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Abstract

We investigate lower bounds on the subgeometric convergence of adaptive Markov

chain Monte Carlo under any adaptation strategy. In particular, we prove general

lower bounds in total variation and on the weak convergence rate under general adap-

tation plans. If the adaptation diminishes sufficiently fast, we also develop comparable

convergence rate upper bounds that are capable of approximately matching the con-

vergence rate in the subgeometric lower bound. These results provide insight into

the optimal design of adaptation strategies and also limitations on the convergence

behavior of adaptive Markov chain Monte Carlo. Applications to an adaptive unad-

justed Langevin algorithm as well as adaptive Metropolis-Hastings with independent

proposals and random-walk proposals are explored.
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1 Introduction

Let π be a Borel probability measure on a Polish space X . Adaptive Markov chain Monte

Carlo [Haario et al., 2001, Roberts and Rosenthal, 2007] is a widely successful framework to

simulate realizations from π when optimal tuning parameters for the Markov chain are not

readily available. The adaptive process (Γt, Xt)
∞
t=1 is constructed from a family of Markov

kernels indexed by a set of potential tuning parameters. The discrete-time adaptive process

first updates the tuning parameter Γt|(Γs, Xs)0≤s≤t−1 with an adaptation strategy utiliz-

ing previous history and next, updates Xt|Γt, Xt−1 using a Markov transition kernel. The

goal is for the adaptive process to “learn” optimal tuning parameters so that the marginal

distribution of the random variable Xt produces a close approximation to the measure π.

With a large option for adaptation strategies, theoretical convergence rates of adaptive

algorithms are less understood than for non-adaptive Markov chain Monte Carlo (MCMC)

where fixed tuning parameters are chosen carefully beforehand. In particular, a theoretical

understanding of the rate of convergence is essential in applications as it helps to ensure

a stable and reliable Monte Carlo simulation. However, adaptive MCMC can exhibit em-

pirical performance superseding the performance of standard MCMC even though much of

the theoretical understanding is lacking. For example, adaptive MCMC is widely used to

automatically learn the covariance in random-walk Metropolis-Hastings [Haario et al., 2001],

which is often difficult or impossible to choose optimally with only fixed tuning parameter

choices.

The main contributions of this paper develop general subgeometric lower bounds in total

variation and the weak convergence rate of adaptive MCMC paired with upper bounds under

strong conditions on the rate at which adaptation diminishes. Applications of the theory

are demonstrated on an adaptive unadjusted Langevin algorithm, Metropolis-Hastings in-

dependence sampler, and an adaptive Metropolis-Hastings random-walk. The lower bounds

for convergence hold under arbitrary adaptation plans and serve as a measurement of the

optimal convergence behavior for adaptive MCMC. The techniques for obtaining these lower
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bounds are based on finding large discrepancies between the tail probabilities of the marginal

adaptive process and the target measure π. Since the convergence rate is determined by tail

properties, this may guide further theoretical understanding of some modern adaptation

strategies that restrict adaptation to compact sets [Pompe et al., 2020]. Convergence rate

lower bounds can also be of practical use in applications to determine if an appropriate rate

is achievable so that central limit theorems may hold [Andrieu and Moulines, 2006, Laitinen

and Vihola, 2024].

One barrier in developing lower bounds for adaptive MCMC is due to the non-Markovian,

non-reversible nature of these processes and spectral analysis for reversible Markov processes

is not directly available. To the best of our knowledge, the lower bounds for weak convergence

developed here are novel, even when applied to non-adapted Markov chains, and general total

variation lower bounds have not yet been explored for adaptive MCMC. In specific situations,

adaptive random-walk algorithms have been shown to improve “local” behavior but fail to

adapt to “global” properties of the target measure, such as the tail probabilities, and proven

to experience poor convergence properties [Schmidler and Woodard, 2011]. Related research

develops general lower bounds in total variation for Markov processes [Hairer, 2009, Theorem

3.6, Corollary 3.7]. More recently, this technique has also been extended to polynomial

rate lower bounds in unbounded Wasserstein distances for some Markov processes [Sandrić

et al., 2022, Theorem 1.2]. When the tail decay of the target measure is unavailable, lower

bounds for Markov processes in total variation have recently been developed, but a precise

computation of the constants is not available [Brešar and Mijatović, 2024].

In addition to lower bounds, we develop explicit quantitative subgeometric upper bounds

in total variation that can match the lower bound rate if the adaptation diminishes sufficiently

fast. The condition required on the adaptation is similar to the well-known diminishing adap-

tation condition [Roberts and Rosenthal, 2007] often used for the asymptotic convergence of

adaptive MCMC. To the best of our knowledge, this is the first subgeometric upper bound

to quantify the mixing for adaptive MCMC in total variation. In comparison, existing con-
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vergence results require strong assumptions for adaptive MCMC and are not quantitative

[Andrieu and Moulines, 2006] or develop central limit theorems through Poisson’s equation

[Laitinen and Vihola, 2024].

The organization of this article is as follows. Section 2 first develops lower bounds in

total variation for large classes of adaptation strategies and then extends these lower bounds

to weak convergence when the state space is Euclidean. A lower bound is shown on a con-

crete example for the adapted unadjusted Langevin algorithm. Section 3 proves comparable

upper bounds under diminishing conditions on the adaptation plans that are capable of ap-

proximately matching the lower bound rates. Section 4 illustrates the lower bounds on a

toy example with an adaptive Metropolis-Hastings independence sampler, and Section 5 ap-

plies the lower bounds to the popular adaptive random-walk Metropolis-Hastings. Section 6

provides a final discussion on the results and future research directions.

2 Lower bounds on the convergence of adaptive MCMC

For two Borel probability measures µ, ν on X , let C(µ, ν) be the set of all couplings consisting

of Borel probability measures on X × X satisfying Γ(· × X ) = µ and Γ(X × ·) = ν. Denote

then the total variation distance between µ and ν as the best probability of the off-diagonal

over all possible couplings, that is,

∥µ− ν∥TV = inf
ξ∈C(µ,ν)

ξ({(x, y) ∈ X × X : x ̸= y}).

Denote the min and max of a, b ∈ R by a∧ b and a∨ b respectively. On a Polish space (X , d)

where d : X ×X → [0,∞) is a metric, we denote the Wasserstein distance that metrizes the

weak convergence of probability measures [Dudley, 2018, Theorem 11.3.3]

Wd∧1(µ, ν) = inf
ξ∈C(µ,ν)

∫
X×X

[d(x, y) ∧ 1] ξ(dx, dy).
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Let X be a Polish space and Y be a Borel measurable space equipped with their Borel

sigma-algebras B(X ) and B(Y) respectively where X is the state space and Y is the space

for tuning parameters. We now define the adaptive process (Γt, Xt)
∞
t=0 on Y × X using the

filtration Ht = B(Γs, Xs, 0 ≤ s ≤ t). Let Q define an adaptation plan which denotes the

map t 7→ Qt for all t ∈ Z+ where Qt : (Y ×X )t×B(Y) → [0, 1] is a Borel probability kernel.

The kernels Qt act on Borel functions g : Y → R and Borel measures ν on (Y × X )t with

(Qtg)(γ0, x0, . . . , γt−1, xt−1) =

∫
X
g(γt)Qt(γ0, x0, . . . , γt−1, xt−1, dγt)

(νQt)(·) =
∫
X
Qt(γ0, x0, . . . , γt−1, xt−1, ·)ν(dγ0, dx0, . . . , dγt−1, dxt−1)

for all t ∈ Z+ and γ0, x0, . . . , γt−1, xt−1 ∈ (Y × X )t. Initialized at fixed x0, γ0 ∈ X × Y , the

discrete-time adaptive process first updates the tuning parameter

Γt|(Γs, Xs)0≤s≤t−1 ∼ Qt((Γs, Xs)0≤s≤t−1, ·)

using an adaptation plan. Let (Pγ)γ∈Y be a family of Borel Markov kernels where Pγ :

X × B(X ) → [0, 1] for each γ ∈ Y and for each x ∈ X , γ 7→ Pγ(x, ·) is Borel measurable.

