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Background on the Metropolis Algorithm (MCMC)

• Given a previous state X, propose a new state Y ∼ Q(X, ·).
(Assume thatQ is symmetric aboutX; otherwise “Metropolis-Hastings”.)

• Then, if π(Y ) > π(X), accept the new state and move to it.

• If not, then accept it only with probability π(Y ) / π(X), otherwise
reject it and stay where you are.

• The empirical distribution (black) converges to the target (blue).
[Metropolis]

• Good for sampling (to estimate expected values Eπ(h)), and for
optimisation (to find modes arg maxx π(x)).

Problem: The Chain can get Stuck in a Local Mode

• Can’t “jump over” places where π small. [Metropolis ex]

• Consider the following running example, with two separated modes:
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• A simple Metropolis algorithm may have trouble mixing well:
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• The chain (green, running “up”) can’t easily move from “5” to “−5”.

• And this problem gets even worse in higher dimensions.

Traditional Solution: Tempering

• Replace the target π(x) by a tempered version, πτ(x) = π(x)1/τ .

• For optimisation: let τ ↘ 0 (cooling), to make it more “peaked”:
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(temp = 0.5)

• But for mixing, take τ � 1, to make it “flatter” (π(x)1/τ → 1):
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• If τ is large enough, then the chain can explore, without obstacles:
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Challenge: Tempering Doesn’t Preserve Mode Weights

• How much “weight” (probability mass) does each mode have?

• In our example, the original (τ = 1) target has a certain balance:
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• As we do more tempering (τ ↗), the density values get closer to 1.

• This gives more weight to “fatter” modes, even with small π(x):
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47.7%52.3% (temp = 2)
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• For large enough temperatures τ , the weights become very different:
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• This means that even though there are no “obstacles” to moving
from 5 to −5, there is less “motivation” for the chain to do so.

• So, the chain will not move to near −5 very often.

• But, at τ = 1, the mode around −5 has most of the mass of π(x).

• In higher dimension, the weight changes become exponentially worse.

• This can lead to poor mixing (cf. Woodard et al., 2009):
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• So, we have exchanged one convergence problem for another. Bad!

• (Note: I focus here on Simulated Tempering, with a single chain.
But the same mixing problems arise for Parallel Tempering, i.e. Replica
Exchange, with one chain for each possible temperature.)

Some Theory on Why the Weights are not Preserved

• Can we get the benefits of tempering, while avoiding weight changes?

• Suppose π is a mixture of probability distributions: π(x) =
∑
j wj gj(x).

• Usual tempering: πτ(x) = [π(x)]1/τ = [
∑
j wj gj(x)]

1/τ
.

• If the components are well separated, πτ(x) ≈ ∑
j w

1/τ
j gj(x)1/τ .
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• Let mj,τ =
∫
gj(z)1/τ dz be the mass of gj(x)1/τ . So mj,1 = 1.

• Let fj(x, τ) = gj(x)1/τ/mj,τ be the normalised version of g
1/τ
j .

• Then πτ(x) ≈ ∑
j(w

1/τ
j mj,τ) fj(x, τ).

• Since w
1/τ
j mj,τ 6= wj for j 6= 1, the weights are not preserved.

• Can we get the benefits of tempering, while avoiding weight changes?

Solution – Weight-Preserving Tempering

• Idea: Replace πτ(x) = [π(x)]1/τ by π∗τ (x) = [π(x)]1/τ [π(µx,τ)]
1−(1/τ).

• Here µx,τ is the closest mode to x, at a given temperature τ .

• Then if π(x) =
∑
j wj gj(x) are well separated, then

π∗τ (x) = [π(x)]1/τ [π(µx,τ)]
1−(1/τ) =

[∑
j

wj gj(x)
]1/τ [∑

j

wj gj(µx,τ)
]1−(1/τ)

≈
[∑

j

w
1/τ
j gj(x)1/τ

] [∑
j

w
1−(1/τ)
j gj(µx,τ)

1−(1/τ)
]

≈
∑
j

[
w

1/τ
j gj(x)1/τ

] [
w

1−(1/τ)
j gj(µx,τ)

1−(1/τ)
]

=
∑
j

wj gj(x)1/τgj(µx,τ)
1−(1/τ).

• Near the mode, gj(x)1/τgj(µx,τ)
1−(1/τ) ≈ gj(x)1/τgj(x)1−(1/τ) = gj(x),

so
∫
gj(x)1/τgj(µx,τ)

1−(1/τ)dx ≈ 1, so mode j has weight ≈ wj. Phew!

• For example, in the Gaussian case where gj(x) = 1√
2πσ
e−(x−µ)

2/2σ2

,

∫
gj(x)1/τgj(µ)1−(1/τ)dx =

∫
(

1√
2πσ

)1/τe−(x−µ)
2/2σ2τ(

1√
2πσ

)1−(1/τ)dx =
√
τ

which depends only on τ (not σ), so weight ratios are preserved. Good!

• Let’s try this π∗ on our example, for different temperatures:
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• Weights are approximately preserved. But still mixes pretty well:
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• THEOREM: Under certain (strong) assumptions, mixing time is
O[d (log d)2] in dimension d. Works well in simulations, too. Good!

• Apply to discrete distributions, like DA? Maybe – let’s discuss it!
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