
COMMUNICATIONS IN STATISTICS—SIMULATION AND COMPUTATION®
, VOL. , NO. , –
https://doi.org/./..

Stochastic simulation of sequential game-theory voting models

Jeffrey S. Rosenthal

Department of Statistics, University of Toronto, Toronto, Ontario, Canada

ARTICLE HISTORY
Received July
Accepted May

KEYWORDS
Game theory; Multiple
parties; Nash equilibrium;
Stochastic simulation; Voting
model

MATHEMATICS SUBJECT
CLASSIFICATION
Primary A; Secondary
M, F, F

ABSTRACT
We discuss the use of stochastic simulation as a tool to learn about opti-
mal behavior andNash equilibria of a sequential votingmodel proposed
by Osborne, related to Duverger’s law. We introduce a graphical Java
applet, which implements such simulations and investigates its prop-
erties. We show that in an appropriate setup, the applet is guaranteed
to eventually find behavior, which is within ε of being optimal.

1. Introduction

Game theory is often used to model strategies of political parties in elections (see, e.g.,
Osborne, 2003, and the references therein). A common setup is that each of n different polit-
ical parties chooses a political position xi ∈ R (or chooses not to contest the election at all, by
setting xi = OUT). Voters are assumed to be distributed according to, say, the Uniform[0,1]
distribution. Each voter will vote for whichever party’s position is closest to their own. The
game-theoretic payoff score for each political party is 0 if they do not contest the election,
or 1 if they receive the most votes, or 1/k if they tie for most votes with a total of k different
parties, or −1 if they contest the election and receive fewer votes than some other party. We
focus here on the model in which the parties choose their positions sequentially, that is, each
party i is allowed to base their own position xi on the already-chosen positions x1, x2, . . . , xi−1
(Osborne, 1996).

In any such game-theory model, the question is what behavior will tend to be adopted
by each of the n parties. In particular, a collection of actions is a Nash equilibrium (Nash,
1951) if each party’s payoff is marginally optimized, that is, if no one party can increase their
expected payoff by changing their action, assuming that all other parties’ action strategies
remain the same. In a sequential model, this can be thought of more directly: Party n chooses
whatever actionmaximizes their payoff, given the actions of Parties n− 1, n− 2, . . . , 1. And,
Party n− 1 chooses whatever action maximizes their payoff, given the actions of Parties n−
2, n− 3, . . . , 1, and also given that Party n will then subsequently choose their own optimal
action as above. And Party n− 2 chooses whatever action maximizes their payoff, given the
actions of Parties n− 3, . . . , 1, and also given that Party n− 1 and n will then subsequently
choose their own optimal actions as above. And so on. In particular, Party 1 must choose an

CONTACT Jeffrey S. Rosenthal jeff@math.toronto.edu Department of Statistics, University of Toronto, St. George
Street, Toronto, Ontario, MS G Canada.
Color versions of one or more of the figures in the article can be found online at www.tandfonline.com/lssp.
© Taylor & Francis Group, LLC

D
ow

nl
oa

de
d

by
 [

50
.1

00
.2

54
.2

12
]

at
 0

5:
45

 0
6

D
ec

em
be

r
20

17

https://doi.org/10.1080/03610918.2017.1335405
https://crossmark.crossref.org/dialog/?doi=10.1080/03610918.2017.1335405&domain=pdf&date_stamp=2017-11-15
mailto:jeff@math.toronto.edu
http://www.tandfonline.com/lssp

2 J. S. ROSENTHAL

action, whichwill maximize their payoff, given that Party 2will subsequently choose an action
to maximize their payoff, assuming Party 3 will afterward choose an action to maximize their
payoff, etc.

For our model, if there are just n = 2 parties, then it is clear that both parties will choose to
come in at themedian value 1/2, so that they each receive half the votes, and thus each receive a
payoff of 1/2. In that case, if either party deviated to a different action, then their payoff would
change to either 0 (if they chose OUT), or−1 (if they chose some other position and therefore
received less than half the vote). So, neither party can improve their position by deviating.
Hence, the solution in which both parties choose x1 = x2 = 1/2 is a Nash equilibrium for
this model.

However, if n is larger, then the situation becomes exponentially more complicated, since
each possible action of Party i requires consideration of all possible further actions of Par-
ties i+ 1, i+ 2, . . . , n. If n = 3, then it is not too hard to see that Party 1 should again come
in at the median voter position 1/2; that way Party 2 cannot win (assuming best play from
Party 3) and hence will stay out, after which Party 3 will also come in at 1/2 so that Par-
ties 1 and 3 each receive payoff of 1/2 (and Party 2 receives payoff of 0). It has been conjec-
tured (Osborne, 1996) that this pattern continues for larger n, that is, that in equilibrium,
only Parties 1 and n will contest the election, each with position equal to the median 1/2,
while the other n− 2 parties will all stay out. This outcome is consistent with Duverger’s law,
which states that democracies will tend toward having just two major parties contest elec-
tions (Duverger, 1951; Riker, 1982; Schlesinger and Schlesinger, 2006). The conjecture has
been proven for n ≤ 4 (Osborne, 1996), but it might not be true in general (de Vries, 2015; de
Vries et al., 2016), and it is very challenging to approach this problem analytically for large n.

In this article, we consider the possibility of running stochastic simulations of this sequen-
tial voting model, to attempt to verify the equilibrium behavior directly without the need for
complicated high-dimensional analysis. We shall describe an interactive graphical Java applet
created for this purpose (Rosenthal, 2015). We shall present some modifications of the algo-
rithm and of the underlying game theory model, and shall study their properties through
simulation results and some theoretical analysis. We shall see that although this simulation
approach does not solve the problem completely, it does allow us to learn and verify various
election behaviors, including some which are not at all obvious analytically.

