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Abstract 

This report investigates the use of adaptation algorithm to update the parameters automatically 

during a Markov Chain. The target distribution we work on include normal distribution, the mixture of 

two or three normal distributions in one or two dimension space. Computer simulation shows that the 

adaptation algorithm makes a little improvement to the efficiency of Random Walk Metropolis than 

non-adaptation algorithm. 

The report starts by an introduction to the proposed adaptation algorithm in chapter 1, followed by 

the test of local acceptance rate for some specific x in chapter 2. Then we will compare the efficiency 

of adaptation and non-adaptation algorithm in some different measures in Chapter 3. 

1. Introduction  

1.1 Introduction 

Although MCMC algorithms such as the Metropolis-Hastings algorithm are widely used to sample 

from complicated target distribution, it has long been recognized that the choice of the proposal 

density 
),( yxq

is crucial to the success of these algorithms. The most common case (which we will 

focus on here) involves a symmetric random-walk Metropolis algorithm(RMW), in which the proposal 

density is given by nnn ZXY 
, Where the increments nZ

 are i.i.d from some fixed symmetric 

distribution(e.g. 
)0( 2

dI，N 
). In this case, it is the crucial issue that how to choose the scale  . 

If  is too small, then the chain will move slowly; if it is too large, the proposal will always be rejected 

and then the chain always gets stuck. So we need a value of  between the two extremes, thus 

achieving a reasonable-sized proposal moves together with a reasonable-high acceptance 

probability. Thus, the main issue is to find proper values for all the parameters in  . 

1.2 The Metropolis-Hastings Algorithm [1] 

Suppose that our target distribution  has density with respect to some reference measure(usually 

d-dimensional Lebesgue  measure). Then, given the current state nX
, a proposal value nY

is 

generated from some pre-specified density (usually 
)0(*)(~ dnnn ，INXXY 

) and accepted 

with probability 







 1,
),()(

),()(
min),(

yxqx

xyqy
yx






. If the proposed value is accepted, we set nn YX 1 ; 

otherwise we set nn XX 1 .  

1.3 Optimal Scaling 

The determining of proposal scale is both very important and very difficult. However, it is possible to 

use theory to estimate the optimal proposal scalings and/or adaptive algorithms to attempt to find 

good proposals automatically with little user intervention.  
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A simple way to avoid the extremes of the scale is to monitor the acceptance rate of the algorithm, 

that is, the fraction of the proposed moves which is accepted. If this fraction is very close to 1, this 

suggests very small   and very small movements. If this fraction is very close to 0, this suggests 

large   and the high probability of the chain getting stuck. But if the fraction is both far from 0 and 

from 1, then we have managed to avoid both extremes.  

1.4 Optimal Acceptance Rate [1] 

Roberts et al.(1997) has proved that under some restrictive assumptions, as d , the optimal 

acceptance rate is 234.0 . They considered RWM on
dR  for very special target densities, of the 

form: 

  



d

i

id xfxx
1

1 )(,......,
 

Where f are some one-dimensional smooth density function . This means that we has to sample 

from i.i.d components. 

This result are all asymptotic as d . Numerical studies (Gelman et al.,1996; Roberts and 

Rosenthal,2001) indicate that the limiting results do seem to well approximate the finite-dimensional 

situation for d as small as 5. Also, numeric studies on normal distribution show that when 1d , the 

optimal acceptance rate is approximately 44.0 . I will try both these optimal acceptance rate in the 

following simulation for comparison. 

1.5 Adaptive MCMC [2] 

An alternative approach is adaptive MCMC, which "learns" better parameter choice "automatically". 

Suppose 
 

A
P

  is a family of Markov Chains, each having stationary distribution  . An adaptive 

MCMC algorithm would randomly update the value of   at each iteration, in an attempt to find the 

best value. 

Now see the scale   as the index parameter  , we can  update at each iteration to make the 

acceptance rate around the one we want. 

It is known that adaptive MCMC will not preserve stationarity of the target distribution. That means 

0)()( nXL
 , where 

)()(sup)()( AAXPXL n
A

n 



 . However, there are several 

conditions under which they will still converge. One is like the adaptation is done under regeneration 

times,  others are under various technical procedures. Roberts and Rosenthal
[3]

 proved ergodicity of 

adaptive MCMC under conditions which doesn't require the adaptive parameters to converge; they 

state that an adaptive scheme will converge if it satisfies diminishing adaptation and bounded 

convergence conditons.  
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Theorem: suppose an adaptive scheme updates nX to 1nX  using the kernel 
n

P , where each fixed 

kernel has the stationary distribution  , but where n  are random indices chosen iteratively form 

some collection ψ based on past output. The scheme will converge if it satisfies diminishing 

adaptation and bounded convergence conditions: 

(1) (diminishing adaptation) 0),(),(sup
1lim  




xPxP
nn

xn 

 in probability. 

(2) (bounded convergence conditions)  



0

),(
nnnXM is bounded in probability, 0  

Where     ),(),(:1inf),( xxPnxM n
 

1.6 Motivation 

Let 
),( YX

 denote
)|( XisstatecurrentYproposalacceptP

, the acceptance 

probability from X to Y , and 
)(X

 denote 
]|),([ XYXE 
, the local acceptance probability for X ,  

then global acceptance probability   is 
)]([ XE   ]]|)|([[ XXYEE 

 .  