The Markov family acts on Borel functions f : X → R and Borel measures µ on X with

(Pγf)(x) =

∫
X
f(y)Pγ(x, dy) (µPγ)(·) =

∫
X
Pγ(x, ·)µ(dx)

for all x, γ ∈ X × Y . The process then updates the state space given the updated tuning

parameters

Xt|Γt, Xt−1 ∼ PΓt(Xt−1, ·)

using the Markov kernel.

Let S(X ,Y) denote the set of all possible adaptation plans Q that define the Borel

kernels Qt updating the tuning parameters at every iteration time t. For a chosen adaptive
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strategy Q ∈ S(X ,Y), we denote the marginal of the adaptive process at iteration time t by

Xt ∼ A(t)
Q ((γ0, x0), ·). We will develop conditions to lower bound the the total variation over

all feasible adaptation strategies, that is, to lower bound

inf
Q∈S(X ,Y)

∥∥∥A(t)
Q (γ0, x0, ·)− π

∥∥∥
TV

for t ∈ Z+.

The main tool will be a function prescribing a subgeometric rate defined implicitly as an

inverse which we now define. For concave functions φ : (0,∞) → (0,∞) and w0 ∈ [1,∞),

define

Hw0,φ(w) =

∫ w

w0

dv

φ(v)
(1)

for all w ≥ w0. The assumptions on φ imply it is non-decreasing and Hw0,φ(·) is strictly

increasing as well as the inverse H−1
w0,φ

(·) exists. Depending on the form of φ, the inverse

function H−1
w0,φ

(·) defines a polynomial, subgeometric, or geometric function increasing to

infinity.

The first lower bound in total variation uses a technique extended from [Hairer, 2009,

Corollary 3.7] to adaptive MCMC over all adaptive strategies.

Theorem 1. Assume there is a Borel function W : X → [1,∞) and constants C, κ > 0

where

π(W ≥ r) ≥ Cr−κ (2)

holds for all r > 0 and there is an α > κ and a concave function φ : (0,∞) → (0,∞) such

that

(PγW
α)(x)−W (x)α ≤ φ(W (x)α) (3)
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holds for all x, γ ∈ X × Y. Then for all t ∈ Z+,

inf
Q∈S(X ,Y)

∥∥∥A(t)
Q (γ0, x0, ·)− π

∥∥∥
TV

≥ M(
H−1

W (x0)α,φ
(t)
) κ

α−κ

where

M = C
α

α−κ

[
(κ/α)

κ
α−κ − (κ/α)

α
α−κ

]
. (4)

Proof. Let V (x) = Wα(x), and let t ∈ Z+, so then we have

E (V (Xt+1)|Ht)− V (Xt) ≤ φ(Xt).

Since E [V (X1)]− V (x0) ≤ φ(V (x0)), then assume by induction for all k ≤ t, E [V (Xk+1)]−

E[V (Xk)] ≤ φ(E[V (Xk]) and E[V (Xk)] < ∞. By the induction hypothesis and Jensen’s

inequality,

E [V (Xt+1)]− E [V (Xt)] = E [E (V (Xt+1)|Ht)− V (Xt)]

≤ E [φ[V (Xt)]]

≤ φ[E (V (Xt)]. (5)

The inverse function theorem implies the derivative

d

ds
H−1

V (x0),φ
(s) = φ(H−1

V (x0),φ
(s)).

Since H−1
V (x0),φ

(0) ≥ V (x0), assume by induction H−1
V (x0),φ

(k) ≥ E[V (Xk)] for all k ≤ t. Since
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φ is non-decreasing, the fundamental theorem of calculus, and (5),

H−1
V (x0),φ

(t+ 1) = H−1
V (x0),φ

(t) +

∫ t+1

t

φ(H−1
V (x0),φ

(s))ds ≥ H−1
V (x0),φ

(t) + φ(H−1
V (x0),φ

(t))

≥ E [V (Xt)] + φ(E [V (Xt)])

≥ E [V (Xt+1)] .

By Markov’s inequality,

P(W (Xt) ≥ r) ≤ E [W (Xt)
α]

rα
≤
H−1

W (x0)α,φ
(t)

rα
.

Optimizing r gives the lower bound

∥∥A(t)(γ0, x0, ·)− π
∥∥
TV

≥ π(W ≥ r)− P(W (Xt) ≥ r) ≥ C

rκ
−
H−1

W (x0)α,φ
(t)

rα

≥ M(
H−1

W (x0)α,φ
(t)
) κ

α−κ

.

Assumption (3) of Theorem 1 requires the Markov family (Pγ)γ∈Y to satisfy a simulta-

neous growth condition for some concave function φ. We look at some concrete examples

of concave functions that lead to common subgeometric convergence rates that have been

explored previously for upper bounds [Douc et al., 2004].

Example 2. (Polynomial lower bounds) Assume (2) holds with constants C > 0 and κ = 1

and additionally, (3) holds with function W (·), α = 2, and φ(w) = cwβ for some con-

stants c > 0 and β ∈ (0, 1). Then a straight forward calculation gives H−1
W (x0)2,φ

(t) =(
(1− β)ct+W (x0)

2(1−β)
) 1

1−β and Theorem 1 implies for all t ∈ Z+,

inf
Q∈S(X ,Y)

∥∥∥A(t)
Q (γ0, x0, ·)− π

∥∥∥
TV

≥ C2

4 ((1− β)ct+W (x0)2(1−β))
1

1−β

.
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Example 3. (Subgeometric lower bounds) If (2) holds with constants C > 0 and κ = 1 and

(3) holds with W (·), α = 2, and φ(x) = c(x +Kβ)/ log(x +Kβ)
β where Kβ = exp(β + 1),

then

H−1
W (x0)2,φ

(t) ≤ (W (x0)
2 +Kβ) exp

(
(1 + β)ct

1
1+β

)
.

By Theorem 1, then for all t ∈ Z+

inf
Q∈S(X ,Y)

∥∥∥A(t)
Q (γ0, x0, ·)− π

∥∥∥
TV

≥ C2

4(W (x0)2 +Kβ)
exp

(
−(1 + β)ct

1
1+β

)
.

Now we obtain a matching weak lower bound rate under essentially the same conditions

as total variation in Euclidean spaces. Let ∥·∥ denote the Euclidean norm.

Theorem 4. Let X = Rd for d ∈ Z+. Assume (2) holds with C, κ and (3) holds with W (·),

and α, and let M be defined as in (4). Assume for each r > 0, the sets {x ∈ Rd : W (x) ≤ r}

are compact. Then for any ϵ ∈ (0, 1),

inf
Q∈S(X ,Y)

inf
ξ∈C

[
A(t)

Q (γ0,x0,·),π
] ξ({x, y ∈ X × X : ∥x− y∥ > δϵ}) ≥

(1− ϵ)M

H−1
W (x0)α,φ

(t)
κ

α−κ

holds for some δϵ ∈ (0, 1) and all t ≥ HW (x0)α,φ (κC(1− ϵ)α/α). In particular,

inf
Q∈S(X ,Y)

W∥·∥∧1
(
A(t)

Q (γ0, x0, ·), π
)
≥ δϵ(1− ϵ)M

H−1
W (x0)α,φ

(t)
κ

α−κ

.

Proof. Let r ≥ 1 and let T = {x ∈ X : W (x) ≥ r}. Since W is continuous, then T is closed

and by Strassen’s theorem ([Strassen, 1965] and [Villani, 2003, Corollary 1.28]), then for any

δ > 0,

inf
ξ∈C

[
A(t)

Q (γ0,x0,·),π
] ξ({x, y ∈ X × X : ∥x− y∥ > δ}) ≥ π(T )−A(t)

Q (γ0, x0, T
δ)

where T δ = {y ∈ Rd : dist(y, T ) ≤ δ} and dist(y, T ) = infx∈T ∥x− y∥. Thus, we will find
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W ≥ rW ≥ (1− ϵ)r

A(t)
Q (γ0, x0, ·)

π

Figure 1: The diagram illustrates intuition for a discrepancy between the set {W ≥ r} for
the adaptive process and the target measure and also {W ≥ (1− ϵ)r} for small ϵ.

a discrepancy between π ({W ≥ r}) and A(t)
Q (γ0, x0, {W ≥ (1− ϵ)r}) for small ϵ and the

intuition is illustrated in Figure 1.