2. Formal set-up and assumptions

We assume that voters are distributed according to the Uniform[0,1] probability density on
R. In sequence, each of the parties i = 1, 2, . . . , n chooses a position xi ∈ R ∪ {OUT}. If
xi = OUT, then party i does not contest the election and therefore receives a payoff of zero.
Otherwise, each party i with xi ∈ R receives a vote share wi given by

wi = |Ri|
#{ j : x j = xi} , (1)

where Ri = {t ∈ [0, 1] : |t − xi| ≤ |t − x j| for all 1 ≤ j ≤ n} is the vote region won (or tied
for winning) by Party i, of length |Ri|. Each Party i with xi ∈ R receives payoff 1 if they have
the highest vote share wi, or 1/k if they tie with a total of k parties for the highest vote share,
or−1 if their vote share is strictly less than that of some other party.

In this context, the conjecture of Osborne (1996) is that for any n ≥ 2, in equilib-
rium (i.e., where no one party can increase their expected payoff by changing their action,

D
ow

nl
oa

de
d

by
 [

50
.1

00
.2

54
.2

12
]

at
 0

5:
45

 0
6

D
ec

em
be

r
20

17

COMMUNICATIONS IN STATISTICS—SIMULATION AND COMPUTATION® 3

conditional on all other parties continuing to behave optimally), we will have x1 = xn = 1/2,
while x2 = · · · = xn−1 = OUT.

3. The Java applet (“Vanilla”version)

To study the stochastic simulation of the above voter model, we have developed a Java applet,
freely available online (Rosenthal, 2015), which we now describe.

Our Java applet simulates the positions x1, . . . , xn ∈ [0, 1] of each ofndifferent parties. The
positions are represented graphically as dots between 0 and 1, with the parties ordered from
1 (bottom) through n (top). The dots are green circles if the party is contesting the election
(i.e., xi ∈ R), or red squares if the party stays out (i.e., xi = OUT; here the dot’s location is not
strictly relevant but still indicates where the applet was “considering” coming in). For each
given set of positions, each party’s win region is computed (and indicated with a horizontal
line). Then each party’s vote share and payoff are computed and displayed.

Iteratively, some Party j has their position tweaked some number M different times (e.g.,
M = 50) by the applet in someway (e.g., normally distributed around the previous position, or
chosen freshly and randomly from the Uniform[0,1] density, or moving to or fromOUT; spe-
cific choices are discussed below). Given this tweak, Party j + 1 attemptsM different tweaks.
And then, for each of those tweaks, Party j + 2 attempts their ownM tweaks. And so on up
to Party n.

Each of these tweaks is “accepted” if it gives the tweaked party a larger payoff (after tak-
ing into account the actions of all of the subsequent parties, each of whom also only accepts
tweaks, which increase their own payoff). Otherwise, the tweak is rejected, and the party’s
position is returned to its previous value.

Schematically, our algorithmmay be described by the following recursive pseudo-code (see
also the Java source code available from Rosenthal, 2015):

Algorithm 1 OPTIMISE(j; x1, . . . , xn): Optimize the Actions of Parties j, j + 1, . . . , n
S← payoff of Party j in configuration (x1, x2, . . . , xn).
for � = 1, 2, . . . ,M do
x′j ← some new randomized “tweaked” value(which could be OUT)
if j < n then
// recursively optimize Parties j + 1, j + 2, . . . , n
(x′j+1, . . . , x′n)← OPTIMISE(j + 1; x1, . . . , x j−1, x′j, x j+1, . . . , xn)

end if
S′ ← payoff of Party j in configuration(x1, . . . , x j−1, x′j, . . . , x′n)
if S′ > S then
for i = j, j + 1, . . . , n do
xi← x′i

end for
S← S′

end if
end for
return (x j, x j+1, . . . , xn)

In this way, the applet simulates each of the parties in turn attempting to maximize their
own payoff, given that all subsequent parties will also attempt to maximize. Indeed, as M

D
ow

nl
oa

de
d

by
 [

50
.1

00
.2

54
.2

12
]

at
 0

5:
45

 0
6

D
ec

em
be

r
20

17

4 J. S. ROSENTHAL

gets large, the applet will do a better and better job of simulating each party’s optimal action
(given all of the previous parties’ actions). However, this “vanilla” algorithm does have some
limitations, as we discuss next.

4. The “median-finding” limitation

As described above, a key component of equilibrium behavior is that parties sometimes
choose to come in right at the median voter position of 1/2.

Indeed, this situation arises even with just n = 2 parties. In that case, if Party 1 comes in at
1/2, then Party 2 can do no better than also come in at 1/2 so both parties tie for the win and
each receive payoff of 1/2. But if Party 1 comes in at any other position (e.g., x1 = 0.501), then
Party 2 can always respond by finding some clever subsequent position, which is closer to the
median than x1 (e.g., x2 = 0.4995, or x2 = 0.5005). In that way, Party 2 will win a larger vote
share, and thus a payoff of+1, while Party 1 will lose and thus receive a payoff of−1.

Now, if the Java applet only allows parties to choose their tweaked positions from continu-
ous distributions, like Normal or Uniform as discussed above, then parties will never be able
to find a precise position like 1/2. So, if a precise position like 1/2 is crucial to some equilib-
rium behavior (as above), then the Java applet will fail to find that behavior and will thus fail
to accurately imitate the true continuous game (see Fig. 1).