By ergodicity theorem, we know that n

movesaccepted

n

#
lim




 . So we can estimate the global 

acceptance probability by the global acceptance rate, i.e. the fraction of accepted movements 

among all the proposals. The mentioned optimal acceptance rate choice in section 1.4 is to make 

the global acceptance rate around 234.0 . 

If the global acceptance is around 234.0 , then the "average" of all the local acceptance rate 
)(X

 

for the different X  is 234.0 . That indicates
)(X

is sometimes higher than 234.0  for some X  

and sometimes lower than 234.0 for some X . So one may wonder whether it is a "even more 

optimal choice" to make the the local acceptance rate 
)(X

around 234.0  for all the different X . 

We are curious that: if we make this happen or during the procedure to do this,  will the Markov 

Chain has better efficiency, say having smaller varfact or bigger average squared jump distance? 

So we will first try to achieve this goal(i.e. making 
)(X

around 234.0  for all the different X ) by 

using adaptation algorithm in chapter 2 and then do some efficiency comparison of adaptation and 

non-adaptation algorithm in chapter 3.  

2. Test of Local Acceptance Rate 

In this chapter, we will show some simulation results with the purpose of making 
]|),([ XYXE 
 

around 234.0  for all the different X by using the adaptation algorithm. Simulation results show that 
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it is "impossible" to make 
)(X

around 234.0  for all the different X by using the adaptation 

algorithm proposed in 2.1. Although we cannot achieve this goal in the end, we can still check 

whether the adaptation algorithm improves the efficiency of RWM during the efforts to make around 

234.0 . The comparison of adaptation and non-adaptation algorithms will be shown in chapter 3. 

2.1 Idealist Adaptation Algorithm  

The procedure of the adaptation algorithm for a general target distribution is as follows: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In this algorithm, we will update
)(xhn  in 

)}(exp{)()( xgxhx nnn 
as 

 


|)|1(*)( cxCexh n

n 
 

Where n  is updated by adaptive rules: 

Procedure 

Step 1 set the initial value 
0x
.
 

Step 2 given the 1th, …, nth value nxx ,...,0 , update )(xn ,       

 )}(exp{)()( xgxhx nnn 
, 

Where  





























nn

n

n

n

n
n

nn

n

n

n

n
n

n

yxif
b

xx
K

b
xg

yxif
b

xx
K

b
xg

xg

)
||

()(

)
||

()(

)(

1

1





. 

Step 3 generate 1ny
 
with proposal density : ))(,(~

2

1 nnnn xxNy  .
 

Step 4 generate an independent )1,0(~1 UU n .  

Set 11   nn yx if 
);()(

);()(
),(

1

11
11

nnn

nnn
nnn

xyqx

yxqy
yxU




 






, 

Otherwise set nn xx 1 .
 

Step 5 repeat step 2~4 M times 



Report                          Local scale adaptation for Random Walk Metropolis                                       Page 5 

 





























nnn

nnn

n

yxif
n

yxif
n

234.0*
5

1

)234.01(*
5

1

1

1







 

This suggests that if accepting the previous proposal ny
, we make  n  bigger and thereby 

bigger n
; if rejecting the previous proposal, we make n  smaller and thereby smaller n

. 

In the second term of 
)(xhn , 

|)|1( cxC 
, the part 

|| cxC 
  is to modify the scale according to 

how fat X  is from the center 0c . The far away X  from the center, the bigger n
. This comes 

from the intuition that the density is very small around the center. We will try different choice of
,C

 

to make 
)(X

around 234.0  for all different X . 

We will update ng
in this way: 





























nn

n

n

n

n
n

nn

n

n

n

n
n

n

yxif
b

xx
K

b
xg

yxif
b

xx
K

b
xg

xg

)
||

()(

)
||

()(

)(

1

1





 

nb
is the bandwidth of the update. We can choose it as a fixed constant or decreasing with respect 

to n . One possible choice is
5

1

1

n

bn 

 . We will test which is better, fixed or decreasing. 

n is the speed of adaptation. It is naturally chosen as: 
]1,

2

1
(,

1
 a

nan
. In the code, we choose 

it as 5

1




n
n

. We will also try other n  with  other
]1,

2

1
(a

 to check whether they give better 

performance.  

)(xK
is the kernel function, usually chosen as a polynomial or exponential function: 

2||1

1
)(

1

 x
xK




 

2

1||

)(



x

exK



 



Report                          Local scale adaptation for Random Walk Metropolis                                       Page 6 

 

















widthxheight

widthxwidthhegith

widthx

xK

||,*1

*2||,*1

*2||,0

)(

 










widthxwidth

widthxorwidthx
xK

*2||,1

||*2||,0
)(

 

2.2 Methods to Test )(X  

Suppose that we get the final scale function as 
)(X

from the above adaptation algorithm. We can 

estimate 
]|)|([)( XXYEX  

in two different ways: 

 

 

 

 

 

This method works because it's actually computing the target expectation by Monte Carlo Method. 

 

 

 

 

 

 

This method works because 
 )|(1 XYU ii 

are independent distributed and 

         )()|()|()|(1 XXYEXYUPEXYUEE iiiii   
. So by Strong Law of 

Large Numbers 
  

n

i ii XYU
n 1

)|(1
1


 will converge almost everywhere to

)(X
.   

