. Here we reflect on some recent developments and future

directions in these fields.

1 INTRODUCTION

On the occasion of the 50-th anniversary of the Statistical Society of Canada, we of-

fer some reflections on research in the highly twinned areas of Bayesian inference and

Markov Chain Monte Carlo (MCMC) methods. These areas continue to attract robust

participation from the Canadian research community. As labelled by initials, each of
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Sections 2 through 4 offer thoughts from one of us. First, JSR and RVC survey com-

putational topics related to the use of Markov chain Monte Carlo (MCMC) algorithms

for Bayesian computation. Then, PG describes some Bayesian applications, specifically

in the context of pandemic-related research.

2 MCMC IN HIGH DIMENSIONS (JSR)

MCMC algorithms are very widely used to explore and sample from a complicated

high-dimensional target probability distribution π. While other applications exist, the

most common use of MCMC is in cases where π is a posterior distribution

π(θ|y0) =
f(y0|θ)p(θ)∫
f(y0|θ)p(θ)dθ

, (1)

which is defined in terms of the sampling density f(y|θ), indexed by parameter θ ∈
Θ ⊂ Rd, calculated at observed data y0 ∈ X , and the prior distribution p(θ).

Note that the denominator in (1) is, usually, mathematically intractable and impedes

the calculation of posterior quantities like

I =

∫
Θ

h(θ)π(θ|y0)dθ, (2)

where h is a π-integrable function of interest. For instance, if d = 1, using h(θ) = θr

in (2) yields the r-th moment of π, and h(θ) = 1(−∞,t](θ) provides an estimator for the

cumulative distribution function (cdf) of π at a point t.

The most basic version of MCMC is the Metropolis algorithm (Metropolis et al.,

1953). From a given state θ, it proceeds by first proposing to move to a new state ω,

and then either accepting that proposal (i.e., moving to ω), or rejecting that proposal

(i.e., staying at θ). The acceptance probability is given by min[1, π(ω) / π(θ)]. If the

proposal densities are symmetric (i.e., have the same probability of proposing ω from θ,

as of proposing θ from ω), this procedure ensures that the resulting Markov chain will

be reversible with respect to π, and thus have π as its stationary density. It then

follows from standard Markov chain theory that, under mild irreducibility conditions,

the probabilities and sample averages of the MCMC algorithm will converge to the

stationary distribution and expected values, thus facilitating sampling and estimation.

These and related algorithms have been extremely influential in Bayesian computation

and led to many thousands of research papers exploring their theory and application;

see e.g. Brooks et al. (2011) and the many references therein.

An important question about MCMC algorithms is how quickly they will converge to

their stationary distribution. This has been the subject of much theoretical (e.g. Rosen-
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thal (1995a,b, 1996, 2002); Meyn and Tweedie (1994); Roberts and Tweedie (1999);

Jones and Hobert (2001, 2004); Baxendale (2005)) and practical (e.g. Gelman and Ru-

bin (1992)) investigation, mostly focused on the specific question of how many iterations

are required, for a particular statistical model and data, to get within a specified dis-

tance (say, 0.01) of stationary in terms of a standard metric on probability distributions

(say, total variation distance).

Generally, MCMC algorithms tend to converge reasonably quickly on the modest-

sized problems that statisticians have traditionally studied. However, the modern “big

data” era, with models involving many thousands of parameters and millions of data

points, presents new “curse of dimensionality” challenges. Thus, algorithms which are

perfectly satisfactory in the former context may still fail in the latter context. This

issue was driven home to me when I realised to my surprise that one of my best spe-

cific quantitative theoretical convergence bounds, proving that a modest 140 iterations

sufficed to get within 0.01 of stationarity for a reasonably complicated Bayesian model

with 18 observations (Rosenthal, 1996) would nevertheless grow exponentially quickly

as the amount of data grew to infinity.

As a result, statisticians have recently become more interested in the computer

science concept of computational complexity (e.g. Cook (1971)), i.e. how the conver-

gence times increase as the problem size (e.g. the amount of data) grows to infinity.

While various MCMC researchers had considered computational complexity perspec-

tives to some extent in earlier MCMC analysis (e.g. Rosenthal (1995b); Woodard et al.

(2009a,b)), this has taken on new prominence in recent years (e.g. Woodard and Rosen-

thal (2013); Rajaratnam and Sparks (2015); Yang et al. (2016); Qin and Hobert (2017);

Yang and Rosenthal (2017); Tawn et al. (2020)). These new results are very promising,

but they tend to apply only to specific models, or to require unverifiable assumptions,

thus limiting their utility as a general solution to this challenge.

In some cases, the problem of computational complexity of MCMC can be avoided

entirely, by instead using an approximation method such as Variational Bayes (Blei

et al., 2017a) or INLA (Rue et al., 2017). However, it is usually far preferable to find

general methods of obtaining verifiably accurate and reliable MCMC samples even in

high dimension. Indeed, I would argue that this is the central challenge of Bayesian

computation today.