5. IncorporatingmedianProb andmimicProb

To deal with the above problem, we added a new parameter “medianProb” to our Java applet.
This gives each tweaked position a small probability (e.g., 0.1) of being taken to be equal to
the median 1/2, regardless of the other parties’ positions or any previous history. This allows
the simulation to “find” optimal behavior even when it requires a party to come in at precisely
the median as above.

This slight modification does indeed allow our simulation to find such optimal behavior.
For example, when n = 2, it quickly and easily finds the equilibrium in which x1 = x2 = 1/2
(see Fig. 2).

Similarly, since some optimal actions might involve choosing exactly the same position as
some other party, we also introduce a positive parameter mimicProb. This gives each tweaked
position a small probability (e.g., 0.1) of being taken to be equal to the current position of one
of the other parties. This allows the applet to consider the possibility that one party will need

Figure . Output from the “vanilla” voting model Java applet, with n = 2 parties, in which Party comes in
“near” / but not exactly at /, thus allowing Party to come in even nearer to / and thus win outright,
giving Party a payoff of−1. (Here and throughout, parties are numbered from the bottom up, with a dot
indicating each party’s chosen position, which is a green circle if they are contesting the election, or a red
square if they stay out, and with horizontal lines showing their vote win regions.)

D
ow

nl
oa

de
d

by
 [

50
.1

00
.2

54
.2

12
]

at
 0

5:
45

 0
6

D
ec

em
be

r
20

17

COMMUNICATIONS IN STATISTICS—SIMULATION AND COMPUTATION® 5

Figure . Output from the voting model Java applet with n = 2 parties, and with a positive value of medi-
anProb. This allows Party to come in at precisely /, so that Party can do no better than to also come in
at /, giving each party a payoff of /.

to choose precisely the same value as a previous party, even if that value is different from the
median 1/2.

6. Simulation results for the original model

Armed with this new feature, our applet is able to investigate new results. For example, as
mentioned, Osborne’s conjecture was previously proven only for n ≤ 4. However, our applet
is able to simulate the full model with n = 5 and quickly find the conjectured equilibrium,
in which the first and last parties come in at 1/2, and the remaining parties stay out, that is,
where x1 = x5 = 1/2 and x2 = x3 = x4 = OUT (Fig. 3).

On the other hand, to optimize the action of Party i requiresMn−i+1 simulation attempts.
So, as the number of parties n gets large, the run time of the algorithm becomes exponentially
long. For example, ifM = 50 andn = 7, then the number of tweaks is 507 .= 7.8× 1011, which
pushes the limits of what computers can compute in a reasonable time. However, by reducing
the number of iterationsM from 50 to 25, and letting the computer run for several hours, we
eventually verified the Osborne conjecture for n = 6 (see Fig. 4). Then, letting the applet run
for several days, we eventually verified the Osborne conjecture for n = 7 as well (see Fig. 5).

Finally, we note that the simulations sometimes illustrated surprising behavior. For exam-
ple, suppose we have n = 7 parties, and we start with positions x1 = 0.5 and x2 = 0.1 for
the first two parties, and then optimize over the remaining five parties. Then we sometimes
found that Party 3 would come in at some value x3 ∈ (0.7, 0.8), after which all remaining

Figure . Output from the voting model Java applet with n = 5 parties, and with a positive value of medi-
anProb. The result is that x1 = x5 = 1/2while x2 = x3 = x4 = OUT, supporting Osborne’s conjecture with
n = 5 parties.

D
ow

nl
oa

de
d

by
 [

50
.1

00
.2

54
.2

12
]

at
 0

5:
45

 0
6

D
ec

em
be

r
20

17

6 J. S. ROSENTHAL

Figure . Output from the voting model Java applet with n = 6 parties, and with a positive value of medi-
anProb. The result is that x1 = x6 = 1/2while x2 = x3 = x4 = x5 = OUT, supporting Osborne’s conjecture
even with n = 6 parties.

parties would stay out. This would allow Party 3 to win the election outright and receive a
payoff of+1 (see Fig. 6). At first we thought this was an artifact of the simulation, but we later
determined that it is in fact optimal behavior for Party 3 in this situation. (We later realized
that similar situations are also considered in Appendix A1 of de Vries, 2015.)

7. The “isolated-point” limitation

The addition of medianProb and mimicProb above go a long way toward helping the applet
“find” all relevant actions. However, they do not completely solve the problem, as we now
illustrate.

Inspired by the calculations of de Vries (2015), consider the following situation. Suppose
there are n = 7 parties, and the first five parties have already chosen their positions as x1 =

Figure . Output from the voting model Java applet with n = 7 parties, and with a positive value of medi-
anProb. The result is that x1 = x7 = 1/2while x2 = x3 = x4 = x5 = x6 = OUT, supporting Osborne’s con-
jecture even with n = 7 parties.

D
ow

nl
oa

de
d

by
 [

50
.1

00
.2

54
.2

12
]

at
 0

5:
45

 0
6

D
ec

em
be

r
20

17

COMMUNICATIONS IN STATISTICS—SIMULATION AND COMPUTATION® 7

Figure. Output fromthevotingmodel Javaapplet (originalmodel),withn = 7parties. In this case, starting
with x1 = 0.5 and x2 = 0.1 and optimizing over Parties through , the applet finds a surprising solution
in which Party comes in between . and . (in this case, at x3 = 0.7179), thus forcing all the remaining
parties to chooseOUT so that Party wins outright.