Another more intuitive way to prove the validation of this method is: 

 
 XYtoXfrommovingacceptE

XXYEX

|

|)|()(



 
 

Method 1 to test   )(X  

step 1 generate n samples nYY ,......,1  from proposal density: ))(,(~
2

XXNY n  

step 2 estimate 
)(X

 
as  

n

i i XY
n 1

)|(
1

  

Method 2 to test )(X  

 step 1 generate n samples nYY ,......,1  from proposal density: ))(,(~
2

XXNY n  

step 2 generate n independent nUU ,......,1 from 
 1,0U

 

step 3 estimate 
)(X

 
as 

  

n

i ii XYU
n 1

)|(1
1

  
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 

density.proposalthefromsampledarewhere

tofrommovingaccept1
1

lim

1

n

1i

n,...,

i
n

YY

YX
n
 


 

2.3 Example 1: Normal Distribution in 
1R  

Let's start with one easy case: standard normal distribution in 
1R : 

)1,0(N
with density function: 

2
1

2

*)(
x

eCxf



 

To avoid numerical error, I will compute the logarithm of the un-normalized density and acceptance 

probability instead of themselves directly.  

The proposal density becomes: 

)}(exp{)()( xgxhx nnn 
 

Where                        


|)|1(*)( xCexh n

n 
 





























nn

n

n

n

n
n

nn

n

n

n

n
n

n

yxif
b

xx
K

b
xg

yxif
b

xx
K

b
xg

xg

)
||

()(

)
||

()(

)(

1

1





 

2.3.1 Output 

I try different choices for parameters and kernel functions. You can refer to Appendix 2.1 for all the 

66 cases I try. Appendix 2.1 includes the plot of final 
)(),( xxg 

, estimation of )(x for some 

specific x , and some Markov Chain generated using adaptation.  

For the 66 cases, they all have reasonable trace plots and final 
)(),( xxg 

 plot. The global 

acceptance rate is around 234.0 , but none satisfies that 
),0(

 
),2(

 
),5(

 
),10(

 
),20(

 

),30( )50(
are around 234.0 .  

Among them, case 30: 

 Kernel function:
2||1

1
)(

1

 x
xK


 , 

 
，

n
n 5.0)5(

1


 2,1,1,1 21   C

with decreasing bandwidth 2.0

1

n
bn 
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gives the closest )(x  to 234.0  for these specific x : 

 

 

 

 

 

 

 

Table 1 )(x   for some specific x in case 30 

)(x  is around 0.26 when 0x , first increases to around 0.3 when 10x , and then decreases to 

0 as goes to infinity. 

For case 30, the final 
)(),( xxg 

 looks like: 

-40 -20 0 20 40

-1
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-0
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.0

x

g
v
a

ls

-40 -20 0 20 40

0
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0
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0
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1
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2
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0

x

s
ig

v
a

ls

 

Figure 1 plot of 
)(),( xxg 

in case 30 

They seem reasonable. They are symmetric around 0 . 
)(x

 seems smooth and is the smallest 

around 0. This is good because we want a small scale at the right mode so that the sampled random 

variables will be more likely to lay around it, where the target distribution also reaches the maximum. 

It is difficult to give the local acceptance rate for all x . So we will calculate )(x for just some 

specific x , like 150,10050,20,10,5,2,0 ，x  . The values of )(x at these discrete points can 

provide us with a general idea of how )(x changes with x over the real line. I compute )(x  for 

only positive x for it is symmetric around 0 and takes the same value for x  and x . )(x  for 

alpha(0.000000) is 0.269674 

alpha(2.000000) is 0.249986 

alpha(5.000000) is 0.293759 

alpha(10.000000) is 0.307941 

alpha(20.000000) is 0.279936 

alpha(50.000000) is 0.176204 

alpha(100.000000) is 0.109100 

alpha(150.000000) is 0.075300 
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some specific x  is as Table 1. In this case, )(x is around 4.0~2.0 for 5|| aroundx  and always 

stays around 5.0 , not 234.0 , for 5|| aroundx  . 

The output of all the different 66 cases suggests that however we choose the parameters, we 

probably cannot make the local acceptance rate )(x   for some certain x , let alone for all the 

different x . But it remains to be tested that whether the adaptation algorithm with good parameter 

choices (like case 57) improves the efficiency of Markov Chain compared to non-adaptation 

algorithm. 

2.3.2 How )(x  changes with parameters 

If we only change the value of one factor and keep others the same, we can get a rough idea of  how 

)(x  changes with parameters nnbC  ,,,, 1  and different choice of kernel fuctions. 

2.3.2.1 How )(x changes with kernel function 

If we want to make all the local acceptance rate around 0.234, then different kernel functions give 

almost the same good result. For the four kernel functions, the best cases are respectively case 18, 

30, 34, 53:  

Case 18: kernel function:
2

1||

)(



x

exK



 

 ，
n

n 5.0)5(

1


 2,1.0,1,2 21   C

with decreasing bandwidth 2.0

1

n
bn    

Case 30: kernel function:
2||1

1
)(

1

 x
xK




 

 
 

，
n

n 5.0)5(

1


 2,1,1,1 21   C

with decreasing bandwidth 2.0

1

n
bn   

Case 34: kernel function: 
















widthxheight

widthxwidthhegith

widthx

xK

||,*1

*2||,*1

*2||,0

)(

 

，
n

n 5.0)5(

1


 2,1.0,5.0width,5.0  Cheight

with fixed bandwidth 
1nb

 

Case 53: kernel function: 








widthxwidth

widthxorwidthx
xK

*2||,1

||*2||,0
)(
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，

n
n 5.0)5(

1


 2,1.0,5.0width  C

with fixed bandwidth 
1nb

  