One approach in this direction is to make use of the results of Roberts and co-authors

about optimal scaling of proposal distributions (e.g. Roberts et al. (1997); Roberts and

Rosenthal (1998)). They involve speeding up the original algorithm by a fixed power

of the dimension d (e.g. d or d1/3), and then proving that as d → ∞, the resulting

algorithm converges to a diffusion limit whose speed can then be optimised. Since

the limiting diffusion no longer depends on dimension, this seems to imply that the

3



computational complexity of the algorithm is equal to the order by which the chain

was sped up. This intuition was formalised in Roberts and Rosenthal (2016), where

it was proven that traditional random-walk Metropolis algorithms would converge to

stationary in O(d) iterations, while Metropolis-adjusted Langevin algorithms would

converge in O(d1/3) iterations. However, these results were established only under

the very strong assumptions which had been required for the original diffusion limits,

including assuming that the target distribution factored into i.i.d. components (although

in simulations they do appear to approximately hold much more generally (Roberts and

Rosenthal, 2001)). Those theoretical assumptions would never hold in practice, leading

to questions about how generally the corresponding results will hold in real MCMC

applications.

So where does that leave us? We can say without hesitation that there has been a

tremendous amount of success using and verifying MCMC on moderately-sized prob-

lems. However, when MCMC is used on much larger-scale problems, it tends to suffer

from either too-slow convergence, or lack of reliability, or incomplete theoretical justifi-

cation, or inaccurate approximation, or unrealistic assumptions. Thus, the general goal

of obtaining fast, accurate, reliable, verifiable MCMC sampling algorithms in general,

very high dimensional problems is not yet completely resolved. On the positive side,

this vexing challenge provides lots of new research directions, which will surely occupy

the MCMC and Bayesian computation communities for many years to come.

3 CHALLENGES IN BAYESIAN COMPUTATION

(RVC)

3.1 The workhorse of Bayesian computation

Although it continues to be referred to as a last resort computational method (e.g.

Thompson, 2011) to be used only when other numerical computation methods are

ineffective, MCMC sampling has been widely adopted due to ease of implementation and

available software. Expanding on the discourse of Section 2, let me consider Hastings’

generalization of the Metropolis sampler (Hastings, 1970), the so-called Metropolis-

Hastings algorithm (henceforth, MH), which is probably the most widely used MCMC

sampler.

Assume that the state of the chain at time t is θt. Given a user-defined proposal

distribution q(·|θt), the updating rule to construct θt+1 is defined by the following two

steps:

Step 1 A proposal ωt+1 is drawn from a proposal density q(ω|θt);

4



Step 2 Set

θt+1 =

{
ωt+1 with probability α

θt with probability 1− α

where

α = min

{
1,
π(ωt|y0)q(θt|ωt)
π(θt|y0)q(ωt|θt)

}
. (3)

Note that the pesky denominator in (1) does not impede the calculation of (3). However,

the latter requires the ability to calculate the sampling density f(y0|θ) for any parameter

value θ. The modern challenges posed to Bayesian computation have their roots in this

misleadingly simple requirement.

3.2 Challenges posed by big data

An important initial challenge to the classical MCMC procedures is presented by the

sheer increase in data volume. When the likelihood contains a sample of size N in

the hundreds of thousands or millions, running an MCMC sampler for thousands of

iterations becomes inefficient at best, and impossible at worst, since most samplers use

at least O(N) operations to update the underlying Markov chain. Occasionally, the

data volume is too large to be stored on a personal computer, making it impossible to

update the Markov chain using (3).

In other areas of statistical computation, algorithm designers have taken advantage

of parallelization strategies in which the task is divided between a number of paral-

lel “workers,” where a worker can be a processing unit, a computer core, etc (e.g.,

Schervish, 1988; Schubert and Gertz, 2018). Alas, MCMC samplers are notoriously

resistant to parallelization, forcing the design and adoption of new ideas as well as

opening the door to different approximation techniques. For instance, Suchard et al.

(2010) propose the use of a GPU’s multiple processors for speeding up a block Gibbs

algorithm. Their approach exploits the GPU’s multiple cores which allow paralleliza-

tion of computing tasks within each MCMC iteration. The proposed approach relies on

intrinsic synchronicity of the parallel tasks, i.e. all cores must complete their tasks be-

fore the updating of the chain can be completed. This approach is difficult to generalize

to other MCMC samplers where an update cannot be easily split among independent

workers. Others have discussed parallel MCMC methods (Rosenthal, 2000; Laskey and

Myers, 2003; Wilkinson, 2006) such that each of the workers runs on the full dataset.