0.5, x2 = 0.1, x3 = 0.9, x4 = 0.4, and x5 = 0.6, respectively. Then what actions should parties
6 and 7 take?

Well, it is not hard to see that if Party 6 comes in at x6 = 0.2, and Party 7 comes in at
x7 = 0.8 (or vice versa), then each of the Parties 2,3,4,5,6,7 will each receive a vote share of
0.15, while Party 1 will receive a vote share of 0.1. Thus, Parties 2,3,4,5,6,7 will tie for the most
votes and each receive payoff of 1/6, while Party 1 will lose and receive payoff of −1. And
given the actions of the first five parties, the choices x6 = 0.2 and x7 = 0.8 (or vice versa) are
indeed optimal for Parties 6 and 7.

However, our applet as designed cannot “find” this solution! Indeed, if tweaks of x6 are
generated variously fromnormal distributions, uniformdistributions,medianProb, andmim-
icProb, then they will include values, which are close to 0.2 and 0.8, but they will never include
exactly 0.2 or 0.8. And, if x6 differs from 0.2 or 0.8 by even the smallest amount, then Party 6
will receive a (slightly) lower vote share than at least one of the other parties, so Party 6 will
receive payoff of−1, which is much worse than 1/6. As a result, when running our applet for
this situation, Parties 6 and 7 instead stay OUT and receive payoff of zero (Fig. 7).

The reason for this limitation is that the payoff values are highly discontinuous functions
of the positions xi. For example, in the above situation, if x6 = 0.2 or x6 = 0.8 then Party 6
will receive a payoff of 1/6, but if x6 equals any other value then Party 6 will receive a payoff
of−1. Motivated by this, we next consider a related model in which the payoff values do not
have this discontinuity.

8. A related continuousmodel

Motivated by the above, we wish to modify our original model to make the payoffs have fewer
discontinuities. We do this in two stages. In each case, we leave the computation of the vote
shares wi exactly the same as in (1). And the payoff is always zero for parties who stay OUT.
All that is modified is the payoff rule for parties who contest the election.

D
ow

nl
oa

de
d

by
 [

50
.1

00
.2

54
.2

12
]

at
 0

5:
45

 0
6

D
ec

em
be

r
20

17

8 J. S. ROSENTHAL

Figure . Output from the votingmodel Java applet (originalmodel) withn = 7 parties, assumingwe begin
with x1 = 0.5, x2 = 0.1, x3 = 0.9, x4 = 0.4, and x5 = 0.6. The result is that Parties and stay OUT, rather
than finding their optimal actions x6 = 0.2 and x7 = 0.8.

For clarity, we let “Original Model” (OM) refer to our previous model above, with payoff 0
for parties, which stay out, and −1 for parties who contest the election and lose, and 1/k for
parties who contest the election and tie for highest vote share with a total of k parties.

We next define a “Modified Original Model” (MOM) as having the same vote shares as in
(1), and still giving payoff 0 to parties, which stay out, but now giving payoff −c to parties,
which contest the election and lose (for some fixed penalty value c, assumed to satisfy 0 <

c < 1/n), and payoff (1/k)− c to parties, which go in and tie for highest vote with a total of
k parties.

Then it is easy to see that:

Proposition 8.1. MOM and OM are exactly equivalent in terms of the parties’ behavior. In par-
ticular, a sequence of positions x1, x2, . . . , xn is a Nash equilibrium for MOM if and only if it is
a Nash equilibrium for OM.

Proof. This follows because the payoffs in the two games are ordinally equivalent. More for-
mally, let Si(x1, . . . , xn) be the payoff received by Party i according to OM when Party i takes
position xi for 1 ≤ i ≤ n, and let Ti(x1, . . . , xn) be the payoff received by Party i according
to MOM. Then for two sets of positions x1, x2, . . . , xn and x′1, x′2, . . . , x′n, Si(x′1, . . . , x′n) >

Si(x1, . . . , xn) if and only if Ti(x′1, . . . , x′n) > Ti(x1, . . . , xn). This means that Party i has the
same set of action preferences in the two models. In particular, Party i can profitably deviate
from a configuration underMOM if and only if they can profitably deviate from it under OM.
The result follows. �

Since MOM has equivalent actions as OM, it will not help with the discontinuity problems
mentioned earlier. To deal with those, we instead introduce a new “continuous model” (CM).
This model still has the same vote shares as in (1), and still gives payoff 0 to parties, which
stay out. It also gives payoff −c to parties, which contest the election and lose (for the same
fixed penalty value c ∈ (0, 1/n) as above). However, for parties who contest the election and

D
ow

nl
oa

de
d

by
 [

50
.1

00
.2

54
.2

12
]

at
 0

5:
45

 0
6

D
ec

em
be

r
20

17

COMMUNICATIONS IN STATISTICS—SIMULATION AND COMPUTATION® 9

receive a vote share wi, their payoff score is now equal to

si = (wi)
α

∑
j(w j)α

− c (2)

for some fixed (large) power value α > 0.
A key observation is that for large α, this new CM model is similar to the previous MOM

model. More precisely, MOM is the limit of the CMmodels as α→∞. (This was the motiva-
tion for introducingMOM; by Proposition 8.1, MOM andOM are equivalent, but onlyMOM
is the limit of the CMmodels.)

Proposition 8.2. As α→∞, CM converges to MOM, in the sense that under the same actions,
each party’s payoff under CM converges to the corresponding payoff under MOM.

Proof. Again let Ti(x1, . . . , xn) be the payoff received by Party i according to MOM when
Party i takes position xi for 1 ≤ i ≤ n. Also let U (α)

i (x1, . . . , xn) be the payoff received by
Party i according to CM with a particular power value α > 0.