For these four cases, we have local acceptance rate as table 2 and final 
 )(Xg and )(X  

as table 

3: 

Case 18 Case 30 Case 34 Case 53 

alpha(0) is 0.205731 

alpha(2) is 0.300010 

alpha(5) is 0.330864 

alpha(10) is 0.353506 

alpha(20) is 0.317601 

alpha(50) is 0.211646 

alpha(100) is 0.1366 

alpha(150) is 0.0894 

alpha(0) is 0.269674 

alpha(2) is 0.249986 

alpha(5) is 0.293759 

alpha(10) is 0.307941 

alpha(20) is 0.279936 

alpha(50) is 0.176204 

alpha(100) is 0.1091 

alpha(150) is 0.0753 

Alpha(0) is 0.230635 

alpha(2) is 0.321085 

alpha(5) is 0.392833 

alpha(10) is 0.407148 

alpha(20) is 0.374904 

alpha(50) is 0.263909 

alpha(100) is 0.1645 

alpha(150) is 0.11870
 

alpha(0) is 0.186088 

alpha(2) is 0.255791 

alpha(5) is 0.322271 

alpha(10) is 0.361781 

alpha(20) is 0.319420 

alpha(50) is 0.215913 

alpha(100) is 0.1306 

alpha(150) is 0.0984 

Table 2 )(x   for the best cases with different kernel functions 

Case 18 Case 30 
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Case 34 Case 53 
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Table 3 plot of the final )(Xg and )(X  for the best cases with different kernel functions 
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From the above two tables, we can see that even the kernel function is different, but adaptation 

algorithm is still trying to make the final )(X  look some certain way. There is no strong support for 

the choice of any kernel function. However, I prefer the first two: 
2||1

1
)(

1

 x
xK




and  

2

1||

)(



x

exK



, for their final )(xg  and )(x  are smooth and this will facilitate our further discussion, 

like approximation of the final )(x . 

2.3.2.2 How )(X changes With ,C  

From Appendix 2.1, we can see that if 1nb , and ，
n

n 5.0)5(

1


 then, 

)(X
 has the same 

tendency as long as 
,C

 have the same values, however we choose other parameters. 

1)  When 
,C

are big, 
)(X

peaks at 0X , and decreases to 0 as 
|| X
 goes to infinity. Among 

these cases are CASE 1, 2, 3, 4, 5, 6, 7, 9, 11. Parameter choices are like:
1,5.0  C

; 

10,1.0  C
 

2)  When 
,C

 are small, 
)(X

reaches the global minimum at 0X , and increases to 0.5 as 

|| X
goes to infinity. Among these cases are CASE 10, 12, 13, 14. Parameter choices are like: 

01.0,10  C ; 1,1.0  C  

Although the below section 2.3.3.2.1 and 2.3.3.2.2 are based on kernel function: 
2

1||

)(



x

exK



, the 

similar results hold for other kernel functions, which you can check from the Appendix 2.1. 

2.3.2.2.1 Why does 
)(X

 decrease to 0 as 
|| X
 goes to infinity when

,C
 are big? 

,C
determines how big the effect the second term 

 ||1 xC
has on 

 |)|1()( )( xCex xg  

. 

If they are big, then the second term has a big influence on
)(X

. Approximately, we can assume 

that 
 |)|1()( xCx  ， so 

)(X
 grows very quickly as 

|| X
 increases from 0 to infinity. It 

grows so quickly that it becomes the most important factor to determine the value of
)(X

. The 

bigger 
)(X

, the smaller acceptance rate 
)(X

. So 
)(X

decreases and goes to 0 as 
|| X
 goes 

to infinity.  

Figure 2 shows the different plot sof final 
)(X

when 
,C

 are big and small . They are from case 

11 ( 10,1.0,1,2 21   C with fixed bandwidth 1nb ), and case 14 
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( 1.0,1.0,1,2 21   C with fixed bandwidth 1nb ), They have the same values for all the 

parameters except  .You can see how quickly
)(X

 grows in CASE 11, in which 
,C

 are big. 

For 50X  , 
)(X

 takes the value around 10
8
 in CASE 11, much bigger than 8 in CASE 14 . 
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 CASE 11 (
10,1.0  C

)      CASE 14(
1.0,1.0  C

)    

Figure 2 the plot of final 
)(X

for three different cases 

2.3.2.2.2  Why does 
)(X

 increase to 0.5 as 
|| X
 goes to infinity when

,C
 are small? 

If 
,C

are both small, then the second term has a small effect on
)(X

. So approximately, we can 

assume that 
)()( xgex 
. Unfortunately, we cannot get any conclusion about the tendency of 

)(X
 as  

|| X
 goes to infinity from this rough approximation because we don't know the express of 

)(Xg
. We need some more precise analysis. 

Let's go back to the definition of the local acceptance probability:  























 1,
)()(

)()(
min)),(()(

yqx

xqy
EyxEx

x

y






 

Since 
)(yqx  is symmetric at x  , the reason that

)(x
 takes the value of 0.5 for big enough x  is 

probably that 

11,
)()(

)()(
min 









yqx

xqy

x

y





 for 
y

 on one side of x  and  

01,
)()(

)()(
min 









yqx

xqy

x

y





 for 
y

 

on the other side of x . Now let't try to check whether it is true. 
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For 

2

2

)(2

)(

)(

1
)( x

xy

x e
x

yq 








, we have 








 









 




2

22

2

22

)(2

)(
exp)

2
exp()(

)(
)(2

)(
exp)

2
exp(

)()(

)()(

x

yxx
y

x
y

yxy

yqx

xqy

x

y










 

















2)(2

)(

2)(2

)(
exp

)(

)( 2

2

22

2

2 y

y

yxx

x

yx

y

x




 . 

