Weight-Preserving Simulated Tempering

Jeffrey S. Rosenthal, University of Toronto.

(Fujitsu/UofT/DA Monthly Seminar, March 23, 2022)

N.G. Tawn, G.O. Roberts, and J.S. Rosenthal, "Weight-Preserving Simulated Tempering". *Statistics and Computing* **30** (2020), 27–41.

G.O. Roberts, J.S. Rosenthal, and N.G. Tawn, "Skew Brownian Motion and Complexity of the ALPS Algorithm". *Journal of Applied Probability* **59(3)**, to appear.

Background on the Metropolis Algorithm (MCMC)

• Given a previous state X, <u>propose</u> a new state $Y \sim Q(X, \cdot)$.

(Assume that Q is <u>symmetric</u> about X; otherwise "Metropolis-Hastings".)

• Then, if $\pi(Y) > \pi(X)$, <u>accept</u> the new state and move to it.

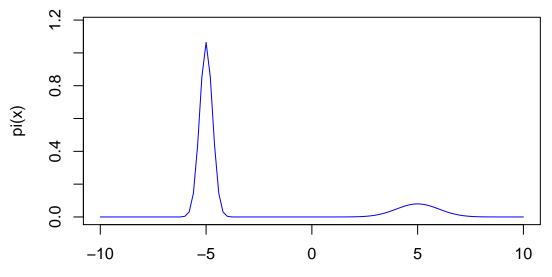
• If not, then accept it only with probability $\pi(Y) / \pi(X)$, otherwise <u>reject</u> it and stay where you are.

• The empirical distribution (black) converges to the target (blue). [Metropolis]

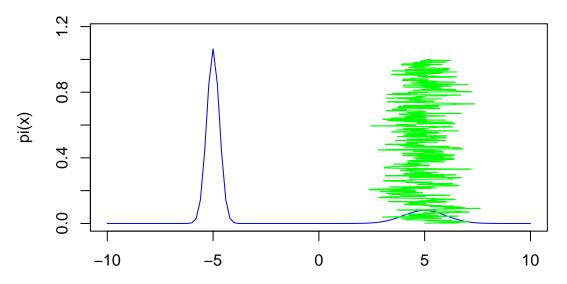
• Good for sampling (to estimate expected values $\mathbf{E}_{\pi}(h)$), and for optimisation (to find modes $\arg \max_{x} \pi(x)$).

Problem: The Chain can get Stuck in a Local Mode

- Can't "jump over" places where π small. [Metropolis ex]
- Consider the following running example, with two separated modes:



• A simple Metropolis algorithm may have trouble mixing well:

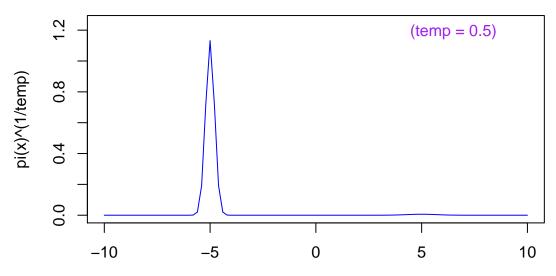


• The chain (green, running "up") can't easily move from "5" to "-5".

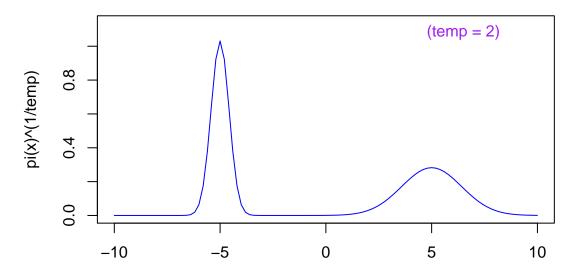
• And this problem gets even <u>worse</u> in higher dimensions.

Traditional Solution: Tempering

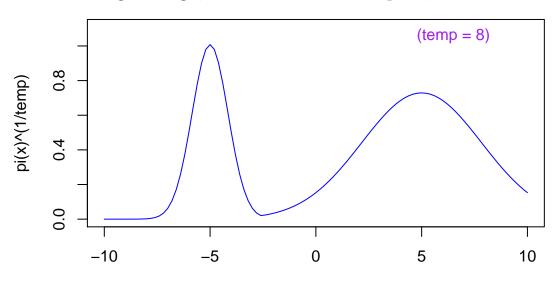
- Replace the target $\pi(x)$ by a <u>tempered</u> version, $\pi_{\tau}(x) = \pi(x)^{1/\tau}$.
- For optimisation: let $\tau \searrow 0$ (cooling), to make it more "peaked":



• But for mixing, take $\tau \gg 1$, to make it "flatter" $(\pi(x)^{1/\tau} \to 1)$:



2

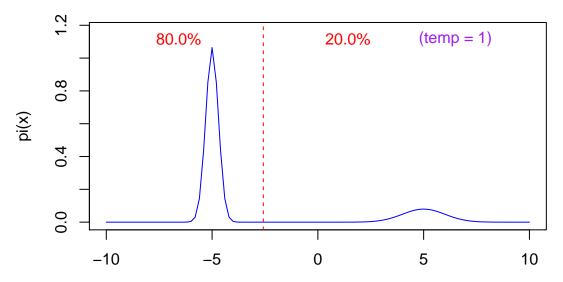


• If τ is large enough, then the chain can explore, without obstacles:

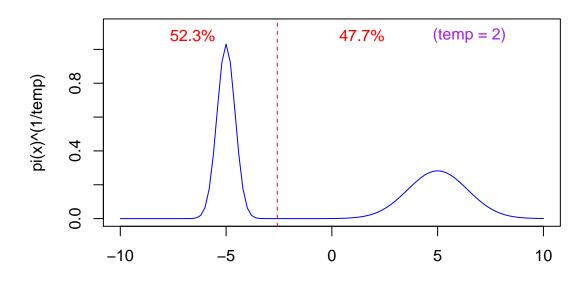
Challenge: Tempering Doesn't Preserve Mode Weights

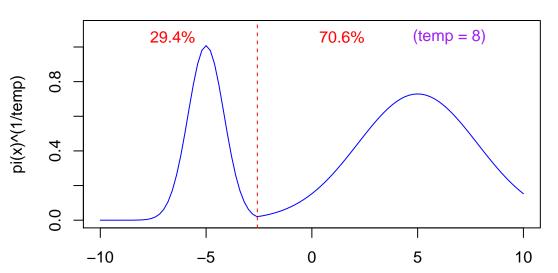
• How much "weight" (probability mass) does each mode have?

• In our example, the original $(\tau = 1)$ target has a certain balance:



As we do more tempering (τ ≯), the density values get closer to 1.
This gives more weight to "fatter" modes, even with small π(x):

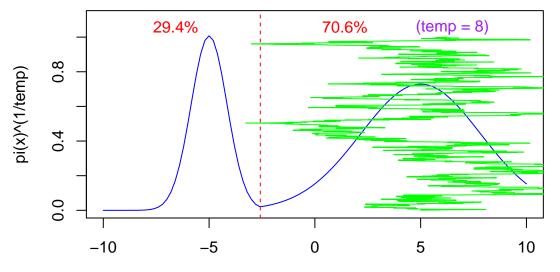




• For large enough temperatures τ , the weights become very different:

• This means that even though there are no "obstacles" to moving from 5 to -5, there is less "motivation" for the chain to do so.

- So, the chain will not move to near -5 very often.
- But, at $\tau = 1$, the mode around -5 has most of the mass of $\pi(x)$.
- In higher dimension, the weight changes become exponentially worse.
- This can lead to poor mixing (cf. Woodard et al., 2009):



So, we have exchanged one convergence problem for another. Bad!
(Note: I focus here on Simulated Tempering, with a single chain. But the same mixing problems arise for Parallel Tempering, i.e. Replica Exchange, with one chain for <u>each</u> possible temperature.)

Some Theory on Why the Weights are not Preserved

- Can we get the benefits of tempering, while avoiding weight changes?
- Suppose π is a mixture of probability distributions: $\pi(x) = \sum_j w_j g_j(x)$.
- Usual tempering: $\pi_{\tau}(x) = [\pi(x)]^{1/\tau} = [\sum_{j} w_{j} g_{j}(x)]^{1/\tau}$.
- If the components are well separated, $\pi_{\tau}(x) \approx \sum_{j} w_{j}^{1/\tau} g_{j}(x)^{1/\tau}$.

- Let $m_{j,\tau} = \int g_j(z)^{1/\tau} dz$ be the mass of $g_j(x)^{1/\tau}$. So $m_{j,1} = 1$.
- Let $f_j(x,\tau) = g_j(x)^{1/\tau}/m_{j,\tau}$ be the normalised version of $g_j^{1/\tau}$.
- Then $\pi_{\tau}(x) \approx \sum_{j} (w_j^{1/\tau} m_{j,\tau}) f_j(x,\tau).$
- Since $w_j^{1/\tau} m_{j,\tau} \neq w_j$ for $j \neq 1$, the weights are not preserved.
- Can we get the benefits of tempering, while avoiding weight changes?