However, these methods do not resolve memory overload, and may require intensive

communication between workers during the simulation which can push the computation

budget outside realistic bounds. It has been recognized that synchronous coordination

(workers must wait on each other to finish updates before moving on to the next step)
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and frequent communication between workers slows down computation significantly

and should be avoided. Some progress on asynchronous updating of Gibbs samplers is

reported in Terenin et al. (2020), albeit under relatively stringent conditions.

A diminished communication strategy can be achieved via the embarassingly parallel

design in which the data is partitioned into K equally-sized subsets, called shards, with

each shard analyzed independently by a different worker. Each worker uses an MCMC

algorithm to draw samples from the posterior corresponding to that data shard, which

I call a sub-posterior. Parallelization strategies also benefit from not requiring space

on each computer to store the full dataset. Some essential MCMC-related questions

are: 1) which sub-posterior distributions should one build for each shard, and 2) how

to combine the MCMC sub-samples obtained from each sub-posterior so that we can

recover the information that would have been obtained, had we been able to sample

from the full posterior distribution. For instance, the sub-posteriors developed in the

literature for the s-th shard have the form

π(s) ∝ p(θ)asf(y
(s)
0 |θ)bs , (4)

where y
(s)
0 is the s-th data shard as, bs ∈ R are user defined. For instance, Scott

et al. (2016), Neiswanger et al. (2013) and Wang and Dunson (2013) all use as =

1/K and bs = 1, for all 1 ≤ s ≤ K. The approaches in combining sub-samples

are different. Specifically, Neiswanger et al. (2013) approximate each sub-posterior

using kernel density estimators, while Wang and Dunson (2013) use the Weierstrass

transformation. Another option is to use as = 1 bs = K for all 1 ≤ s ≤ K as in the

likelihood inflating algorithm (LISA) that was developed by Entezari et al. (2018) for

Bayesian additive regression trees. More recently, Changye and Robert (2019) propose

to use as = λs/K and bs = λ and the subposteriors are first approximated using random

forests are reweighted via importance sampling. Similarly, Nemeth and Sherlock (2018)

approximate the subposteriors using Gaussian processes in the case as = 1/K, bs = 1

for all 1 ≤ s ≤ K.

These divide-and-conquer methods are well-justified for Gaussian posteriors and

sub-posteriors but theory lags behind once departures from normality are recorded.

The most general “fix” is to use importance sampling so that each sub-posterior sample

is properly weighted, but this strategy adds significantly to the computational burden.

Extending divide-and-conquer techniques to models for non-iid data is also challenging

because batches are not independent, or even exchangeable.

Since the size of the data is posing serious challenges, it is reasonable to consider

using only a subset of the sample to speed-up the MCMC computation. One essential

aim is to not alter the statistical properties of the sample when trimming it. In its
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simplest and most intuitive form, sample reduction can be easily understood when the

model admits a sufficient statistic. Alas, such simplicity is almost never available in

complex models, so new ideas are needed.

Suppose that the log-likelihood is obtained from adding N independent terms, each

corresponding to an independent item in the sample,

ln(θ|y0) =
N∑
i=1

li(θ), (5)

where li(θ) = log f(y0,i)|θ). It is tempting to consider a random subsampling of size r

of the data items {i1, . . . , ir} and to use lr(θ) =
∑r

j=1 lij(θ). However, replacing lN by lr

in the transition kernel of the Markov chain used to run, say a MH sampling algorithm,

will alter the target distribution of the chain and can potentially lead to large inferential

errors. This concern is alleviated if an unbiased estimator of the likelihood is available,

due to the pseudo-marginal approach developed by Andrieu and Roberts (2009). They

showed that the target distribution of a MH sampling algorithm remains unchanged

if the likelihood is replaced by an unbiased estimator when computing the acceptance

ratio (3). An important addendum is that the sampling efficiency of the new algorithm

degrades as the variance of the ratio of likelihoods increases, thus discouraging a choice

of r much smaller than N .

Some of these challenges are tackled by Quiroz et al. (2018) who specify a subsampling-

based approach in which a different subsample of size r is used at each iteration of the

MCMC sampler. They introduce an estimator of the likelihood that is approximatively

bias-corrected. In order to keep in check the variance of the likelihood ratio, they in-

troduce control variates. Since the estimator is not exactly unbiased, the transition

kernel of the MH chain deviates from the original one and its target distribution is

perturbed. However, Quiroz et al. (2018) are able to bound, for important general

classes of models, the total variation bound between the perturbed chain’s target and

the posterior distribution of interest, π(θ) ∝ f(y0|θ)p(θ), and make recommendations

about choosing the size of r.