Since 
)(X

 takes the form of recursion and the exact mathematical express of 
)(X

is very 

complicated, it is better to use some approximation function to reflect the tendency of 
)(x

, like 

exponential function or polynomial function. Below I will use CASE 14 (
1.0,1.0  C

) as an 

example to explain how to approximate 
)(x

and check
)(x

. Other cases of this kind of parameter 

choice follow the similar idea. 

Let's firstly check the plot of final 
)(x

. 
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Figure 3 the plot of final 
)(X

for CASE 14  

From Figure 3, we guess maybe a mixture of two exponential functions centered at 0 can be used to 

approximate the final 
)(x

, like 














3*

3*
)(

64

31

5

2

x，CxC

x，CxC
x

C

C



. I use R and implement OLS to get 

the  estimation as: 572407.54.13.0 321 


C，C，C , 6.773458C，0.63C，0.1C 654 


. I will call 

this as approximation I. We can believe this is a good approximation from Figure 4, the comparison 

of the final 
)(x

and its approximation
)(x




: they overlap a lot, especially when x is large. 
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Figure 4 plot of the final
)(x

and the approximation 
)(x




(black:

)(x
 ;red:

)(x



)  

For big  x, say 30,50,80,150,200,300, 







1,
)()(

)()(
min

yqx

xqy

x

y





 has the tendency as Figure 5:  
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Figure 5 plot of 







1,
)()(

)()(
min

yqx

xqy

x

y





 for big x  

From Figure 5, for each fixed big x ,  

11,
)()(

)()(
min 









yqx

xqy

x

y





 for 
xy 

 and  

01,
)()(

)()(
min 









yqx

xqy

x

y





 for 
xy 

 . Since 
)(yqx  is symmetric at x , 

5.01,
)()(

)()(
min 

















yqx

xqy
E

x

y





 . So 5.01,
)()(

)()(
min)),(()( 
























yqx

xqy
EyxEx

x

y




 . 

we can also use approximation of 
)(x

to see why when 
,C

are  between the two extremes, 

01,
)()(

)()(
min 

















yqx

xqy
E

x

y





 for very big x, like case 16. 

Comparing the local acceptance rate of the three situations, we find it better to choose 
,C

between 

the two extremes, like
2,1.0  C

 . Because we want 
)(X

 to neither decrease quickly to 0 nor 

always stay around 0.5. If we choose 
,C

between the two extremes, then
)(X

 still converges to 

0, but in a much slower speed; it stays around 0.2~0.4 for 
50|| X

. This is the closet situation to 

our goal of making all the local acceptance around 0.234. But we are not sure whether it has better 

efficiency than the non-adaptation algorithm, which will be discussed in Chapter 3. 

2.3.2.3 How )(X Changes With 1  

If 
,C

remain the same, then changes in the value of   has little influence over the tendency of local 

acceptance rate.  

In case 1~5,
,C

are fixed 
2,1  C

, bandwidth is fixed as 1nb ,and ，
n

n 5.0)5(

1


 while the 

value of 1  varies from 0.1 to 10. The tendency of
)(X

 are very similar: starts from around 0.3 

and then decreases to 0. Also, the plot of final
)(X

 have the same shape. 

Case 1 

11   

Case 2 

21   

Case 3 

101   

Case 4 

1.01   

Case 5 

5.01   

alpha(0) is 0.294400 alpha(0) is 0.275100 alpha(0) is 0.287000 alpha(0) is 0.263300 alpha(0)is 0.309200 
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alpha(2) is 0.146900 

alpha(5) is 0.079300 

alpha(10) is 0.047600 

alpha(20) is 0.022500 

alpha(50) is 0.009100 

alpha(100) is 0.00580 

alpha(150) is 0.00260
 

alpha(2) is 0.123300 

alpha(5) is 0.065000 

alpha(10) is 0.036300 

alpha(20) is 0.020400 

alpha(50) is 0.008500 

alpha(100) is 0.00370 

alpha(150) is 0.00440
 

alpha(2) is 0.146700 

alpha(5) is 0.067300 

alpha(10) is 0.042100 

alpha(20) is 0.022000 

alpha(50) is 0.008600 

alpha(100) is 0.0055 

alpha(150) is 0.0025
 

alpha(2) is 0.135800 

alpha(5) is 0.070300 

alpha(10) is 0.041900 

alpha(20) is 0.021200 

alpha(50) is 0.008200 

alpha(100) is 0.00560 

alpha(150) is 0.00400
 

alpha(2) is 0.150900 

alpha(5) is 0.076500 

alpha(10) is 0.045300 

alpha(20) is 0.022600 

alpha(50) is 0.010200 

alpha(100) is 0.00330 

alpha(150) is 0.00340
 

Table 4 
)(X

 for case 1~5 

Case 1 

11   

Case 2 

21   

Case 3 

101   

Case 4 

1.01   

Case 5 

5.01   
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Table 5 plot of the final 
)(X

 for case 1~5 

From the above two tables, we can see that the final 
)(X

is quite similar for difference choice of 

1  and thereby it doesn't make big changes to the tendency of 
)(X

when we change 1 . 

