A Lemma About Unimodal Limits

by Jeffrey S. Rosenthal, University of Toronto, www.probability.ca
(July 2016)

I thought I needed the following lemma for a paper [1], but it turned out I didn’t need it after all. Nevertheless, the proof is simple and kind of cute, so I am posting it here for any interested persons.

Lemma: Let \(g : \mathbb{R} \rightarrow \mathbb{R} \) be a non-negative function which is symmetric and unimodal around a mode \(m \in \mathbb{R} \). Then there is a sequence \(\{g_n\} \) of non-negative \(C^1 \) functions which are each symmetric and unimodal about \(m \), and which increase monotonically to \(g \) almost everywhere.

Proof: Let \(S : [0, 1] \rightarrow [0, 1] \) by \(S(x) = 6 \int_0^1 x(1-x)dx = 3x^2 - 2x^3 \), so that \(S \) has an “S-shaped” graph, and \(S \) is \(C^1 \) and is strictly increasing on \([0, 1]\) with \(S(0) = 0 \) and \(S(1) = 1 \) and \(S'(0) = S'(1) = 0 \). Let \(u_{n,i} = \inf_{x \in [(i-1)2^{-n},i2^{-n}]} g(x) \). Then construct \(g_n \) by joining together various \(S \) functions on intervals \([i2^{-n},(i+1)2^{-n})\), by \(g_n(x) = u_{n,i} + u_{n,i+1}S(x-i2^{-n}) \) for \(x \in [m+i2^{-n},m+(i+1)2^{-n}) \) for \(i = \ldots, -3, -2, -1 \), and \(g_n(x) = u_{n,i+1} + u_{n,i+2}S(x-i2^{-n}) \) for \(x \in [m+i2^{-n},m+(i+1)2^{-n}) \) for \(i = 0, 1, 2, \ldots \). Then it is checked that \(\{g_n\} \) is symmetric and unimodal about \(m \), and furthermore that \(\{g_n(x)\} \nearrow g(x) \) at all continuity points \(x \) of \(g \), which must be almost everywhere by the unimodality of \(g \). ■