Keeping with the “data trimming” theme, Huggins et al. (2016) consider a different

approach based on the concept of Bayesian coreset. In this case, a single data subset is

selected and treated as “the data” for inferential purposes. The working assumption is

that most large data are redundant so it is possible to reduce their size while preserving

their statistical properties. Bounds for the distance between the full likelihood and

the one corresponding to the coreset are derived theoretically. For Gaussian models,

Huggins et al. (2016) also derive bounds for the discrepancies between the full and

reduced data posteriors, but similar results are difficult to quantify theoretically in
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more general cases.

3.3 Challenges posed by intractable likelihoods

The modern statistician must deal with workflows of increasing complexity. The design

of large studies will lead not only to large volumes of data, but also sophisticated

questions. In turn, the latter can be satisfactorily answered by considering highly

complex models that elude analytical formulations available in closed form. Computer

emulators for complex phenomena, e.g. the path of hurricanes (Cui et al., 2018; Plumlee

et al., 2021) or climate change scenarios (Oyebamiji et al., 2015), exemplify generative

models in which data can be generated for every configuration of model parameters,

but the corresponding likelihood is not available.

When, for any parameter value θ ∈ Rq, synthetic data y ∼ f(y|θ) can be gener-

ated from the model, one can still conduct a Bayesian analysis. We discuss here two

computational approaches that have gained considerable momentum in recent years:

the Approximate Bayesian Computation (ABC) (Marin et al., 2012; Baragatti and

Pudlo, 2014; Sisson et al., 2018a; Drovandi, 2018) and the Bayesian Synthetic Likeli-

hood (BSL)(Wood, 2010; Drovandi et al., 2018; Price et al., 2018). Both algorithms are

effective when they are combined with Markov chain Monte Carlo sampling schemes to

produce samples from an approximation of the posterior.

In its simplest form, the ABC is an accept/reject sampler. Given observed data y0,

a user-defined threshold, ε > 0, a distance d : Rp ×Rp → R+ and summary statistic

S(y) ∈ Rp, the algorithm has the following steps :

S1 Sample θ∗ ∼ p(θ) and synthetic data y ∼ f(y|θ∗)

S2 If d(S(y), S(y0)) ≤ ε then accept θ∗ as a sample from the approximate posterior

πε(θ|S(y0)), the marginal (in θ) of the joint distribution

πε(θ,y|S(y0)) ∝ p(θ)f(y|θ)1{d(S(y),S(y0))<ε}. (6)

Note that when S is a sufficient statistic and ε = 0 the approximate posterior is the

true posterior, i.e. πε(θ|S(y0)) = π(θ|y0). To verify, let us work under the simplifying

assumption that both θ and y take discrete values. Then, one can easily see that

Pr(θ = θ0) ∝ p(θ0) Pr(S(y) = S(y0)|θ = θ0) (7)

∝ p(θ0) Pr(y = y0|θ = θ0) ∝ π(θ0|y0), (8)

where (7) holds because of the algorithm’s construction with ε = 0, and (8) because S

is sufficient.
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The remarkable feat of exploring an approximation of the posterior even when the

likelihood is intractable has generated a lot of interest, as demonstrated by the large

number of papers and ideas that simply cannot all be discussed here. Instead, I focus

on a few essential developments. The practical implementation of the ABC algorithm

requires choosing a number of simulation parameters, e.g. d, ε or S. Theory-backed

recommendations for the choice of S can be found in Fearnhead and Prangle (2012)

and Prangle (2015). More radically, Bernton et al. (2017) bypass the need to select the

statistic S by computing the Wasserstein distance between the empirical distributions

of the observed and synthetic data.

In the absence of information about the model parameters, the prior and posterior

distributions may have non-overlapping regions with significant mass. Hence, parameter

values that are drawn from the prior, as in S1, will be rarely retained. Recognizing this,

Marjoram et al. (2003) proposed an ABC-MCMC algorithm which relies on building

a Metropolis-Hastings (MH) transition kernel, with state space {(θ,y) ∈ Rq × X n},
proposal distribution at iteration t, q(θ|θt)× f(y|θ), and target

πε(θ,y|y0) ∝ p(θ)f(y|θ)1{d(S(y),S(y0))<ε} (9)

for which (3) can be computed exactly, because the intractable terms involving the

likelihood, f(y|θ), cancel out. There are a few alternatives to Marjoram’s sampler,

motivated by low acceptance probabilities for small values of ε. For instance, Lee

et al. (2012) approximates P (d(S(y), S(y0)) < ε|θ) via one of its unbiased estimators,

J−1
∑J

j=1 1{d(S(yj),S(y0))<ε} where J ≥ 1 and each yj is independently simulated from

f(y|θ). Clearly, when the probability P (d(S(y), S(y0)) < ε|θ) is small, this method

requires a large number of pseudo-data sets y. Other MCMC designs suitable for ABC

can be found in Bornn et al. (2014). Sequential Monte Carlo (SMC) samplers have also

been successfully used for ABC (Sisson et al., 2007; Lee, 2012; Filippi et al., 2013) and

rely on a user-specified decreasing sequence ε0 > · · · > εJ . A comprehensive coverage of

ABC-related theory and computational techniques can be found in Sisson et al. (2018b)

and references therein.