Let ∂A = cl(A) \ int(A) denote the boundary of a set A where cl is the closure and

int is the interior. Since Rd is convex, we have that d(x, T ) = d(x, ∂T ) (see Lemma 20).

Since K = {x ∈ Rd : W (x) ≤ r} is compact, then W is uniformly continuous on K. For

ϵ ∈ (0, 1), we can then choose δϵ depending on ϵ sufficiently small so that W (x) ≥ (1 − ϵ)r

if dist(x, T ) ≤ δϵ and so

P(Xt ∈ T δϵ) ≤ P(W (Xt) ≥ (1− ϵ)r).

Markov’s inequality and (3) imply that

P(W (Xt) ≥ (1− ϵ)r) ≤ E [Wα(Xt)]

(1− ϵ)αrα
≤
H−1

W (x0)α,φ
(t)

(1− ϵ)αrα
.
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Optimizing, we get for t large enough so that

r =

(
α

κC(1− ϵ)α
H−1

W (x0)α,φ
(t)

) 1
α−κ

≥ 1

and this yields the lower bound

δ−1
ϵ W∥·∥∧1

(
A(t)

Q (γ0, x0, ·), π
)
≥ inf

ξ∈C
[
A(t)

Q (γ0,x0,·),π
] ξ({x, y : ∥x− y∥ > δϵ})

≥ C

rκ
−
H−1

W (x0)α,φ
(t)

(1− ϵ)αrα
.

≥ (1− ϵ)
ακ
α−κ

M

H−1
W (x0)α,φ

(t)
κ

α−κ

where M is defined by (4). The conclusion follows since ϵ is arbitrary.

An interpretation of Theorem 4 is the best possible rate of convergence for adaptive

MCMC satisfying (3) for target measure satisfying (2). The conclusion of Theorem 4 can

also be extended to general path-connected state spaces X . The mild assumption of compact

level sets for the functionW often holds in many applications. However, there is a significant

drawback to the Wasserstein lower bound being the constant is non-explicit compared to the

explicit lower bound in total variation.

What is surprising about the lower bounds in this section is the requirement only on

the Markov family (Pγ)γ∈Y to satisfy (3) and does not directly depend on an adaptation

strategy. For example, it is common scenario in adaptive MCMC for the parameters space Y

to be compact. In this case, the simultaneous growth condition (3) often holds if a Markov

kernel satisfies some mild regularity conditions and (3) holds with only fixed parameters.

Example 5. (Adaptive Unadjusted Langevin algorithm) Consider the multivariate Student’s

t-distribution π on Rd with d ≥ 1 and v > 0 degrees of freedom. The Lebesgue density is

defined by

Dπ(x) =
(v + d)/2

Γ(v/2)(vπ)d/2
exp(−U(x))
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where U(x) = v+d
2

log(1 + ∥x∥2). The adapted unadjusted Langevin process (Γt, Xt)t≥0 on

(0, 1)× Rd defined by

Xt+1 = Xt − Γt+1∇U(x) +
√

2Γt+1Zt+1

where Γt+1 ∈ (0, 1) and Zt+1 is an independent standard normal random vector. Subgeometric

drift conditions have been shown for unadjusted Langevin in the non-adaptive case for heavy

tailed target measures [Kamatani, 2009].

Let α > 0 and W (x) = (1+ ∥x∥2)(v+d)/2. By Ito’s formula, for large enough ∥x∥, there is

a constant ϵ > 0 such that the second term is bounded using the moment generating function

of non-central chi-square random variables by

E [Wα(Xt+1)|Γt+1 = γ,Xt = x]−Wα(x)

= E
[∫ γ

0

∇W (x)α · dXt

]
+ E

[∫ γ

0

tr
(
∇2W (x)αx

)
dt

]
≤ α(v + d) [−γ∗(v + 2) + α(v + d) + ϵ]

(
1 + ∥x∥2

)α(v+d)/2−1
.

It follows that for some constant Cα > 0 and for all x, γ,

E [Wα(Xt+1)|Γt+1 = γ,Xt = x]−Wα(x) ≤ CαW
α(x)1−

2
α(v+d) .

One has the lower bound for some constant C > 0

π(W ≥ r) ≥ C

r1−2/(v+d)
.

If v + d− 2 > 0, then by Theorem 4, then there is a constants M > 0 such that

inf
Q∈S(X ,Y)

W∥·∥∧1(A(t)
Q (γ0, 0, ·), π) ≥

M

(1 + t)v+d−2
.

Of particular interest is that the rate cannot be geometric even when considering weak con-

vergence.
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In certain situations, the tail probability decay on π in (2) may be difficult to establish.

In this case, we consider finding a function that is not integrable with respect to π, but this

results in a trade-off of only a having a lower bound for a subsequence. An analogous result

will also hold in total variation.

Theorem 6. Let X = Rd for d ∈ Z+. Assume for some Borel functionW : X → [1,∞) such

that
∫
X Wdπ = ∞ but also for some α > 1 and some concave function φ : (0,∞) → (0,∞),

(PγW
α)(x)−W (x)α ≤ φ(W (x)α) (6)

holds for all x, γ ∈ X ×Y. Assume additionally for each r > 0, the set {x ∈ Rd : W (x) ≤ r}

is compact. Then there is a constantM∗ > 0 and a subsequence tn ∈ Z+ increasing to infinity

such that for any ϵ ∈ (0, 1) with α > 1 + ϵ,

inf
Q∈S(X ,Y)

W∥·∥∧1
(
A(tn,Q)

Q (γ0, x0, ·), π
)
≥ M∗(

H−1
Wα(x0),φ

(tn)
) 1+ϵ

α−1−ϵ

.

Proof. Since
∫
X Wdπ = ∞, there is a sequence (rn)n with limn rn = ∞ such that with

Tn = {x : W (x) ≥ rn},

π(Tn) ≥
2α+1

r1+ϵ
n

.

The conclusion follows by Theorem 4.

3 Subgeometric upper bounds for adaptive MCMC

This section is dedicated to studying conditions such that an upper bound convergence

rate can be obtained for adaptive MCMC comparable to the lower bounds in the previous

section. We first consider an alternative to the diminishing adaptation condition [Roberts

and Rosenthal, 2007] that is stronger in the sense that it requires a specified rate of decay.

Definition 7. An adaptive process satisfies expected diminishing adaptation with function
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G : Z+ → (0,∞) strictly decreasing to infinity if and for all t ∈ Z+,

sup
x∈X

E
[∥∥PΓt+1(x, ·)− PΓt(x, ·)

∥∥
TV

| Xt = x
]
≤ G(t). (7)

Proposition 17 ensures Borel measurability of the total variation in (7). One way to

satisfy this condition is if ρ is a metric on Y and supx E [ρ(Γt+1,Γt) | Xt = x] ≤ G(t), then

the expected diminishing adaptation condition can be shown through Lipschitz continuity

of Pγ. For example, if for each x ∈ X , γ 7→ Pγ(x, ·) is ρ-Lipschitz with constant Lx, then

sup
x∈X

∥∥PΓt+1(x, ·)− PΓt(x, ·)
∥∥
TV

≤
(
sup
x∈X

Lx

)
ρ(Γt+1,Γt).

This has been shown to hold generally for adaptive Metropolis-Hastings with symmetric

proposals [Andrieu and Moulines, 2006]. Next, we consider a simultaneous version of a

subgeometric drift condition on the Markov family.