Obviously if xi = OUT then U (α)
i (x1, . . . , xn) = Ti(x1, . . . , xn) = 0 for all α, so clearly

limα→∞U (α)
i (x1, . . . , xn) = Ti(x1, . . . , xn) = 0.

If Party i contests the election but receives a smaller vote share than some other Party j∗,
so that wi < w j, then Ti(x1, . . . , xn) = −c, whileU (α)

i (x1, . . . , xn) = (wi)
α

∑
j (w j)α

− c ≥ −c, but
on the other hand,

lim
α→∞

U (α)
i (x1, . . . , xn) = lim

α→∞
(wi)

α

∑
j(w j)α

− c ≤ lim
α→∞

(wi)
α

(w j∗)
α
− c = 0− c = −c.

Hence, in this case limα→∞U (α)
i (x1, . . . , xn) = −c = Ti(x1, . . . , xn).

Finally, suppose that Party i contests the election and ties for highest vote share with a
total of k parties. Then there is a subset � ⊆ {1, 2, . . . , n} with i ∈ � and |�| = k, such that
wi = w j for all j ∈ �, and wi > w j for all j �∈ �. Then we compute that

lim
α→∞

U (α)
i (x1, . . . , xn) = lim

α→∞
(wi)

α

∑
j(w j)α

− c = lim
α→∞

(wi)
α

k(wi)α +∑
j �∈�(w j)α

− c

= lim
α→∞

1
k+∑

j �∈�(w j/wi)α
− c = lim

α→∞
1

k+ 0
− c = (1/k)− c,

so yet again limα→∞U (α)
i (x1, . . . , xn) = Ti(x1, . . . , xn) = 0, as claimed. �

Propositions 8.1 and 8.2 together show that our continuous model (CM) for large α is
similar to the modified original model (MOM), which in turn is ordinally equivalent to the
original model (OM). This suggests that studying CM will lend additional insights into OM.

9. Simulation of the continuousmodel (CM)

In contrast to the situation with OM, our Java applet for CM is indeed able to avoid the above
isolated-point limitation and find (nearly) optimal actions.

For example, consider the above situation where there are n = 7 parties, and the first five
parties have already chosen their positions as x1 = 0.5, x2 = 0.1, x3 = 0.9, x4 = 0.4, and x5 =
0.6. For OM, our Java applet was unable to locate the optimal remaining actions x6 = 0.2 and
x7 = 0.8 (or vice versa).However, for the continuousmodel, the applet does indeed find values
very close to the optimal ones (see Fig. 8).

D
ow

nl
oa

de
d

by
 [

50
.1

00
.2

54
.2

12
]

at
 0

5:
45

 0
6

D
ec

em
be

r
20

17

10 J. S. ROSENTHAL

Figure . Output from the voting model Java applet (continuous model) with n = 7 parties, assuming we
begin with x1 = 0.5, x2 = 0.1, x3 = 0.9, x4 = 0.4, and x5 = 0.6. In this case, Parties and find actions
x6 = 0.1992 and x7 = 0.8001, which are very close to their optimal actions x6 = 0.2 and x7 = 0.8. And,
since the model is now continuous, they accept those values and contest the election there and receive a
positive payoff. In this way, the applet finds a set of actions, which is very close to the optimal actions.

Similar results were found in other simulations, too. In each case, the applet for CM (in
contrast to OM) was able to find optimal actions even when they were isolated points. We
conclude from this that CM is more amenable to simulation in some sense, as we discuss in
the next section.

Despite Propositions 8.1 and 8.2 above, the optimal behavior under CM does not always
imitate that of OM. For example, suppose there are n = 3 parties, and we optimize the actions
of all three.

For OM, as discussed above, it is optimal for Parties 1 and 3 to each come in at 1/2, and
for Party 2 to stay out. And indeed, our applet (with a positive value of medianProb) quickly
finds this equilibrium; see Fig. 9.

On the other hand, our applet for n = 3 for CM finds a somewhat different optimal out-
come. This time, Parties 2 and 3 come in at 1/2, while Party 1 stays out; see Fig. 10.

In light of Propositions 8.1 and 8.2, the differing behavior in these two cases might initially
be dismissed as mere simulation error. However, to our initial surprise, it actually indicates
fundamentally different behavior of the OM and CMmodels, as we now explain.

Figure . Output from the voting model Java applet (original model), optimizing over the actions of all of
the n = 3 parties. The chosen optimal actions are x1 = x3 = 1/2 and x2 = OUT, consistent with Osborne’s
conjecture.

D
ow

nl
oa

de
d

by
 [

50
.1

00
.2

54
.2

12
]

at
 0

5:
45

 0
6

D
ec

em
be

r
20

17

COMMUNICATIONS IN STATISTICS—SIMULATION AND COMPUTATION® 11

Figure . Output from the votingmodel Java applet (continuousmodel), optimizing over the actions of all
of the n = 3 parties. In this case, the chosen optimal actions are x2 = x3 = 1/2 and x1 = OUT, somewhat
different from the original model (but still consistent with Duverger’s law).

Indeed, with n = 3 parties, suppose Party 1 comes in at x1 = 1/2, and then Party 2 comes
in very near to 1/2, say at x2 = 0.501. Then under OM, Party 3 can come in even closer to
1/2 but on the other side, say at x3 = 0.4995. If so, then Party 3 will win the largest vote share,
and thus a payoff of +1, while Parties 1 and 2 will each lose and thus receive a payoff of −1.
(Or, if Party 2 comes in at x2 = 1/2, then Party 3 can come in at say x3 = 0.51 and win the
largest vote share.) This shows that it is actually not optimal for Party 2 to enter. Instead, it is
optimal for Party 2 to stay out, and then for Party 3 to come in at x3 = 1/2, as per Osborne’s
conjecture.