An alternative approach to bypass the intractability of the sampling distribution

is proposed by Wood (2010). His approach is based on the working assumption that

the conditional distribution for a user-defined statistic S(y) given θ is Gaussian with

mean µθ and covariance matrix Σθ. The Synthetic Likelihood (SL) procedure assigns to

each θ the likelihood SL(θ) = N (s0;µθ,Σθ), where s0 = S(y0) and N (x;µ,Σ) denotes

the density of a normal with mean µ and covariance Σ. SL can be used for maximum

likelihood estimation as in Wood (2010) or within the Bayesian paradigm as proposed

by Drovandi et al. (2018) and Price et al. (2018). The latter work proposes to sample the
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approximate posterior generated by the Bayesian Synthetic Likelihood (BSL) approach,

π(θ|s0) ∝ p(θ)N (s0;µθ,Σθ), using a MH sampler. Direct calculation of the acceptance

probability is not possible because the conditional mean and covariance are unknown

for any θ. However, both can be estimated based on m statistics (s1, · · · , sm) sampled

from their conditional distribution given θ. More precisely, after simulating yi ∼ f(y|θ)
and setting si = S(yi), i = 1, · · · ,m, one can estimate

µ̂θ =

∑m
i=1 si
m

,

Σ̂θ =

∑m
i=1(si − µ̂θ)(si − µ̂θ)T

m− 1
,

(10)

so that the synthetic likelihood is

SL(θ|y0) = N (S(y0); µ̂θ, Σ̂θ). (11)

A MH algorithm designed to sample from the posterior πSL(θ|y0) ∝ p(θ)SL(θ|y0)

will require a proposal distribution q(θ′|θ). At step t the underlying Monte Carlo chain

is updated using:

SL1 Sample proposal θ ∼ q(θ|θt)

SL2 Sample y1, . . . ,ym
iid∼ f(y|θ′) and compute µθ′ and Σθ′ as in (10) to obtain

SL(θ′|y0)

SL3 Set θt+1 = θ′ with probability αt = min
{

1, q(θt|θ
′)πSL(θ′|y0)

q(θ′|θt)πSL(θt|y0)

}
, and θt+1 = θt other-

wise.

Running MCMC samplers for either ABC or BSL involves generating multiple

pseudo-samples and can become extremely costly in situations in which data is high-

dimensional and very large or expensive to generate, like in the hurricane path or climate

change examples. Anticipating that complex models are usually motivated by big data,

Levi and Craiu (2021) propose strategies to minimize the number of pseudo-data sim-

ulations. To this end, when computing the MH acceptance ratios, they recommend to

reuse some of the proposals (θ,y) from the chain’s history. This modification of the

chain’s kernel reduces computation time by orders of magnitude but produces a per-

turbation of the target distribution. Their theoretical developments demonstrate that

the error can be controlled in the case of independent Metropolis samplers.
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3.4 Conclusion

The challenges posed to Bayesian computation are important and require significant

reframing of classical methods. We have discussed here a number of methods that are

addressing mainly two type of challenges: big data and intractable likelihoods. The

two challenges cannot always be neatly separated and, in fact, I do expect to increas-

ingly face problems that combine the two. My discussion has not included important

classes of approximation for Bayesian inference that eliminate the need for Monte Carlo

sampling altogether, e.g. variational Bayes (Blei et al., 2017b) or INLA (Rue et al.,

2017) (both also mentioned in Section 2). While these methods can be extremely effi-

cient in certain models or when aimed at particular applications, they lack the level of

generality exhibited by the methods discussed so far.

Clearly, our efforts to expand the toolbox for Bayesian computation in the modern

era are just revving up. Much remains to be done, from devising new conceptual ideas

to efficient and automatic implementations. I will urge those willing to participate in

this adventure to be more accepting of the idea that approximations are unavoidable

when dealing with challenges like the ones I described here, but to also keep in mind

that the errors incurred must be theoretically controllable and practically controlled

under the scenarios of interest.

4 BAYES IN THE TIME OF COVID (PG)

In contemplating the direction of my contribution to this article, I considered looking

back, to comment on the evolution of Bayesian analysis over recent decades. And I

pondered looking forward, to speculate on where this field might be headed. In the

end, however, I decided to instead hone in on the present. Frighteningly, the global

pandemic has upended society. Interestingly, Bayesian methods have played useful roles

within the scientific response to the pandemic. I briefly describe several of these roles,

drawing on some work I have been involved in, and some work of others.