Definition 8. A Markov family (Pγ)γ∈Y satisfies a simultaneous subgeometric drift condition

if there is a Borel function V : X → [1,∞) and a concave function φ : [0,∞) → [0,∞)

strictly increasing to infinity with limv→∞ φ(v)/v = 0 and a constant K ≥ 0 such that

(PγV )(x)− V (x) ≤ −φ(V (x)) +K (8)

holds for every x, γ ∈ X × Y.

Here we assume limv→∞ φ(v)/v = 0 to exclude the geometric case. Subgeometric drift

conditions for Markov chains has been studied previously [Jarner and Roberts, 2002, Douc

et al., 2004] but we adjust the previous conditions to hold over feasible tuning parameters

Y . We now combine this drift condition with a simultaneous local contracting condition.

Definition 9. A Markov family (Pγ)γ∈Y satisfies a simultaneously locally contracting con-
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dition on a set C ⊆ X × X if there is a constant α ∈ (0, 1) where

∥Pγ(x, ·)− Pγ(y, ·)∥TV ≤ 1− α (9)

holds for all x, y ∈ C and γ ∈ Y.

Local coupling conditions have been studied in the subgeometric case for Markov chains

[Durmus et al., 2016]. For example, a minorization condition can be used to verify the

Markov family is simultaneously locally contracting (see [Roberts and Rosenthal, 2007]).

Under these three conditions, we can establish an upper bound for the adaptation process.

Theorem 10. Assume the expected diminishing adaptation condition (7) holds with G(·)

decreasing to infinity. Additionally assume the following assumptions hold for the Markov

family (Pγ)γ∈Y :

1. πPγ = π for all γ ∈ Y.

2. A simultaneously subgeometric drift condition (8) holds with a Borel function V : X →

[0,∞).

3. A simultaneous locally contracting condition (9) holds on the set C = {x, y ∈ X ×X :

V (x) + V (y) ≤ 2K/(1− δ)} for some δ ∈ (0, 1).

Then for all ϵ ∈ (0, 1) and all t ∈ Z+,

∥∥∥A(Tϵ,t+t)
Q ((γ0, x0), ·)− π

∥∥∥
TV

≤ δ + [r(1) + 1] [V (x0) +
∫
V dπ +KTϵ,t + C

δH−1
1,φ

(
t

− log(H−1
1,φ(t))/ log(1−α)+1

) + ϵ

where Tϵ,t = (1/G)−1(t2/ϵ) and

r(·) = φ(H−1
1,φ(·)), R = φ−1(2K/(1− δ)), C = [r(1) + 1]

{
R +

r(1)

r(0)
(R + 4K)

}
.
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Theorem 10 requires satisfying expected diminishing adaptation (7) with a sufficiently

fast rate. Table 1 compares approximate upper bounds for different combinations of φ(·) and

G(·). The upper and lower bounds may be also combined and in particular, Theoerem 10 can

guarantee the adaptive process approximately achieves the lower bound rate if the adaptation

diminishes sufficiently fast. For example, if in addition to the assumptions of Theorem 10,

there are constants C, κ > 0 such that

π(V ≥ r) ≥ Cr−κ, (PγV
2κ)(x)− V (x)2κ ≤ φ(V (x)2κ)

holds for every x, γ ∈ X × Y . Then Theorem 1 and Theorem 10 imply some constants

M∗, α > 0 such that

C2

4H−1
V (x0)2κ,φ

(t)
≤
∥∥At

Q((γ0, x0), ·)− π
∥∥
TV

≤ M∗Tϵ,t

H−1
1,φ

(
t

− log(H−1
1,φ(t))/ log(1−α)+1

) + ϵ

holds for all t and ϵ. Similarly, Theorem 4 can be used to give a weak lower bound. As an

example, consider a target measure on Rd with potential U : Rd → R defined by π(dx) ∝

exp(−U(x))dx and Lyapunov function defined by exp(κU(x)) for α > 0. Then with α < 1,

this can be used to obtain an upper bound and with α > 1, this can be used to obtain a

lower bound.

Proof of Theorem 10. We first specify a finite adaptation plan QT with a time T ∈ Z+

defining a stopping point of adaptation. This defines an adaptive process where for all t ≥ T ,

Γt = ΓT and (Γt, Xt)|(Γs, Xs)s≤t−1 ∼ δΓT
(·)PΓT

(Xt−1, ·) where δΓT
is the Dirac measure at

ΓT . Using the finite adaptation process, we have the upper bound via the triangle inequality

∥∥∥A(T+t)
Q ((γ0, x0), ·)− π

∥∥∥
TV

≤
∥∥∥A(T+t)

Q ((γ0, x0), ·)−A(T+t)

QT ((γ0, x0), ·)
∥∥∥
TV

+
∥∥∥A(T+t)

QT ((γ0, x0), ·)− π
∥∥∥
TV
. (10)
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Examples of upper bound rates from Theorem 10

G(t) φ(w) = cwβ, β ∈ (0, 1) φ(x) = c(x+K)/ log(x+K)β, β ∈ (0, 1)

exp(−αt), α > 0 ∝ log(t)

(1+(1−β)ct)1/(1−β) ∝ log(t) exp
(
−(1 + β)ct

1
1+β

)
exp(−tα), α ∈ (0, 1) ∝ log(t)1/α

(1+(1−β)ct)1/(1−β) ∝ log(t)1/α exp
(
−(1 + β)ct

1
1+β

)
t−α, α > 1 ∝ t2/α

(1+(1−β)ct)1/(1−β) ∝ t2/α exp
(
−(1 + β)ct

1
1+β

)
Table 1: Upper bound convergence rate comparisons from Theorem 10 for different combi-
nations of φ(·) and G(·). The table entries specify a convergence rate upper bound up to an
explicit constant.

We will bound each term on the right hand side of (10) separately. For the first term in

(10), fix ϵ ∈ (0, 1) and choose Tϵ,t = (1/G)−1(t2/ϵ). Using the triangle inequality, we have

that

sup
x∈X

E
[∥∥PΓT+t

(x, ·)− PΓT
(x, ·)

∥∥
TV

| XT+t−1 = x
]

≤
t∑

s=1

sup
x∈X

E
[∥∥PΓT+s

(x, ·)− PΓT+s−1
(x, ·)

∥∥
TV

| XT+s−1 = x
]

≤ tG(T )

≤ ϵ/t.

Since X is Polish, Proposition 17 ensures the total variation is Borel measurable.

Let (Γt, Xt)t≥0 be an adaptive process initialized at x0, γ0 and (Γ′
t, X

′
t)t≥0 be the finite

adaptation process initialized similarly. Since both of these processes are initialized at the
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same point, we can construct a coupling where Xs = X ′
s for s ≤ T and

P (Xt+T = Yt+T ) = P (Xt+T = Yt+T |Xt+T−1 = Yt+T−1)P (Xt+T−1 = Yt+T−1)

≥ (1− ϵ/t)P (Xt+T−1 = Yt+T−1)

≥ (1− ϵ/t)t

≥ 1− ϵ.

Since X is Polish, then it follows immediately that the optimal coupling is controlled by this

coupling we have constructed so that

∥∥∥A(Tϵ,t+t)
Q ((γ0, x0), ·)−A(Tϵ,t+t)

QTϵ,t
((γ0, x0), ·)

∥∥∥
TV

≤ P (Xt+T ̸= Yt+T ) ≤ ϵ.

To bound the second term in (10), the following is adapted from previous arguments

for subgeometric upper bounds for non-adapted Markov chains [Durmus et al., 2016], but

modified for adaptive MCMC, and the constants are improved and explicit. Since X is

Polish, there is a Borel measurable conditional total variation distance by [Villani, 2009,

Theorem 4.8] so that

∥∥∥A(T+t)

QT ((γ0, x0), ·)− π
∥∥∥
TV

≤ E
[∥∥P t

ΓT
(XT , ·)− π

∥∥
TV

]
.