Solution – Weight-Preserving Tempering

- Idea: Replace $\pi_{\tau}(x) = [\pi(x)]^{1/\tau}$ by $\pi_{\tau}^*(x) = [\pi(x)]^{1/\tau} [\pi(\mu_{x,\tau})]^{1-(1/\tau)}$.
- Here $\mu_{x,\tau}$ is the closest mode to x, at a given temperature τ .
- Then if $\pi(x) = \sum_j w_j g_j(x)$ are well separated, then

$$\pi_{\tau}^{*}(x) = [\pi(x)]^{1/\tau} [\pi(\mu_{x,\tau})]^{1-(1/\tau)} = \left[\sum_{j} w_{j} g_{j}(x)\right]^{1/\tau} \left[\sum_{j} w_{j} g_{j}(\mu_{x,\tau})\right]^{1-(1/\tau)}$$
$$\approx \left[\sum_{j} w_{j}^{1/\tau} g_{j}(x)^{1/\tau}\right] \left[\sum_{j} w_{j}^{1-(1/\tau)} g_{j}(\mu_{x,\tau})^{1-(1/\tau)}\right]$$
$$\approx \sum_{j} \left[w_{j}^{1/\tau} g_{j}(x)^{1/\tau}\right] \left[w_{j}^{1-(1/\tau)} g_{j}(\mu_{x,\tau})^{1-(1/\tau)}\right]$$
$$= \sum_{j} w_{j} g_{j}(x)^{1/\tau} g_{j}(\mu_{x,\tau})^{1-(1/\tau)}.$$

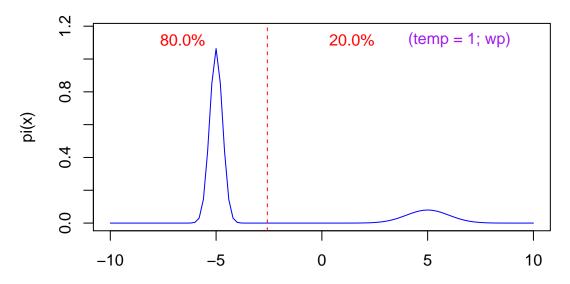
• Near the mode, $g_j(x)^{1/\tau} g_j(\mu_{x,\tau})^{1-(1/\tau)} \approx g_j(x)^{1/\tau} g_j(x)^{1-(1/\tau)} = g_j(x)$, so $\int g_j(x)^{1/\tau} g_j(\mu_{x,\tau})^{1-(1/\tau)} dx \approx 1$, so mode *j* has weight $\approx w_j$. Phew!

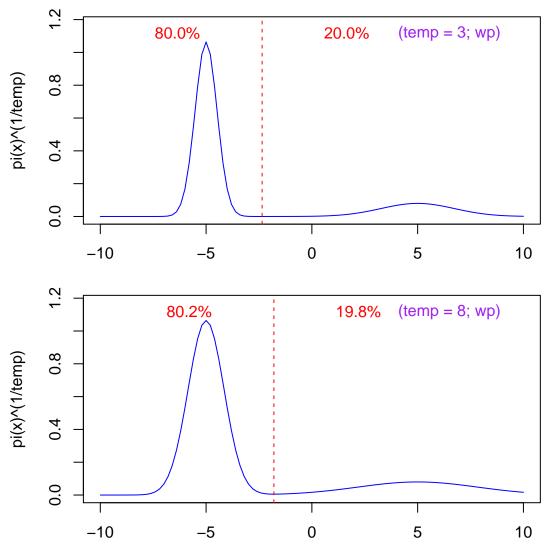
• For example, in the Gaussian case where $g_j(x) = \frac{1}{\sqrt{2\pi\sigma}} e^{-(x-\mu)^2/2\sigma^2}$,

$$\int g_j(x)^{1/\tau} g_j(\mu)^{1-(1/\tau)} dx = \int (\frac{1}{\sqrt{2\pi\sigma}})^{1/\tau} e^{-(x-\mu)^2/2\sigma^2\tau} (\frac{1}{\sqrt{2\pi\sigma}})^{1-(1/\tau)} dx = \sqrt{\tau}$$

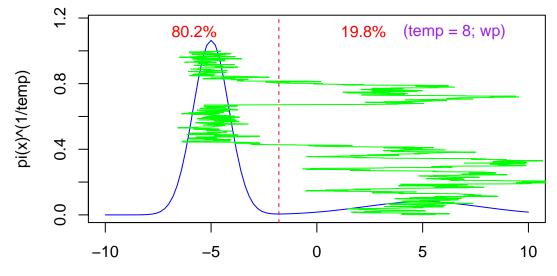
which depends only on τ (not σ), so weight ratios are preserved. Good!

• Let's try this π^* on our example, for different temperatures:





• Weights are approximately preserved. But still mixes pretty well:



THEOREM: Under certain (strong) assumptions, mixing time is O[d (log d)²] in dimension d. Works well in simulations, too. Good!
Apply to discrete distributions, like DA? Maybe – let's discuss it!