4.1 Uncertainty arising in diagnostic testing

Most diagnostic tests used in medicine are imperfect. At least qualitatively, it is well

known that false positive and false negative tests results can occur. Quantitatively, epi-

demiologists and statisticians strive to react appropriately to this reality. In typical-use

settings, a diagnostic test is evaluated methodically before widespread use, such that

the manufacturer states the test’s performance characteristics as part of the “package

insert.” This would be expressed as values for sensitivity and specificity, the chance a
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correct test result ensues, for a true positive and and a true negative subject, respec-

tively.

At the start of the pandemic, diagnostic tests for COVID-19 were developed, and

widely deployed, with amazing haste. For instance, in the case of PCR testing of

nasopharyngeal swabs to diagnose current infection, Canadian provinces started posting

daily reports on their case-finding efforts around the beginning of February 2020. Soon

after, the first serological tests for prior infection were being used in scientific studies (so-

called “sero-surveys”) by April 2020. In both cases, and because of the necessary haste,

testing data were being collected and analyzed with less than typical understanding of

the diagnostic test performance. Thus efforts were made to acknowledge the uncertainty

in the performance characteristics, a task for which Bayesian methods are well, if not

singularly, suited.

To start with the PCR test, Burstyn et al. (2020) presented an early instance of

an analysis acknowledging test imperfection. (The first version of the manuscript was

posted to medrxiv.org on April 11, 2020.) They showed adjusted epidemic curves

for both the province of Alberta and the city of Philadelphia, for March 2020. More

technically, they gave Bayesian point and interval estimates for the daily number of true

positives amongst those receiving a test, as distinct from the daily number of reported

positives.

In formulating this Bayesian model, an important design choice was to let the un-

known test sensitivity vary by day, whereas the unknown test specificity was presumed

static. To exemplify matching the prior specification to the scientific context at hand,

I elaborate on this point, with both Burstyn et al. (2020) and Günther et al. (2021)

having pertinent discussion. It is well understood that the PCR technology has effec-

tively perfect “technical” sensitivity, i.e., virtually any small amount of live virus on

the swab will light up the machine. The swabbing, however, is the weak link. Even a

swab done by a highly-trained health practitioner may not capture any virus particles,

if the (truly infected) test subject has low virus levels in the nasal cavity. Consequently,

the effective sensitivity will be lower amongst recently infected individuals, compared

to those with more established infections. Extrapolating further, when testing a largely

asymptomatic population, true positives therein will tend to be recently infected, hence

sensitivity will be lower. But if only those with respiratory symptoms are eligible for

a test, then the true positives therein will tend to have more established infections,

resulting in a higher sensitivity. In fact then, it is not reasonable to expect a globally

valid package-insert value for test sensitivity, since the nature of the population being

tested is critical. Moreover, particularly early in the pandemic, there were temporal

changes in eligibility for a test (based on level of symptoms say), due to kit availability,

lab capacity, and other considerations. Hence a prior specification allowing a smooth
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change in test sensitivity over time was an important ingredient in the analysis.

Turning now to testing for prior infection, a link to (a lack of) Bayesian analysis and

controversy in both scientific and lay circles arose in mid-April 2020, with an early sero-

survey conducted in Santa Clara, California. The initial preprint version of Bendavid

et al. (2021) attracted much attention and criticism. One area of concern was as follows.

In brief, and in the abstract, consider a diagnostic test for an infection that is rare in

the study population. And say package-insert values of test sensitivity and specificity,

S̃n and S̃p, are inputs to an analysis inferring population prevalence of ever-infection

from a sample. If the infection is truly quite rare then, even if S̃p is very close to one,

the estimated prevalence can vary strongly under a small perturbation to S̃p. Coupled

with the urgent need to role out tests and studies at warp-speed, so that “validation

studies” to determine diagnostic test properties were based on relatively few (known

negative and known positive) test specimens, a problem ensued.

Gelman and Carpenter (2020) reviewed this challenging situation and provided a

careful Bayesian analysis acknowledging the uncertainty in test specificity (and sensitiv-

ity). They demonstrated much greater a posteriori uncertainty about the ever-infected

proportion in the study population, relative to the initial version of Bendavid et al.

(2021). They also illustrated other modelling features that can be brought to bear

quite simply in the Bayesian framework. Of note, they showed how a hierarchical

Bayesian analysis can incorporate multiple validation studies, each of which involves

similar, but not identical, test characteristics.

4.2 Uncertainty arising from unknown testing patterns

Early in the pandemic, it was particularly challenging to learn infection rates, and

consequently infection fatality rates. Even in jurisdictions able to enumerate deaths

due to COVID-19 infection relatively well, there were probably many undiagnosed

infections. In terms of the infection fatality rate then, the numerator could be estimated

reliably. However, particularly prior to the availability of serological tests for past

infection, reasonable estimation of the denominator was challenging.