Let τC = inf{n ≥ 1 : Xn, Yn ∈ C} be the first hit time to the set C. For n ∈ Z+, let θn

denote the shift operator applied n times so that θn(Xi) = Xi+n for all i ∈ Z+. Define the

successive hit times to C recursively by

τ1 = τC , τn+1 = τn + τC ◦ θτn =
n+1∑
k=1

τk

for each n ∈ Z+. The inverse function theorem implies the derivative r(s) = d
ds
H−1

1,φ(s) =

φ(H−1
1,φ(s)) for s ≥ 0. Thus, H−1

1,φ is convex since its derivative is monotone increasing by
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Lemma 18. By Markov’s inequality and Jensen’s inequality,

P(τm ≥ t) ≤ E
[
H−1

1,φ

(
1
m

∑m
k=1 τk

)]
H−1

1,φ(t/m)

≤
1
m

∑m
k=1 E

[
H−1

1,φ(τk)
]

H−1
1,φ(t/m)

.

For any t,m ∈ Z+ with t ≥ m, the local coupling condition (9) implies an upper bound

via a coupling argument with [Jarner and Tweedie, 2001, Lemma 3.1] so that for all γ ∈ Y

and x, y ∈ X ,

∥∥P t
γ(x, ·)− P t

γ(y, ·)
∥∥
TV

≤ inf
ξ∈C(Pt

γ(x,·),Pt
γ(y,·))

ξ({u, v : u ̸= v, τm < t}) + P(τm ≥ t)

≤ (1− α)m + P

(
m∑
k=1

τk > t

)

≤ (1− α)m +
1
m

∑m
k=1 E

[
H−1

1,φ(τk)
]

H−1
1,φ(t/m)

.

Since φ is concave, it is subadditive so φ(V (x) + V (y)) ≤ φ(V (x)) +φ(V (y)). Since φ is

strictly increasing, by the drift condition,

(PγV )(x) + (PγV )(y)− [V (x) + V (y)] ≤ −[φ(V (x)) + φ(V (y))] + 2K

≤ −[φ(V (x) + V (y))] + 2K

holds for all x, y ∈ X . Using Lemma 19,

(PγV )(x) + (PγV )(y)− [V (x) + V (y)] ≤ −δ[φ(V (x) + V (y))] + (R + 2K)IC(x, y).

By [Douc et al., 2004, Proposition 2.2],

sup
x,y∈C

Ex,y

(
τC−1∑
i=0

r(i)

)
≤ φ−1(2K/(1− δ))

δ
+

(R + 2K)r(1)

δr(0)
.
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We have that r(·) = φ(H−1
1,φ(·)) is log-concave and so r(s+ t) ≤ r(s)r(t) for all t, s ≥ 0 [Douc

et al., 2004, see the proof of Proposition 2.1]. We then have the upper bound for k ≥ 2,

E
[
H−1

1,φ(τk)
]
= E

[
EXτk−1

(∫ τk

0

r(s)ds

)]
≤ E

[
EXτk−1

(
τC∑
i=1

r(i)

)]

≤ E
[
EXτk−1

(r(τC))
]
− r(0) + E

[
EXτk−1

(
τC−1∑
i=0

r(i)

)]

≤ r(1)E
[
EXτk−1

(r(τC − 1))
]
− r(0) + E

[
EXτk−1

(
τC−1∑
i=0

r(i)

)]

≤ [r(1) + 1]E

[
EXτk−1

(
τC−1∑
i=0

r(i)

)]
− r(0)

≤ r(1) + 1

δ

{
R

(
1 +

r(1)

r(0)

)
+

2Kr(1)

r(0)

}
.

For k = 1, similarly, we have

E
[
H−1

1,φ(τC)
]
≤ r(1) + 1

δ

{
V (x) + V (y) +

Rr(1)

r(0)
+

2Kr(1)

r(0)

}
.

Combining these upper bounds,

E

[
H−1

1,φ

(
1

m

m∑
k=1

τk

)]
≤ r(1) + 1

δ

{
V (x) + V (y) +R +

r(1)

r(0)
(R + 4K)

}
.

The simultaneous subgeometric drift condition (8) implies

E [V (XT )] ≤ V (x0) +KT.
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Choosing m ≡ mt = ⌈log(H−1
1,φ(t))/ log(1/(1− α))⌉, we have the upper bound

∥∥∥A(T+t)

QT ((γ0, x0), ·)− π
∥∥∥
TV

≤ (1− α)mt +
[r(1) + 1]

{
V (x0) +KT +

∫
V dπ +R + r(1)

r(0)
(R + 4K)

}
δH−1

1,φ(t/mt)

≤ δ + [r(1) + 1]
{
V (x0) +KT +

∫
V dπ

}
+ C

δH−1
1,φ(t/mt)

.

4 Example: adaptive Metropolis-Hastings independence

sampler

In many cases, it is difficult to choose a proposal for Metropolis-Hastings that approximately

matches the tail behavior of a complex target measure and adaptive MCMC is often em-

ployed. The point of this toy example is to concretely demonstrate this scenario. We will use

the upper and lower bounds on the convergence to investigate and the sensitivity to different

adaptation strategies. Consider the target measure π(dx) = exp(−x)I[0,∞)(x)dx. Let (γ∗, γ∗)

be the interval for some potential tuning parameters 1 < γ∗ < γ∗ and consider a Metropolis-

Hastings Markov chain with independent proposal γ exp(−γx)I[0,∞)(x) and Markov kernel

defined for x, γ ∈ [0,∞)× (γ∗, γ∗) and all Borel sets A ⊆ [0,∞) by

Pγ(x,A) =

∫
A

aγ(x, y)γ exp(−γy)dy + δx(A)Rγ(x) (11)

where the acceptance function is aγ(x, y) = exp [(γ − 1)(y − x)]∧ 1 and the rejection proba-

bility is Rγ(x) = 1−
∫∞
0
aγ(x, y)γ exp(−γy)dy. Since we restrict γ > 1, the tail probabilities

of the proposal and the Metropolis-Hastings kernel are lighter than the target. Due to this

restriction, we will have a polynomial lower bound over any possible adaptation plan.
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Proposition 11. Let A(t)
Q (γ0, x0, ·) be the marginal of the adaptive independent Metropolis-

Hastings process at time t ∈ Z+ from (11) with adaptation parameter set (γ∗, γ∗) and ini-

tialized at x0, γ0 ∈ (0,∞)× (γ∗, γ∗). Then

inf
Q∈S([0,∞),(γ∗,γ∗))

∥∥∥A(t)
Q (γ0, 0, ·)− π

∥∥∥
TV

≥ M∗

(c∗t+ 1)
1

γ∗−1

where M∗ = γ
−1/(γ∗−1)
∗ − γ

−γ∗/(γ∗−1)
∗ and c∗ =

γ∗

γ∗−1
+ γ∗ − 1.

Proof. Define W (x) = exp(x), and we have by a standard computation π(W (x) ≥ r) = r−1.

Assume 1 < γ∗ < γ. For α < γ, the identity holds

(PγW
α)(x)−Wα(x)

=

∫
[0,∞)

exp(αy)1 ∧ {exp [(γ − 1)(y − x)]} γ exp(−γy)dy − exp(αx)E (aγ(x, Y )) .

We also have for any α < γ,

∫
[0,∞)

exp(αy)1 ∧ {exp [(γ − 1)(y − x)]} γ exp(−γy)dy

=
γ exp [(1− γ)x]

α− 1

∫ x

0

(α− 1) exp [(α− 1)y] dy

+
γ

γ − α

∫ ∞

x

(γ − α) exp [−(γ − α)y] dy

=

{
γ

α− 1
+

γ

γ − α

}
exp [−(γ − α)x]− γ

α− 1
exp [−(γ − 1)x] . (12)

Using (12), E (aγ(x, Y )) = γ exp((1− γ)x) + (1− γ) exp(−γx). So then

(PγW
α)(x)−Wα(x)

=

{
γ

α− 1
+

γ

γ − α
+ γ − 1

}
exp [−(γ − α)x]− γ

α− 1
exp [−(γ − 1)x]− γW (x)

1+α−γ
α .
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It follows that

(PγW
γ∗)(x)−W γ∗(x) =

{
γ

γ∗ − 1
+

γ

γ − γ∗
+ γ − 1

}
exp(−(γ − γ∗)x)

− γ

γ∗ − 1
exp(−(γ − 1)x)− γW γ∗(x)

1+γ∗−γ
γ∗

≤ c∗. (13)

With the upper bound in (13), we can now use Theorem 1 with φ ≡ c∗, κ = 1, and α = γ∗.