The same result holds for the different choice of kernel functions, which you can check from the first 

several  cases in Appendix 2.1.1~2.1.4. 

2.3.2.4 How )(X Changes With bandwidth nb
 

Different nb
 does not change the general tendency of 

)(X
; it only affects the speed in which 

)(X
 goes to 0 or 0.5. 

In case  37, 47, 48, 49, nb
is different and all the other parameters are the same 

(
2,1.0,1,2 21   C

) kernel function is 

















widthxheight

widthxwidthhegith

widthx

xK

||,*1

*2||,*1

*2||,0

)( . In 
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case 37 , 47 , 48,  nb
 are fixed as a constant 1, 10 , 0.1 respectively, while in case 49, I choose 

decreasing bandwidth 
2.0

1

n
bn 

. However, 
)(X

 has similar tendency and plot of final 
)(x

is 

also similar to each other. Table 6 and 7 shows the local acceptance rate and plot of )(xg and 

)(x
for these four cases. 

Case 37 

1nb  

Case 47 

10nb  

Case 48 

1.0nb  

Case 49 

2.0

1

n
bn 

 

alpha(0) is 0.194871 

alpha(2) is 0.334081
 

alpha(5) is 0.494616 

alpha(10) is 0.501907 

alpha(20) is 0.503077 

alpha(50) is 0.499887 

alpha(100) is 0.49540 

alpha(150) is 0.49668 

 

alpha(0) is 0.191540 

alpha(2) is 0.3355
 

alpha(5) is 0.479633 

alpha(10) is 0.498527 

alpha(20) is 0.500063 

alpha(50) is 0.505558 

alpha(100) is 0.50062 

alpha(150) is 0.49368 

 

alpha(0) is 0.198912 

alpha(2) is 0.328186 

alpha(5) is 0.474185 

alpha(10) is 0.494897 

alpha(20) is 0.509700 

alpha(50) is 0.493201 

alpha(100) is 0.50840 

alpha(150) is 0.49711 

 

alpha(0) is 0.168346 

alpha(2) is 0.303514 

alpha(5) is 0.473132 

alpha(10) is 0.508745 

alpha(20) is 0.500702 

alpha(50) is 0.502543 

alpha(100) is 0.50144 

alpha(150) is 0.50043 

 Table 6 
)(X

 for different nb  

Case 37 

1nb  

Case 47 

10nb  
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Table 7 plot of )(xg and 
)(x

 for different nb  

For other kernel functions, you can conclude the same statement. 

2.3.2.5 How )(X Changes With bandwidth n  

In section 2.1, we discusses there are different choices of the power of n . We can try 0.5, and also 

some real value between 0.5 and 1. So I try 0.5 and 0.8 to compare which one is better. Simulation 

indicates that there is no big difference in the power choice of 
powern

n )5(

1




. 

Let's choose case 27 and 31 for comparison: 

Case 27 :
，

n
n 5.0)5(

1


 2,1.0,1,1 21   C

with fixed bandwidth 
10nb

  

Case 31:
，

n
n 8.0)5(

1


 2,1.0,1,1 21   C

with fixed bandwidth 
01nb

 

 Case 27 
5.0)5(

1




n
n

 Case 31 
8.0)5(

1




n
n

 

alpha(0.000000) is 0.201310 

alpha(2.000000) is 0.301568 

alpha(5.000000) is 0.366086 

alpha(10.000000) is 0.380836 

alpha(20.000000) is 0.352299 

alpha(50.000000) is 0.239894 

alpha(100.000000) is 0.155501 

alpha(150.000000) is 0.105800 

alpha(0.000000) is 0.221199 

alpha(2.000000) is 0.320933 

alpha(5.000000) is 0.391188 

alpha(10.000000) is 0.401987 

alpha(20.000000) is 0.378950 

alpha(50.000000) is 0.264811 

alpha(100.000000) is 0.163500 

alpha(150.000000) is 0.120201 
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Table 8 
)(X

 for different n  
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Table 9  plot of )(xg and 
)(x

 for different n  

From the above tables, you can see that there is no big difference wether we choose 
5.0)5(

1




n
n

 

or 
8.0)5(

1




n
n

. 

So if we want to make 
)(x

close to 0.234, it is more important to find good values of ,C than 

other parameters.  

2.3.3 how to improve the algorithm speed 

The current algorithm is running in a quite slow speed. It takes around 40 minutes to generate one 

Markov Chain and around 38 minutes to test the local acceptance for eight points. This is quite time-

consuming. We need to explore some methods to improve the algorithm speed.  

The reason why it runs so slow is that we use the exact value of  final 
)(x

every time the Markov 

Chain moves to a different state x. So we need 10
4 

times of iterations to compute each 
)(xg

and 

)(x
 for every x and needs much time. One way to improve the speed is to use approximation 

instead of exact value. We know that good approximation of 
)(x

can significantly improve the 

algorithm speed. 

We can divide the real area that the chain stays at most time ( say, )30,30[x  ) into several 

smaller intervals (say, equally 6000 intervals) , then compute and save the values of final
)(x

 for 

every left point. That means we record 
)(x

for )30,30[x  with the separation of 0.01. For each 

)30,30[x  that is not the left point of any small interval, approximate 
)(x

by 
)(

 at the left 
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point of the small interval that x lies in. For each )30,30[x , just use their exact value of  
)(x

; 

this will not cost much time because for the random variable of the standard normal distribution will 

seldom go to the area )30,30[x .  