Wu et al. (2020) presented a Bayesian analysis targeting the total number of in-

fections in the U.S., up to mid-April 2020. As part of their modelling of state-level

testing data, they built a defensible prior distribution describing relationships between

the severity of respiratory symptoms and the likelihood of being tested. Secondarily,

and in common with Gelman and Carpenter (2020), they also use a prior distribution

to adjust for the imperfect diagnostic test.

The principal finding of Wu et al. (2020) is that the total number of cases was

likely between 3 and 20 times greater than the number diagnosed. Of course this is a
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very wide credible interval. However, this width is appropriate, given the information

available at the time. In common with Gelman and Carpenter (2020), a thoughtful

Bayesian analysis of the available information did not yield a sharp answer. This is a

feature though, not a bug. The principled propagation of uncertainty afforded by Bayes

theorem implies that a sharper inference would not be justified.

In a related vein, Campbell et al. (2021) developed a Bayesian model admitting

both surveillance data (those tested for current infection choose to be tested, within

the confines and recommendations of public health surveillance at the time and place

in question) and sero-survey data (a random sample from the target time and place are

tested for ever-infection). The surveillance data are handled by modelling the associa-

tion between infection status and testing status, via an unknown parameter describing

the extent to which the testing is “preferential” (i.e., honing in on those infected) rather

than random. A hierarchical prior distribution is ascribed to these jurisdiction-specific

preferential testing parameters. Applying this methodology within the confines of an

evidence synthesis for European countries in Spring 2020, the infection fatality rate is

estimated by a posterior median of 0.53%, with an accompanying 95% credible interval

of (0.39%, 0.69%). This inference is quite compatible with other estimates targeting

European settings at about the same point in the pandemic, but using different data

sources and methods.

4.3 Just turn the Bayesian crank, or understand it as well?

In the examples alluded to above, Bayesian inference can be “plug-and-play.” Once

the heavy lifting is done on making defensible model and prior assertions, these can

be encoded in a Bayesian software package (see Section 5). Then, upon presentation

of data, posterior inference ensues. Scientifically, this can be the end of the narrative

arc. One has general assurance that reported estimates and posterior uncertainties have

been arrived at in a principled way, based on the combined information content of the

data and the supplied model and prior assertions.

As a specific example of ending the narrative, in Burstyn et al. (2020) as mentioned

above, the posterior distribution of (time-varying) sensitivity and (static) specificity

of the diagnostic test was one of the analysis outputs. Focusing on the Alberta data,

the posterior distribution of test sensitivity is very similar to the prior distribution,

i.e., the data do not provide additional information about the false negative rate. On

the other hand, and perhaps curiously, the posterior distribution of specificity is far

more concentrated than the prior distribution. The former concentrates above 99.5%

specificity with mode at 100%, despite the prior distribution being uniform between

95% and 100%. The data are quite certain that the specificity is very close to perfect.
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An applied user can simply stop here and take this away as useful knowledge (or not so

useful, in the case of the finding for sensitivity). However, the mathematical scientist

will naturally ask: why are the findings such?

It turns out that the explanation for the above findings arises from consideration

of the partial identification that underlies the Bayesian model. The concept of partial

identification is long-studied, primarily through a frequentist lens, and often with an

econometrics slant. Manski (2003) is a well-known reference. More recently, I have

attempted to give a somewhat thorough Bayesian treatment of the topic (Gustafson,

2015). At essence, in lower information content settings, such as those described above,

not all the parameters are uniquely determined by the law of the observable data.

However, those not uniquely determined may be subject to inequalities in terms of

those which are. By elucidating these inequalities, one can understand directly how the

Alberta data say so little about the test sensitivity, and so much about the specificity.

As it happens, such understanding of what lurks behind the crank is also considered

in Campbell et al. (2021). Tucked away in a supplement is a mathematical elucidation

of the partial identification structure applicable to the surveillance data part of the

model. (The sero-survey component is much simpler, with those tested presumed to

be a random sample from the population.) Again by elucidating inequalities in the

parameter space, one sees that, depending on the configuration of infection rates and

extents of preferential sampling across jurisdictions, the surveillance data will contribute

less or more to inference about the infection fatality rate. We can go beyond simply

taking the posterior distribution as a fait accompli.

4.4 Looking ahead

Even before the onset of the pandemic, the role of statistical modelling and inference

in improving the human condition was, arguably, on the upswing. As we all fervently

wish for the pandemic to appear in the rear-view mirror, it seems likely that recent

experiences will expedite this trend further. Due in large part to computational ad-

vances, the Bayesian toolbox proved itself to be at the ready, as part of the pandemic

response. This success should spur efforts to refine the toolbox further, and to apply it

more widely, in the years to come.

5 Discussion

To conclude this article, we briefly comment on the relationship between algorithms

(the focus of Sections 2 and 3) and applications (the focus of Section 4). Clearly, the

former enable the latter. That said, it is interesting to note how the enabling works.
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There are longstanding efforts to build software permitting users to compute posterior

quantities, without having to be experts in the algorithms. While perhaps we aren’t

fully there yet, the ideal is that an applied user need just declare model and prior

specifications, input the data, and press the “compute posterior” button.