We then have the lower bound

∥∥∥A(t)
Q (γ0, x0, ·)− π

∥∥∥
TV

≥ M∗

[c∗t+ exp(γ∗x0)]
1

γ∗−1

holds for every t ∈ Z+ uniformly in the adaptation strategy Q.

In Table 2, we compute the lower bound in Proposition 11 for different choices of (γ∗, γ∗).

The large values from Table 2 illustrate that even in this toy example, it is possible to

observe poor convergence behavior of adaptive MCMC with certain tuning parameter sets

independently of the adaptation strategy. However, this limitation on the convergence rate

can be avoided if the adaptation plan is capable of crossing the critical boundary γ = 1. By

Theorem 4, the lower bound rate in Proposition 11 will be the same even when converging

weakly.

We now look at upper bounds from Section 3 where we require adaptation is restricted to

a compact set. This is a commonly used strategy in adaptive MCMC [Pompe et al., 2020].

Proposition 12. For t ∈ Z+, let A(t)
Q (γ0, x0, ·) be the marginal of an adaptive independent

Metropolis-Hastings process and M∗, c∗ defined in Proposition 11. Assume for each t ∈ Z+,

PΓt+1(x, ·) = PΓt(x, ·) for all x ≥ r for some r > 0 and

sup
x∈X

E [∥Γt+1 − Γt∥F | Xt = x] ≤ G(t)
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Lower bound computations from Proposition 11

Iteration (γ∗, γ∗) = (3, 5) (γ∗, γ∗) = (4, 6) (γ∗, γ∗) = (8, 10)

103 0.0048 0.0247 0.173

104 0.0015 0.0115 0.125

105 0.0005 0.00532 0.0898

106 0.0001 0.00247 0.0646

Table 2: Lower bound computations from Propositon 11 for the adaptive Metropolis-Hastings
independence sampler.

for some function G(·) strictly decreasing to infinity. Additionally, assume γ∗ < 2 − ϵ for

some ϵ ∈ (0, 1). Then for all δ ∈ (0, 1) and t ∈ Z+ with Tδ,t = (1/G)−1 (Jt2/δ),

M∗

[c∗(Tδ,t + t) + 1]
1

γ∗−1

≤
∥∥∥A(Tδ,t+t)

Q ((γ0, 0), ·)− π
∥∥∥
TV

≤ 2 [r(1) + 1]KTδ,t + C[
1 + c t

− log(1+ct)/ log(1−α)+1

] 1−ϵ
γ∗−1

+ δ

where

J = 2/γ2∗ + r +
1

γ∗
, c =

γ∗ − 1

1− ϵ
,K =

γ∗

γ∗ − 1 + ϵ
, α =

γ∗

(2K)
γ∗−1
1−ϵ

, r(1) = (c+ 1)
2−ϵ−γ∗
γ∗−1 ,

R = (4K)
1−ϵ

2−ϵ−γ∗ , C = 1 + 2 [r(1) + 1] [1 + ϵ−1] + [r(1) + 1] {R + r(1)(R + 4K)} .

Proof. We will use Theorem 10 to establish the upper bound. We first verify the expected

diminishing adaptation condition (7). Let φ : R → [0, 1] and for x > 0 and let ψx(y) =
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φ(y)− φ(x). Then

Pγ′φ(x)− Pγφ(x) = Pγ′ψx(x)− Pγψx(x)

=

∫
ψx(y) [aγ′(x, y)γ′ exp(−γ′y)− aγ(x, y)γ exp(−γy)] dy

≤ |γ′ − γ|
∫

|y − x|γ′ exp(−γ′y)dy +
∫

|γ′ exp(−γ′y)− γ exp(−γy)|dy

≤ (2/γ2∗ + |x|)|γ′ − γ|+ 1

γ∗
|γ′ − γ|.

Let J = 2/γ2∗ + r + 1
γ∗

and so expected diminishing adaptation (7) since

sup
x∈[0,∞)

E
(∥∥PΓt+1(x, ·)− PΓt(x, ·)

∥∥
TV

| Xt = x
)
≤ J sup

|x|≤r

E (|Γt+1 − Γt| | Xt = x)

≤ JG(t).

Next, we verify the simultaneous subgeometric drift condition. Let V (x) = exp(x), and

using the identity (12), for ϵ ∈ (0, 1),

(PγV
1−ϵ)(x)− V 1−ϵ(x) ≤

{
γ∗

γ∗ − 1 + ϵ
+ γ∗ − 1

}
− γ∗V (x)

2−ϵ−γ∗
1−ϵ .

Now we satisfy the simultaneous local coupling with a minorization condition. If V (x) ≤ R,

then exp((γ − 1)x) ≤ R
γ−1
1−ϵ . Define νγ(·) = Z−1

∫
· 1∧ exp((γ − 1)y)γ exp(−γy)dy where Z is

the normalizing constant. So then

inf
V (x)≤R

Pγ(x, ·) ≥
γ∗

R
γ∗−1
1−ϵ

νγ(·).

If adaptation diminishes fast enough, Proposition 12 shows the upper bound rate is

essentially (1 + t)
1−ϵ
1−γ∗ and depends on the largest tuning parameter γ∗. This is due to the

adaptation plan possibly concentrating on γ∗, which is farthest from the optimal choice. On
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Upper bound computations from Proposition 12

Iteration t (γ∗, γ∗) = (1.2, 1.5) (γ∗, γ∗) = (1.2, 1.6) (γ∗, γ∗) = (1.2, 1.7)

103 2.048 · 10−1 7.859 · 100 7.368 · 102

104 2.217 · 10−3 1.784 · 10−1 2.867 · 101

105 2.379 · 10−5 4.018 · 10−5 1.106 · 100

106 2.550 · 10−7 9.04 · 10−5 4.26 · 10−2

Table 3: A comparison of the upper bounds from Proposition 12 for the adaptive Metropolis-

Hastings independence sampler with ϵ = .01, G(t) = exp(−t), and δ = (1 + ct)
1−ϵ
1−γ∗ .

the other hand, the lower bound rate (1 + t)
1

1−γ∗ depends on the smallest tuning parameter

γ∗ being closest to the optimal choice. In particular, there can be a gap in the upper

and lower bounds on the convergence characterized by potential tuning parameters. In

Table 3, we compare the upper bound convergence rates with ϵ = .01, G(t) = exp(−t), and

δ = (1 + ct)
1−ϵ
1−γ∗ . We observe that the upper bound is sensitive to the tuning of γ∗.

5 Example: Adaptive random walk Metropolis

Adaptive random-walk Metropolis is a popular simulation algorithm for Bayesian statistics

[Haario et al., 2001]. Let U : Rd → R and consider the target measure with with normalizing

constant Z =
∫
Rd exp(−U(x))dx defined by π(dx) = Z−1 exp(−U(x))dx. We make the

following regularity assumptions on the target π which have been used previously to show

convergence results in MCMC [Douc et al., 2004]. Let ∥·∥F denote the Frobenius norm.