I will call this approximation of 
)(x

 as Approximation II. Now run the algorithm with Approximation 

II for case 1, and check the speed for comparison. 

Without Approximation II With Approximation II 

it takes 218.947 seconds to run the adaptation algorithm 

it takes 95.419 seconds to compute g and sigma 

it takes 2380.314 seconds to generate the first Markov Chain 

it takes 2367.3 seconds to generate the second Markov Chain 

it takes 2386.311 seconds to generate the third Markov Chain 

it takes 2402.55 seconds to generate the fourth Markov Chain 

it takes 2402.489seconds to generate the fifth Markov Chain 

it takes 2144.659 seconds to test the local acceptance 

it takes 233.63636 seconds to run the adaptation algorithm 

it takes 95.5646 seconds to compute g and sigma 

it takes 21.525 seconds to generate the first Markov Chain 

it takes 25.25 seconds to generate the second Markov Chain 

it takes 23.8585 seconds to generate the third Markov Chain 

it takes 21.156 seconds to generate the fourth Markov Chain 

it takes 26.6363 seconds to generate the fifth Markov Chain 

it takes 1564.99 seconds to test the local acceptance 

 
Table 10 running time with and without Approximation II 

From table 10, we can see that the speed is significantly faster: now it takes only around 20 seconds 

to generate a Markov Chain with Approximation II, while it needs around 40 minutes without 

Approximation II; and  it takes around  25 minutes to test the local acceptance rate for 8 different X's, 

while it needs around 40 minutes without Approximation II.  

The speed is good now; but will the algorithm with Approximation II give the similar result to that 

without it? Table 11 and 12 show )(x  and the plot of final )(xg  and )(x . They are similar to each 

other. So Approximation II is a good method to significantly improve the speed of the algorithm.  

Without Approximation II With Approximation II 

alpha(0.000000) is 0.307000 

alpha(2.000000) is 0.145700 

alpha(5.000000) is 0.078100 

alpha(10.000000) is 0.042800 

alpha(20.000000) is 0.022500 

alpha(50.000000) is 0.009400 

alpha(100.000000) is 0.003800000) 

alpha(0.000000) is 0.294400 

alpha(2.000000) is 0.146900 

alpha(5.000000) is 0.079300 

alpha(10.000000) is 0.047600 

alpha(20.000000) is 0.022500 

alpha(50.000000) is 0.009100 

alpha(100.000000) is 0.0058 
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Table 11 )(x for case 1 with and without Approximation II 

Without Approximation II With Approximation II 
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Table 12  plot of )(xg and  )(x for case 1 with and without Approximation II 

The speed to generate a Markov Chain is much faster now, about 100 times faster than without 

Approximation II. But the speed to test the local acceptance rate doesn't get as much improvement 

as generating. This is because when testing )(x for big x,  we need to compute )(x  for big x, 

which isn't approximated in Approximation I. One way to improve this is to use Approximation I 

instead, which gives approximation for every single x, not just a part of the real numbers. 

Now run the algorithm with Approximation I for case 14, and check the speed for comparison. 

With Approximation I With Approximation II 

alpha(0.000000) is 0.289099 

alpha(2.000000) is 0.404383 

alpha(5.000000) is 0.425934 

alpha(10.000000) is 0.501186 

alpha(20.000000) is 0.497216 

alpha(50.000000) is 0.498001 

alpha(100.000000) is 0.498768 

alpha(0.000000) is 0.168239 

alpha(2.000000) is 0.273334 

alpha(5.000000) is 0.440324 

alpha(10.000000) is 0.502495 

alpha(20.000000) is 0.499843 

alpha(50.000000) is 0.496880 

alpha(100.000000) is 0.498992 

Table 13 )(x for case 14 with and without Approximation I 

With Approximation I With Approximation II 

it takes 0.345 seconds to generate second Markov Chain 

it takes 0.387 seconds to generate third Markov Chain 

it takes 0.40 seconds to generate fourth Markov Chain 

it takes 0.354 seconds to generate fifth Markov Chain 

it takes 0.166 seconds to test the local acceptance 

it takes 16.43 seconds to generate second Markov Chain 

it takes 16.54 seconds to generate third Markov Chain 

it takes 16.62seconds to generate fourth Markov Chain 

it takes 16.72seconds to generate fifth Markov Chain 

it takes 1005.606 seconds to test the local acceptance 

 

 

Table 14 running time for case 14 with Approximation I and II 
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Now it is very quick to test the local acceptance rate. It takes about less than 1 second to test )(x  

for 8 points, much faster than Approximate II, which needs around 1000 seonds. But from table 10, 

you, it has good estimation of )(x  for big x and bad estimation of )(x for small x, which is 

untenable. So the advantage of Approximation I is to improve the speed of  both generating Markov 

Chain and testing )(x  significantly, however big x is. But it doesn't give believable estimation of 

)(x  for small x. While Approximation II gives good estimation of )(x  for every x, although it is 

slow to test )(x  for big x.  Another disadvantage of Approximation I is that we need to estimate the 

parameters in it before we can use it, like we do in section 2.3.2.2.1. While  for Approximation II, we 

only need to let the computer record the values of )(x for some x. In all the other cases, I will use 

Approximation II.  