But underCM, the situation is different. In that case, suppose again thatn = 3 and x1 = 1/2
and x2 = 0.501, and then Party 3 comes in at x3 = 0.4995. Then Party 3 still wins the largest
vote share, but Party 2 receives nearly as much, so they each receive payoff of about 1/2. (To be
precise, if x1 = 1/2 and x2 = 0.501 and x3 = 0.4995, and say α = 20, then the vote shares are
w3 = 0.49975, w2 = 0.4995, and w3 = 0.00075, so Party 3 receives payoff of about 0.5025,
and Party 2 about 0.4975, with Party 1 receiving approximately 10−57.)

Now, it is still true as per Propositions 8.1 and 8.2 that as the power value α→∞, the
payoffs under CM converge to those under OM. So, in this case, as α→∞, the payoff for
Party 2 does indeed converge to zero. However, because the vote shares of Parties 2 and 3
are so close, α has to be very large before the asymptotics kick in. Indeed, if α = 1, 000, then
Party 2’s payoff is still about 0.3775. But if α = 10, 000 then it is about 0.000667, and if α =
100, 000 then it is about 10−22. More importantly, for any fixed choice of α > 0, if x1 = 1/2,
then Party 2 can always choose x2 sufficiently close to 1/2 to obtain a positive payoff of nearly
0.5 (assuming Party 3 then chooses a position x3 on the opposite side of 1/2 from x2). This
indicates, surprisingly in light of Propositions 8.1 and 8.2, that behavior similar to that in
Fig. 10 can persist even for arbitrary large α.

We conclude from all of this that the continuous model is closely related to the original
model (see Propositions 8.1 and 8.2), and it is more amenable to simulations (see above, and
as discussed further below), but it does lead to somewhat different optimal behavior in some
cases.

10. Attainable equilibria

We finish with a more theoretical discussion of the extent to which our continuous model
(CM) is more amenable to simulation than the original model (OM). To do this, we wish to
capture the notion that it is possible for our simulation to “find” actions, which are “close” to
the optimal ones. We begin with some definitions.

D
ow

nl
oa

de
d

by
 [

50
.1

00
.2

54
.2

12
]

at
 0

5:
45

 0
6

D
ec

em
be

r
20

17

12 J. S. ROSENTHAL

Let X be the set of all possible actions by all parties, that X = ({OUT} ∪ [0, 1])n.
Let D be a distance metric on X . In our case, we use the L1 distance D(x, y) =∑n

i=1 |xi −
yi|, with the understanding that if xi = yi = OUT then we take |xi − yi| = 0, while if xi =
OUT but yi ∈ R or vice versa then we take |xi − yi| = 1.

Given a list x = (x1, x2, . . . , xn) of positions of all parties, and ε > 0, we define �(x, ε) to
be the “ε-neighborhood” of x, that is, the set of all position lists x′ = (x′1, x′2, . . . , x′n) such that
(a) the party positions x′ are within ε of the corresponding positions x, that is, D(x′, x) ≤ ε,
and (b) each party’s payoff from x′ is within ε of the corresponding payoff from x, that is,
if s1, . . . , sn are the party payoffs from x, and s′1, . . . , s′n are the party payoffs from x′, then
|x′i − xi| ≤ ε for all i.

To continue, we borrow the notion of “φ-irreducibility” from the Markov chain Monte
Carlo literature (see, e.g., Meyn and Tweedie, 1993; Roberts and Rosenthal, 2004; Tierney,
1994). We begin with a reference measure φ onX , that is, any countably additive measure on
the set X of all possible actions. Then we define a position list x to be φ-attainable if for any
ε > 0, the ε-neighborhood �(x, ε) of x has positive measure under φ, that is, φ(�(x, ε)) >

0. Intuitively, this means that the set of all position lists “near” to x has positive measure,
according to φ.

One specific reference measure of interest is φind = (12 δOUT + 1
2 Uniform[0, 1])n. This

measure corresponds to each party independently choosing the same strategy “ 12 δOUT +
1
2 Uniform[0, 1],” which has the interpretation of staying out with probability 1/2, otherwise
coming in with a position distributed as Uniform[0,1] (more formally, Lebesgue measure on
[0,1]). We have the following.

Proposition 10.1. Let x = (x1, . . . , xn) be a position list in which no two parties come in at the
same position, that is, if xi ∈ R and xj ∈ R and i �= j, then xi �= x j. Then under the continuous
model (CM), the position list x is φind-attainable.

Proof. If the {x j} are all distinct, then each vote region Ri and vote share wi and payoff is
a continuous function of the {x j}. Hence, for all configurations x′ sufficiently close to x, the
payoffs are still within ε of their original values, so that x′ ∈ �(x, ε). This gives the result. �

Proposition 10.1may be interpreted as saying that, if a computer program simulates poten-
tial position lists from φind, and x has no two parties at the same position, then for any ε > 0,
it has a positive probability of eventually proposing a position list, which is within ε of x.

If desired, by carefully bounding the various derivatives, it is possible to obtain a (weak)
quantitative version of Proposition 10.1, as follows (proved in the Appendix).