Assumption 13. Suppose U is continuous and twice continuously differentiable and there

exists a minimum such that x∗ such that U(x∗) = 0. Assume there are constants dk, Dk, r > 0
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for k = 1, 2, 3 such that for all x ∈ Rd with ∥x∥ ≥ R for some R > 0,

d1 ∥x∥m ≤ U(x) ≤ D1 ∥x∥m , (14)

d2 ∥x∥m−1 ≤ ∥∇U(x)∥ ≤ D2 ∥x∥m−1 ,
∇U(x)
∥U(x)∥ · x

∥x∥ ≥ r, (15)

d3 ∥x∥m−2 ≤
∥∥∇2U(x)

∥∥
F
≤ D3 ∥x∥m−2 . (16)

While Assumption (13) is strong, the Weibull distribution is one example (see [Fort and

Moulines, 2000]). Let gK be a Lebesgue density on Rd used for the proposal supported on a

compact set K ⊂ Rd satisfying

gK(ξ) = gK(∥ξ∥) for all ξ ∈ Rd, inf
ξ∈K

gK(ξ) > 0. (17)

For γ ∈ Y , define the random-walk Metropolis Markov family for x ∈ Rd and Borel A ⊆ Rd

by

Pγ(x,A) =

∫
A

a(x, x+ γ1/2ξ)gK(ξ)dξ + δx(A)Rγ(x) (18)

with acceptance function a(x, y) = exp[U(x)− U(y)] ∧ 1, and rejection probability Rγ(x) =

1 −
∫
Rd a(x, x + γ1/2ξ)gK(ξ)dξ. We define an adaptive random-walk Metropolis process by

adapting the covariance of the proposal [Haario et al., 2001] with dynamics Γt|(Γs, Xs)s≤t−1

first updating the covariance matrix, and then Xt|Γt, Xt−1 updating the current state with

random-walk Metropolis.

For the tuning parameter set Y , we consider the set of symmetric positive definite matrices

on Rd such that the eigenvalues are bounded by constants λ∗, λ∗ > 0, that is,

Y =
{
γ ∈ Rd×d : λ∗I ≤ γ ≤ λ∗I, γT = γ

}
. (19)

One example is to adapt a sample covariance matrix scaled by h > 0 using the following
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identity

Γt =
h

t

t∑
s=0

(Xs − X̄t)(Xs − X̄t)
T =

t− 1

t
Γt−1 +

h

t+ 1
(Xt − X̄t−1)(Xt − X̄t−1)

T (20)

where X̄t = (t+ 1)−1
∑t

s=0Xs [Haario et al., 2001, Andrieu and Moulines, 2006]. The set Y

is convex and one way to ensure the updates remain in Y is to truncate the eigenvalues of

(20).

Under Assumption (13), we first obtain a lower bound on the convergence rate for the

adaptive random-walk Metropolis process.

Proposition 14. For t ∈ Z+, let A(t)
Q (γ0, x0, ·) be the marginal of the adaptive random-walk

Metropolis process initialized at x0, γ0 ∈ Rd × Y from the Metropolis-Hastings family (18)

and adaptation parameter set (19). If Assumption (13) holds for π, then there are constants

c∗ > 0 depending on m and M∗ depending on m and x0 such that

inf
Q∈S(X ,Y)

W∥·∥∧1
(
A(t)

Q (γ0, x0, ·), π
)
≥M∗ exp

(
−c∗t

m
2−m

)
.

In order to proceed, we will first establish a simultaneous growth condition on the Markov

family.

Lemma 15. With W (x) = exp(U(x)), there are constants M0, N0, L > 0 depending on m

such that for any α > 0 and x, γ ∈ X × Y,

(PγW
α)(x)−Wα(x) ≤M0α

3−2/m [α−N0]φ(W
α(x)) + L (21)

where for Km = exp(2/(m− 2) + 1) and w ≥ 1,

φ(w) =
w +Km

log [w +Km]
2/m−2

.

Proof. Similar to [Fort and Moulines, 2000, Lemma B.4], using the fundamental theorem of

28



calculus and (15)

sup
ξ∈K

Wα(x+ γ1/2ξ)

Wα(x)
= 1 +

∫ 1

0

Wα(x+ tγ1/2ξ)

Wα(x)
γ∇U(x+ tγξ)dt

≤ 1 + ∥γ∥ sup
ξ∈K

∥ξ∥ sup
ξ∈K

Wα(x+ tγ1/2ξ)

Wα(x)

∫ 1

0

∥∥x+ tγ1/2ξ
∥∥m−1

dt.

It follows that

lim
r→∞

sup
∥x∥≥r

sup
ξ∈K

Wα(x+ γ1/2ξ)

Wα(x)
≤ 1.

Using the fundamental theorem of calculus twice with (15) and (16), there is a constant

M > 0 such that for large enough ∥x∥

∣∣∣∣Wα(x+ γ1/2ξ)

Wα(x)
− 1− αγ1/2∇U(x) · ξ

∣∣∣∣
≤
∫ 1

0

Wα(x+ tCξ)

Wα(x)

{
α2[γ1/2∇U(x+ tγ1/2ξ) · ξ]2 + αξ · γ1/2∇2U(x+ tγ1/2ξ)γ1/2ξ

}
(1− t)dt

≤ α2M ∥x∥2(m−1) .

Similarly, we obtain

∣∣exp(U(x)− U(x+ γ1/2ξ))− 1 + γ1/2∇U(x) · ξ
∣∣ ≤M ∥x∥2(m−1) .

Let rγ(x) = {y ∈ Rd : U(x) < U(x + γ1/2y)} denote the rejection region. By [Fort and

Moulines, 2000, Lemma B.3] combined with (15), there is a constant a > 0 such that for

large enough ∥x∥ ∫
rγ(x)

[
γ1/2∇U(x) · ξ

]2
gK(ξ)dξ ≥ a ∥∇U(x)∥2 .
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Applying these bounds, for large enough ∥x∥,

(PγW
α)(x)

Wα(x)
− 1

≤ α

∫
Rd

γ1/2∇U(x) · ξa(x, x+ γ1/2ξ)gK(ξ)dξ +Mα2 ∥x∥2(m−1)

= α

∫
rγ(x)

γ1/2∇U(x) · ξ
(
exp[U(x)− U(x+ γ1/2ξ)]− 1

)
gK(ξ)dξ +Mα2 ∥x∥2(m−1)

≤ −α
∫
rγ(x)

[
γ1/2∇U(x) · ξ

]2
dG(ξ) +Mα2 ∥x∥2(m−1)

≤ −αa ∥∇U(x)∥2 +Mα2 ∥x∥2(m−1) .

Applying (14) and (15), there are constants M0, N0, Km > 0 such that ∥x∥ sufficiently large

(PγW
α)(x)−Wα(x) ≤M0α [α−N0]

Wα(x)

U(x)2/m−2

≤M0α
3−2/m [α−N0]

Wα(x) +Km

log(Wα(x) +Km)2/m−2
.

For small ∥x∥, we have by continuity, the sub-level sets of W are compact and (PγW
α)(x)−

Wα(x) is bounded on compact sets, so the conclusion follows at once.

We may now apply Lemma 15 to obtain the lower bound.

Proof of Proposition 14. Changing to polar coordinates, we have for r large enough

π (exp(U(x)) ≥ r) ≥ π (∥x∥m ≥ log(r))

≥ 2πd/2

ZΓ(d/2)

∫
sm≥r

sd−1 exp(−sm)ds

≥ 2πd/2

ZmΓ(d/2)

1

r
.

where Z is the normalizing constant and Γ(t) =
∫∞
0
ut−1 exp(−u)du for t > 0 is the Gamma

function.

By Lemma 15, for α sufficiently large, we have constants M,Km > 0 depending on α,m
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such that

(PγW
α)(x)−Wα(x) ≤M

Wα(x) +Km

log(Wα(x) +Km)2/m−2

holds for all x, γ ∈ Rd ×Y . Therefore, there is a constant cm > 0 depending on m such that

Hφ,Wα(x0)(u) =M

∫ u

Wα(x)

log(x+Km)
2/m−2

x+Km

dx

H−1
φ,Wα(x0)

(t) ≤M exp(αU(x0)) exp
(
cmt

m
2−m

)
.

Since W (·) has compact sublevel sets, the lower bound then follows by Theorem 4.

