
Weight-Preserving Simulated Tempering

Jeffrey S. Rosenthal, University of Toronto.

(Fujitsu/UofT/DA Monthly Seminar, March 23, 2022)

N.G. Tawn, G.O. Roberts, and J.S. Rosenthal, “Weight-Preserving Simulated Tempering”.
Statistics and Computing 30 (2020), 27–41.

G.O. Roberts, J.S. Rosenthal, and N.G. Tawn, “Skew Brownian Motion and Complexity of
the ALPS Algorithm”. Journal of Applied Probability 59(3), to appear.

Background on the Metropolis Algorithm (MCMC)

• Given a previous state X, propose a new state Y ∼ Q(X, ·).
(Assume thatQ is symmetric aboutX; otherwise “Metropolis-Hastings”.)

• Then, if π(Y ) > π(X), accept the new state and move to it.

• If not, then accept it only with probability π(Y ) / π(X), otherwise
reject it and stay where you are.

• The empirical distribution (black) converges to the target (blue).
[Metropolis]

• Good for sampling (to estimate expected values Eπ(h)), and for
optimisation (to find modes arg maxx π(x)).

Problem: The Chain can get Stuck in a Local Mode

• Can’t “jump over” places where π small. [Metropolis ex]

• Consider the following running example, with two separated modes:

−10 −5 0 5 10

0.
0

0.
4

0.
8

1.
2

pi
(x

)

• A simple Metropolis algorithm may have trouble mixing well:

1



−10 −5 0 5 10

0.
0

0.
4

0.
8

1.
2

pi
(x

)

• The chain (green, running “up”) can’t easily move from “5” to “−5”.

• And this problem gets even worse in higher dimensions.

Traditional Solution: Tempering

• Replace the target π(x) by a tempered version, πτ(x) = π(x)1/τ .

• For optimisation: let τ ↘ 0 (cooling), to make it more “peaked”:

−10 −5 0 5 10

0.
0

0.
4

0.
8

1.
2

pi
(x

)^
(1

/te
m

p)

(temp = 0.5)

• But for mixing, take τ � 1, to make it “flatter” (π(x)1/τ → 1):

−10 −5 0 5 10

0.
0

0.
4

0.
8

pi
(x

)^
(1

/te
m

p)

(temp = 2)

2



• If τ is large enough, then the chain can explore, without obstacles:

−10 −5 0 5 10

0.
0

0.
4

0.
8

pi
(x

)^
(1

/te
m

p)

(temp = 8)

Challenge: Tempering Doesn’t Preserve Mode Weights

• How much “weight” (probability mass) does each mode have?

• In our example, the original (τ = 1) target has a certain balance:

−10 −5 0 5 10

0.
0

0.
4

0.
8

1.
2

pi
(x

)

20.0%80.0% (temp = 1)

• As we do more tempering (τ ↗), the density values get closer to 1.

• This gives more weight to “fatter” modes, even with small π(x):

−10 −5 0 5 10

0.
0

0.
4

0.
8

pi
(x

)^
(1

/te
m

p)

47.7%52.3% (temp = 2)

3



• For large enough temperatures τ , the weights become very different:

−10 −5 0 5 10

0.
0

0.
4

0.
8

pi
(x

)^
(1

/te
m

p)

70.6%29.4% (temp = 8)

• This means that even though there are no “obstacles” to moving
from 5 to −5, there is less “motivation” for the chain to do so.

• So, the chain will not move to near −5 very often.

• But, at τ = 1, the mode around −5 has most of the mass of π(x).

• In higher dimension, the weight changes become exponentially worse.

• This can lead to poor mixing (cf. Woodard et al., 2009):

−10 −5 0 5 10

0.
0

0.
4

0.
8

pi
(x

)^
(1

/te
m

p)

70.6%29.4% (temp = 8)

• So, we have exchanged one convergence problem for another. Bad!