Proposition 10.2. Let x be a configuration for which |xi − x j| ≥ 	 for all i �= j, and si ≥
δ > 0 for each positive score function si. Then under the continuous model, for any ε >

0, the ε-neighborhood �(x, ε) includes all configurations x′ for which D(x′, xi) ≤ γ :=
min[, δ/2, ε δα−1/α(n− 1)]. Furthermore, φind(�(x, ε)) ≥ (γ /2)n (2n/n!) > 0.

To make Propositions 10.1 and 10.2 more concrete, consider again the position list dis-
cussed earlier as inspired by de Vries (2015) and approximated in Fig. 8 above, namely,
x1 = 0.5, x2 = 0.1, x3 = 0.9, x4 = 0.4, x5 = 0.6, x6 = 0.2, and x7 = 0.8. Under the origi-
nal model (OM), this configuration is clearly not φind-attainable, since if, for example, x7 is
changed by any arbitrarily small amount, then Party 7’s payoff is changed from +1/6 to −1,
which is a difference more than ε for all small ε > 0. However, by Proposition 10.1, this con-
figuration is indeed φind-attainable in the continuous model (CM), and indeed a (weak) lower

D
ow

nl
oa

de
d

by
 [

50
.1

00
.2

54
.2

12
]

at
 0

5:
45

 0
6

D
ec

em
be

r
20

17

COMMUNICATIONS IN STATISTICS—SIMULATION AND COMPUTATION® 13

bound on φind(�(x, ε)) could then be computed from Proposition 10.2. This further illus-
trates the difference between OM and CM in terms of simulation.

Now, Propositions 10.1 and 10.2 do not apply to position lists where multiple parties come
in at the same position. To deal with such cases, we need tomodify our referencemeasure to a
new oneφmix, which gives positive probability to configurations withmultiple equal positions.
Specifically, given a partition of {1, 2, . . . , n} into subsets S = (S0, S1, . . . , Sk), we let μS be
the probability measure under which all parties in S0 choose OUT (with probability 1), and
for 1 ≤ i ≤ k, all of the parties in Si all choose the same equal position xi ∈ R, where xi is
chosen independently from the Uniform[0,1] distribution. Then we define φmix to be the sum
of the μS , over all partitions S = (S0, S1, . . . , Sk) of {1, 2, . . . , n}. That is,

φmix =
∑

S=(S0,S1,...,Sk)

μS,

with μS as above. This definition of φmix is rather cumbersome, but it does allow us to attain
position lists even if they have multiple identical positions:

Proposition 10.3. Under the continuous model (CM), any position list x is φmix-attainable.

We now apply the attainable concept to simulation algorithms. Consider a simulation that
proposes new strategies according to some random rules, keeping track of the best strategy
so far. Given any reference measure φ on X , we say that the simulation procedure covers
φ if there is ε > 0 and N ∈ N such that for any subset A ⊆ X of positions lists satisfying
φ(A) > 0, and any t ≥ 0, and any previous history of the simulation up to iteration t , the
simulation still has probability at least ε of proposing a state within the subset A at some
iteration between t + 1 and t + N. Roughly speaking, a simulation covers φ if it has positive
probability of proposing tweaks to any φ-positive subset of configurations. The connection
between covering and attainability is as follows. (Note that Proposition 10.4 applies to any
game, not just the voter models discussed herein.)

Proposition 10.4. Let φ be any reference measure on X , and let x ∈ X be any action configu-
ration. Suppose x is φ-attainable, and a computer simulation covers φ. Then for any ε > 0, as
the number of iterations converges to infinity, the probability that the computer simulation will
propose a configuration within the ε-neighborhood �(x, ε) of x converges to 1.

Now, the Java applet simulation described above clearly covers φind, since, for example, it
has positive probability of proposing a tweak from the Uniform[0,1] distribution (and also of
switching to and from OUT) at each iteration. Furthermore, provided mimicProb > 0, the
applet also covers φmix. This shows:

Proposition 10.5. For any ε > 0, and any fixed configuration list x, as the number of iterations
goes to infinity, the Java applet described herein for the continuous model, with mimicProb > 0,
will eventually propose tweaks within the ε-neighborhood of x.

Now, Proposition 10.5 does not specify that the applet’s proposed tweak to the ε-
neighborhood will be accepted. However, if x is a configuration in which each party behaves
optimally, then any proposed tweak leads to a payoff within ε of optimal for each party. So,
such a tweak will be accepted by the algorithm, unless it has already found another configu-
ration with even larger payoffs. This proves:

D
ow

nl
oa

de
d

by
 [

50
.1

00
.2

54
.2

12
]

at
 0

5:
45

 0
6

D
ec

em
be

r
20

17

14 J. S. ROSENTHAL

Proposition 10.6. For any ε > 0, as the number of iterations goes to infinity, the Java applet
described herein for the continuous model, with mimicProb > 0, will eventually find a configu-
ration giving payoffs for all parties, which are within ε of being optimal.

Proposition 10.6 verifies that our Java applet approach is valid for the continuous model
(at least), in the sense that it is guaranteed to eventually find configurations, which are within
ε of being optimal.

On the other hand, if our algorithm is just run for a finite amount of time, then it still might
miss an ε-optimal solution. And in any case, the above guarantees are only for the continuous
model, not for the original model. For both of these reasons, although our results are sugges-
tive, they do not suffice to actually prove Osborne’s conjecture, which thus still remains just a
conjecture for all n > 4.