By no means do we attempt to mention all software for Bayesian inference here.

We note though that the BUGS (Bayesian inference using Gibbs sampling) software

package (Gilks et al., 1994; Lunn et al., 2000, 2009) and its continuation (roughly speak-

ing) the JAGS (Just Another Gibbs Sampler) software package (https://mcmc-jags.

sourceforge.io, Plummer et al. (2003)) represent three decades of evolution, with

algorithmic developments improving the software performance along the way.

More recently, specific algorithmic developments have spawned new software. The

Stan software package (Carpenter et al., 2017), which has seen extremely rapid adoption

in applied work, implements Hamiltonian Monte Carlo algorithms (see Hoffman et al.

(2014) and the many references therein). And even more recently, the Blang software

package (Bouchard-Côté et al., 2019) uses implementations based on recent research in

both sequential Monte Carlo algorithms and non-reversible MCMC methods. Happily,

the path proceeding from algorithmic research to software implementation to scientific

applications is one marked by continual upgrades!
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A. Bouchard-Côté, K. Chern, D. Cubranic, S. Hosseini, J. Hume, M. Lepur, Z. Ouyang,

and G. Sgarbi. Blang: Bayesian declarative modelling of arbitrary data structures.

arXiv preprint arXiv:1912.10396, 2019.

S. Brooks, A. Gelman, G. Jones, and X.-L. Meng. Handbook of Markov chain Monte

Carlo. CRC press, 2011.

I. Burstyn, N. D. Goldstein, and P. Gustafson. Towards reduction in bias in epidemic

curves due to outcome misclassification through bayesian analysis of time-series of

laboratory test results: Case study of covid-19 in alberta, canada and philadelphia,

usa. BMC Medical Research Methodology, 20:1–10, 2020.

H. Campbell, P. de Valpine, L. Maxwell, V. M. de Jong, T. Debray, T. Jänisch, and

P. Gustafson. Bayesian adjustment for preferential testing in estimating the covid-19

infection fatality rate. Annals of Applied Statistics, 2021.

B. Carpenter, A. Gelman, M. D. Hoffman, D. Lee, B. Goodrich, M. Betancourt,

M. Brubaker, J. Guo, P. Li, and A. Riddell. Stan: A probabilistic programming

language. Journal of statistical software, 76(1):1–32, 2017.

W. Changye and C. P. Robert. Parallelising mcmc via random forests. arXiv preprint

arXiv:1911.09698, 2019.

S. A. Cook. The complexity of theorem-proving procedures. In Proceedings of the third

annual ACM symposium on Theory of computing, pages 151–158. ACM, 1971.

17



T. Cui, L. Peeters, D. Pagendam, T. Pickett, H. Jin, R. S. Crosbie, M. Raiber, D. W.

Rassam, and M. Gilfedder. Emulator-enabled approximate bayesian computation

(abc) and uncertainty analysis for computationally expensive groundwater models.

Journal of hydrology, 564:191–207, 2018.

C. C. Drovandi. Abc and indirect inference. In Handbook of Approximate Bayesian

Computation, pages 179–209. Chapman and Hall/CRC, 2018.

C. C. Drovandi, C. Grazian, K. Mengersen, and C. Robert. Approximating the like-

lihood in abc. In Handbook of Approximate Bayesian Computation, pages 321–368.

Chapman and Hall/CRC, 2018.

R. Entezari, R. V. Craiu, and J. S. Rosenthal. Likelihood inflating sampling algorithm.

Canadian Journal of Statistics, 46(1):147–175, 2018.

P. Fearnhead and D. Prangle. Constructing summary statistics for approximate

bayesian computation: semi-automatic approximate bayesian computation. Journal

of the Royal Statistical Society: Series B (Statistical Methodology), 74(3):419–474,

2012.

S. Filippi, C. P. Barnes, J. Cornebise, and M. P. Stumpf. On optimality of kernels for

approximate bayesian computation using sequential monte carlo. Statistical applica-

tions in genetics and molecular biology, 12(1):87–107, 2013.

A. Gelman and B. Carpenter. Bayesian analysis of tests with unknown specificity and

sensitivity. Journal of the Royal Statistical Society: Series C (Applied Statistics), 69

(5):1269–1283, 2020.

A. Gelman and D. B. Rubin. Inference from iterative simulation using multiple se-

quences. Statistical Science, pages 457–472, 1992.

W. R. Gilks, A. Thomas, and D. J. Spiegelhalter. A language and program for com-

plex bayesian modelling. Journal of the Royal Statistical Society: Series D (The

Statistician), 43(1):169–177, 1994.
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