We investigate now an upper bound with the expected diminishing adaptation condition

(7) that can approximately achieve the lower bound rate. The following upper and lower

bounds show that the convergence of adaptive random-walk Metropolis in this situation is

not geometric. One drawback is that we do not obtain explicit constants in the upper and

lower bounds.

Proposition 16. For t ∈ Z+, let A(t)
Q (γ0, x0, ·) be the marginal of an adaptive random-walk

Metropolis process as in Proposition 14. Assume the proposal g is a truncated Gaussian on

a centered closed ball and

sup
x∈X

E (∥Γt+1 − Γt∥F | Xt = x) ≤ G(t)

with G(·) strictly decreasing to infinity. Then there are constants M∗,M∗ depending on x0

and c∗, c∗, J∗ > 0 such that for all ϵ ∈ (0, 1) and all t ∈ Z+ with Tϵ,t ≥ F−1 (J∗t2/ϵ),

M∗ exp
[
−c∗(Tϵ,t + t)

m
2−m

]
≤ W∥·∥∧1

(
A(Tϵ,t+t)

Q ((γ0, x0), ·), π
)
≤M∗Tϵ,t exp

[
−c∗t m

2−m

]
+ ϵ.

Proof. We will apply Theorem 10 to obtain the conclusion. Choosing α sufficiently small in

the simultaneous drift condition from Lemma 15, and a compactness and continuity argument
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shows a simultaneous minorization condition holds.

It remains to verify expected diminishing adaptation (7). For γ ∈ Y , define

fγ(y) = exp

(
−1

2
log(det(γ))− 1

2
yTγ−1y

)
.

Following [Andrieu and Moulines, 2006, Lemma 13], the mean value theorem gives the upper

bound

∫
Rd

|fγ′(y)− fγ(y)| dy ≤ 1

2

∫
Rd

∫ 1

0

fγt(y)
∣∣tr (γ−1

t (γ′ − γ) + γ−1
t yyTγ−1

t (γ′ − γ)
)∣∣ dtdy

≤ d(2π)d/2

λ∗
∥γ′ − γ∥F .

Since the proposal gK is symmetric, then for Borel φ : X → [0, 1], let ψ(x, y) = (φ(y) −

φ(x))a(x, y) and

Pγ′φ(x)− Pγφ(x) =

∫
ψ(x, y)gK(γ

′−1/2
(y − x))dy −

∫
ψ(x, y)gK(γ

−1/2(y − x))dy

≤ 2∫
K
exp(−∥z∥2 /2)dz

∫
x+K

|fγ′(y)− fγ(y)| dy

≤ J∗ ∥γ′ − γ∥F

where J∗ = 2d(2π)d/2/[λ∗
∫
K
exp(−∥z∥2 /2)dz]. Taking the supremum over φ, we then have

for each t ∈ Z+,

sup
x∈X

E
[∥∥PΓt+1(x, ·)− PΓt(x, ·)

∥∥
TV

| Xt = x
]
≤ J∗ sup

x∈X
E [∥Γt+1 − Γt∥F | Xt = x]

≤ J∗G(t).
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6 Final discussion

The general lower bound convergence rates developed here in combination with upper bounds

for adaptive MCMC can provide useful guidance in designing adaptation strategies in MCMC.

We showed that the lower bound for weak convergence in Theorem 4 can produce the same

rate as the lower bound in total variation from Theorem 1. We also used a novel expected

diminishing adaptation condition (7) to show these lower bounds can be accompanied by

upper bounds with subgeometric convergence rates. Our contributions are useful not only

in understanding the convergence of adaptive MCMC, but also for gaining intuition for

constructing adaptation strategies in practice.

Choosing an optimal adaptation strategy for an adaptive MCMC simulation remains a

difficult task in general and our subgeometric upper bounds are limited by requiring the

adaptation to diminish sufficiently fast according to (7). While this is to be expected, some

interesting future research directions could include finding more precise classes of adaptation

strategies that are capable of achieving upper bounds that can approximately match the lower

bound rate. Another area of interest is studying requirements on the adaptation that result

in geometric convergence rates for adaptive MCMC.

A Supporting technical results

The following is a technical result to ensure Borel measurability of conditional Wasserstein

distances used in adaptive MCMC.

Proposition 17. Let X be a Polish space and Y be a Borel measurable space. Assume

γ 7→ µγ is Borel measurable where µγ is a Borel probability measure on X and γ ∈ Y. Let

c : X × X → [0,∞) be a lower semicontinuous function and for each γ, γ′ ∈ Y, let

Wc (µγ, µγ′) = inf
ξ∈C(µγ ,µγ′)

∫
X×X

c(u, v)ξ(du, dv).
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Then there is a Borel measurable choice of the function

γ, γ′ 7→ Wc(µγ, µγ′).

Proof. First assume c(·, ·) is continuous. Let T be the set of Borel optimal couplings ξ∗ ∈

P (X ×X) satisfying

inf
ξ∈C(µ,ν)

∫
X×X

c(u, v)ξ(du, dv) =

∫
X×X

c(u, v)ξ∗(du, dv)

for some Borel probability measures µ, ν on X . Define Φ : T → P (X )× P (X ). By [Villani,

2009, Theorem 4.1], then Φ is surjective and [Villani, 2009, Theorem 5.20] C
(
µγ, µ

′
γ

)
is a

Polish space. By the Lusin-Novikov uniformization theorem [Kechris, 2012, Theorem 18.10],

there is a Borel measurable right inverse Φ−1. Let ψ : γ, γ′ 7→ (µγ, µ
′
γ) and this is Borel

measurable. Thus, Φ−1(ψ) is Borel measurable and so is

γ, γ′ 7→
∫
X×X

c(u, v)ξ∗γ,γ′(du, dv).

Since c(·, ·) is lower semicontinuous, then it is the monotone limit of continuous functions

(cn)n. Then by monotone convergence
∫
cn(u, v)ξ

∗
γ,γ′(du, dv) →

∫
c(u, v)ξ∗γ,γ′(du, dv). Since

this is a limit of a measurable sequence, the conclusion follows at once.

The following provides useful properties for the function H1,φ and φ defined in Section 2.

Lemma 18. Let φ : (0,∞) → (0,∞) be concave and define for w ≥ 1,

H1,φ(w) =

∫ w

1

1

φ(v)
dv. (22)

Then φ is non-decreasing and H(·) is strictly increasing.

Proof. The fundamental theorem of calculus implies H1,φ(·) is strictly increasing and then

this implies that H−1
1,φ(·) exists. We need to show that φ is non-decreasing. Suppose by
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contradiction that for some u < v that φ(v) < φ(u). By the subgradient inequality using

concavity, for any subgradient ∂φ(u) > 0, φ(v) ≤ φ(u)− ∂φ(u)(v− u). But for large v, this

contradicts that φ ≥ 0.

The next simple lemma is used for drift conditions.

Lemma 19. Assume there is a Borel function V : X → [0,∞), an strictly increasing

function φ : [0,∞) → [0,∞), and a constant K > 0 such that

(PγV )(x)− V (x) ≤ −φ(V (x)) +K (23)

holds for every x, γ ∈ X × Y. Then for any δ ∈ (0, 1) and Cδ = {x ∈ X : V (x) ≤

φ−1(K/(1− δ))},

(PγV )(x)− V (x) ≤ −δφ(V (x)) +
[
φ−1(K/(1− δ)) +K

]
ICδ

(x)

holds for all x ∈ X .

Proof. By the drift condition,

(PγV )(x)− V (x) ≤
(
K

R
− 1

)
φ(V (x)) ≤ −δφ(V (x))

holds for all φ(V (x)) ≥ K/(1 − δ). Since φ is strictly concave, it is strictly increasing, so

then

(PγV )(x) ≤ V (x) +K ≤ φ−1(K/(1− δ)) +K

for all φ(V (x)) ≤ K/(1− δ).

The following is a standrad result in topology.

Lemma 20. Let A be a closed set in Rd. Then for any x /∈ A, d(x,A) = d(x, ∂A).
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