Appendix: Proof of proposition 10.2

Finally, we prove Proposition 10.2. We proceed in stages.
Beginning with the vote regions Ri, we see from the definition of Ri that if any x j changes

by a small amount, then (since xi �= x j) Ri can change by at most half that amount at each
endpoint. It follows from (1) that the vote shareswi satisfy

∣∣ ∂wi
∂x j

∣∣ ≤ 1/2 for any i and j (whether

i = j or not). Also we must always have
∣∣ ∂wi
∂w j

∣∣ ≤ 1.
Next we consider the payoff functions wi from (2). We first note that in general, for any

non-negative functions f and g,
∣∣∣∣
d
dx

f (x)
f (x)+ g(x)

∣∣∣∣ =
∣∣∣∣
d
dx

1
1+ g(x)/ f (x)

∣∣∣∣ =
∣∣∣∣∣−

d
dx [g(x)/ f (x)]

(1+ g(x)/ f (x))2

∣∣∣∣∣ ≤
∣∣∣∣
d
dx

g(x)
f (x)

∣∣∣∣ .

Applying this with f = (wi)
α and g =∑

j �=i(w j)
α (and taking wi = 0 for parties who do not

contest the election) gives
∣∣∣∣

∂si
∂w j

∣∣∣∣ ≤
∑

j �=i
α(w j/wi)

α−1.

In particular, w j ≤ 1, so
∣∣∣∣

∂si
∂w j

∣∣∣∣ ≤
∑

j �=i
α(1/wi)

α−1 = α(n− 1)/wα−1
i .

Then since | ∂wi
∂x j
| ≤ 1/2, it follows that

∣∣∣∣
∂si
∂x j

∣∣∣∣ ≤ α(n− 1)/2wα−1
i .

Now, if D(x′, x) ≤ min(, δ/2), then w′i ≥ δ/2, so at any such x′ we must still have
∣∣∣
∂si
∂x j

∣∣∣ ≤ α(n− 1)/δα−1.

So, if D(x′, x) ≤ min(, δ/2, β) for some β > 0, then each s′i is within βα(n− 1)/δα−1 of
si. Solving, this bound equals ε if β = ε δα−1/α(n− 1). Furthermore this β ≤ ε, too. So, if
D(x′, x) ≤ min(, δ/2, β) =: γ , then we must have x′ ∈ �(x, ε) as claimed.

D
ow

nl
oa

de
d

by
 [

50
.1

00
.2

54
.2

12
]

at
 0

5:
45

 0
6

D
ec

em
be

r
20

17

COMMUNICATIONS IN STATISTICS—SIMULATION AND COMPUTATION® 15

For the second result, recall that φind = (12 δOUT + 1
2 Uniform[0, 1])n, so φind(�(x, ε))

must be at least as large as (1/2)n times the Lebesgue measure of an n-dimensional L1 ball
of radius γ . By rescaling, the latter is the same as γ n(1/2)n times the Lebesgue measure of
a unit n-dimensional L1 ball. But it is known (e.g., Wang, 2005) that the volume of a unit
n-dimensional L1 ball is equal to 2n/n!. Hence, φind

(
�(x, ε)) ≥ γ n(1/2)n(2n/n!), as claimed.

Acknowledgments

The author thanksMartin J. Osborne for introducing him to this topic and formany helpful discussions,
and thanks the anonymous referee for a careful reading and many excellent suggestions.

Funding

This research was partially supported by NSERC of Canada.

ORCID

Jeffrey S. Rosenthal http://orcid.org/0000-0002-5118-6808

References

de Vries, J.-P. (2015). Duverger’s (f)law: Counterproof to the Osborne Conjecture. MSc thesis. Available
at: https://thesis.eur.nl/pub/17645/

de Vries, J.-P., Kamphorst, J. J. A., Osborne, M. J., Rosenthal, J. S. (2016). On a conjecture about the
sequential positioning of political candidates. Work in progress.

Duverger, M. (1951). Les Partis Politiques. Paris: Armand Colin.
Meyn, S. P., Tweedie, R. L. (1993). Markov Chains and Stochastic Stability. London: Springer-Verlag.

Available at: probability.ca/MT.
Nash, J. (1951). Non-cooperative games. The Annals of Mathematics 52(2):286–295.
Osborne, M. J. (1996). A Conjecture about the Subgame Perfect Equilibria of a Model of Sequential

Location. Available at: https://www.economics.utoronto.ca/osborne/research/conjecture.html
Osborne, M. J. (2003). An Introduction to Game Theory. Oxford: Oxford University Press.
Riker, W. (1982). The two-party system and Duverger’s law: An essay on the history of political science.

American Political Science Review 76(4):753–766.
Roberts, G. O., Rosenthal, J. S. (2004). General state spaceMarkov chains andMCMC algorithms. Prob-

ability Surveys 1:20–71. Available at: http://www.i-journals.org/ps/viewarticle.php?id=15
Rosenthal, J. S. (2015). Voting Model Java Applet. Available at: www.probability.ca/voting
Schlesinger, J. A., Schlesinger, M. S. (2006). Maurice Duverger and the study of political parties. French

Politics 4:58–68.
Tierney, L. (1994). Markov chains for exploring posterior distributions (with discussion). Annals of

Statistics 22:1701–1762.
Wang, X. (2005). Volumes of generalized unit balls.Mathematics Magazine 78(5):390–395.

D
ow

nl
oa

de
d

by
 [

50
.1

00
.2

54
.2

12
]

at
 0

5:
45

 0
6

D
ec

em
be

r
20

17

http://orcid.org/0000-0002-5118-6808
https://thesis.eur.nl/pub/17645/
https://www.economics.utoronto.ca/osborne/research/conjecture.html
http://www.i-journals.org/ps/viewarticle.php?id=15