• (Note: I focus here on Simulated Tempering, with a single chain.
But the same mixing problems arise for Parallel Tempering, i.e. Replica
Exchange, with one chain for each possible temperature.)

Some Theory on Why the Weights are not Preserved

• Can we get the benefits of tempering, while avoiding weight changes?

• Suppose π is a mixture of probability distributions: π(x) =
∑
j wj gj(x).

• Usual tempering: πτ(x) = [π(x)]1/τ = [
∑
j wj gj(x)]

1/τ
.

• If the components are well separated, πτ(x) ≈ ∑
j w

1/τ
j gj(x)1/τ .

4



• Let mj,τ =
∫
gj(z)1/τ dz be the mass of gj(x)1/τ . So mj,1 = 1.

• Let fj(x, τ) = gj(x)1/τ/mj,τ be the normalised version of g
1/τ
j .

• Then πτ(x) ≈ ∑
j(w

1/τ
j mj,τ) fj(x, τ).

• Since w
1/τ
j mj,τ 6= wj for j 6= 1, the weights are not preserved.

• Can we get the benefits of tempering, while avoiding weight changes?

Solution – Weight-Preserving Tempering

• Idea: Replace πτ(x) = [π(x)]1/τ by π∗τ (x) = [π(x)]1/τ [π(µx,τ)]
1−(1/τ).

• Here µx,τ is the closest mode to x, at a given temperature τ .

• Then if π(x) =
∑
j wj gj(x) are well separated, then

π∗τ (x) = [π(x)]1/τ [π(µx,τ)]
1−(1/τ) =

[∑
j

wj gj(x)
]1/τ [∑

j

wj gj(µx,τ)
]1−(1/τ)

≈
[∑

j

w
1/τ
j gj(x)1/τ

] [∑
j

w
1−(1/τ)
j gj(µx,τ)

1−(1/τ)
]

≈
∑
j

[
w

1/τ
j gj(x)1/τ

] [
w

1−(1/τ)
j gj(µx,τ)

1−(1/τ)
]

=
∑
j

wj gj(x)1/τgj(µx,τ)
1−(1/τ).

• Near the mode, gj(x)1/τgj(µx,τ)
1−(1/τ) ≈ gj(x)1/τgj(x)1−(1/τ) = gj(x),

so
∫
gj(x)1/τgj(µx,τ)

1−(1/τ)dx ≈ 1, so mode j has weight ≈ wj. Phew!

• For example, in the Gaussian case where gj(x) = 1√
2πσ
e−(x−µ)

2/2σ2

,

∫
gj(x)1/τgj(µ)1−(1/τ)dx =

∫
(

1√
2πσ

)1/τe−(x−µ)
2/2σ2τ(

1√
2πσ

)1−(1/τ)dx =
√
τ

which depends only on τ (not σ), so weight ratios are preserved. Good!

• Let’s try this π∗ on our example, for different temperatures:

−10 −5 0 5 10

0.
0

0.
4

0.
8

1.
2

pi
(x

)

20.0%80.0% (temp = 1; wp)

5



−10 −5 0 5 10

0.
0

0.
4

0.
8

1.
2

pi
(x

)^
(1

/te
m

p)

20.0%80.0% (temp = 3; wp)

−10 −5 0 5 10

0.
0

0.
4

0.
8

1.
2

pi
(x

)^
(1

/te
m

p)

19.8%80.2% (temp = 8; wp)

• Weights are approximately preserved. But still mixes pretty well:

−10 −5 0 5 10

0.
0

0.
4

0.
8

1.
2

pi
(x

)^
(1

/te
m

p)

19.8%80.2% (temp = 8; wp)

• THEOREM: Under certain (strong) assumptions, mixing time is
O[d (log d)2] in dimension d. Works well in simulations, too. Good!

• Apply to discrete distributions, like DA? Maybe – let’s discuss it!

www.probability.ca / jeff@math.toronto.edu / @ProbabilityProf

6