2.4 Example 2: Mixture of Two Normal Distributions in 
1R  

Now consider the target distribution as mixture of two normal distributions in 
1R : 

)1,0(N
and 

)1,10(N , so the density is 



















2

)10(

2
4

22

*)(
xx

eeCxf

.   

Figure 6 shows the un-normalized part of this density function. It reaches the maximum at 0 and 10. 
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Figure 6 un-normalized part of the density 

The proposal density will become : 

)}(exp{)()( xgxhx nnn 
 

Where              
，xCexh n

n


|)5|1(*)( 
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The same method to update parameters and test 
)(x

 is conducted for this example. 

2.4.1  How to Avoid Numeric Error 

Numerical error may arise from he finite precision of computations.  For example, to compute 

 xelog  for 900x .It is easy to get   xex log if we calculate it by ourselves. But if we let a 

computer to do this calculation, it first computes 
xe for 900x  and gets a value very close to 0 , 

say y, and  then compute  ylog  . y is usually so close to 0 that the computer calculates  xelog  as 

 0log , which is infinity. So the computer will probably return NA or -INF. The same problem exists 

in our target distribution: 2

)10(

2

22

)(





xx

eex when has big absolute value. 

2.4.1.1 Why does the numerical error happen? 

In our C code, we usually compute the logarithm of )(x instead of itself: 

  )log()(log 2

)10(

2

22 




xx

eex  

when x is too big, say 50, then 
12502

50

2

22




 eee

x

and 
8002

40

2

)10( 22







 eee
x

, both very small to 

compute in C. C will first compute 
800e as a small value very close to 0 and 

1250e  as a even smaller 

value much closer to 0, and then sum them to a small value close to 0, whose logarithm will be 

treated as  0log  in C.That’s why C returns  for  )(log x  when x is too big. It’s the same with 

negative x with big absolute value. 

Table 15 gives the computed value of  )(log x  for some y in C: 

 

 

 

 

 

 

when y=-50.000000, logpi(-50.000000)=-1.#INF00 

when y=-30.000000, logpi(-30.000000)=-450.000000 

when y=-10.000000, logpi(-10.000000)=-50.000000 

when y=10.000000, logpi(10.000000)=0.000000 

when y=30.000000, logpi(30.000000)=-200.000000 

when y=50.000000, logpi(50.000000)=-1.#INF00 
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Table 15 
 )(log x  

for some y 

2.4.1.2 How to approximate  )(log x ? 

Although for big x, 2

2x

e


and 2

)10( 2


x

e are very small, 2

2x

e


is much smaller than 2

)10( 2


x

e :  

501022

)10(

2

)10(

2
22

2

2











 x

xx

x

x

ee

e

e
. This inspires us to ignore the term 2

2x

e


and approximate  )(log x  

by  )(log x  )log( 2

)10( 2



x

e
2

)10( 2


x
for big x. Similarly, for negative x with big absolute value, 

although 2

2x

e


and 2

)10( 2


x

e are very small, 2

)10( 2


x

e is much smaller than 

2

2x

e


:
50102

)10(

2

2

2

)10(
22

2

2











 x

xx

x

x

ee

e

e
. Then we can ignore the term 2

)10( 2


x

e and approximate 

 )(log x  by  )(log x  )log( 2

2x

e



2

2x
 for small x. 

We can check the properness of this approximation by the table below:(the computation is in R) 

 -25 -3 0 5 6 8 10 12 20 

2

2x

e


 
1.9e-136 1.11e-2 1 3.73e-6 1.52e-8 1.7e-14 1.9e-22 5.3e-32 1.3e-87 

2

)10( 2


x

e  
9.8e-267 2.0e-37 1.9e-22 3.73e-6 3.35e-4 1.35e-1 1 1.35e-1 1.9e-22 

2

)10(

2

22 




xx

ee  
1.2e-136 1.11e-2 1 7.45e-6 3.35e-4 1.35e-1 1 1.35e-1 1.9e-22 

)log( 2

)10(

2

22 




xx

ee
 

-312.5 -4.5 0 -11.8 -8.00 -2 0 -2 -50 

2

2x
  -312.5 -4.5 0 -12.5    -  

2

)10( 2


x
    -12.5 -8 -2 0 -2 -50 

Table 16 some values for some x 

The approximation returns the exact value of  )(log x  computed by R directly except ]6,4[x . 

 The below is a plot of   )(log x  and its approximation for ]60,50[x . From table 16 and figure  
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7, we can see that this is a good approximation of  )(log x  for x with big absolute value. 
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Figure 7  )(log x and its approximation (red:  )(log x ; black:its approximation) 

Let's see how the approximation avoid the numeric error. For case 67:  

kernel function: 2

1||

)(



x

exK


  

，
n

n 5.0)5(

1


 2,1,1,1 21   C

with fixed bandwidth 
1nb

 if we don't use approxiamtion to avoid the numeric error, then the local aceptance rate is as following: 

 

 

 

 

 

 

 

Table 17 
 x

for case 67 without approximation 

while more accurate results without numeric error is: 

 

 

alpha(5.000000) is 0.981800 

alpha(7.000000) is 0.615156 

alpha(10.000000) is 0.212396 

alpha(20.000000) is 0.188700 

alpha(30.000000) is 0.137032 

alpha(50.000000) is 1.000000 

alpha(60.000000) is 1.000000 

alpha(70.000000) is 1.000000 

 



Report                          Local scale adaptation for Random Walk Metropolis                                       Page 26 

 

 

 

 

 

 

 

 

Table 18 
 x

for case 67 with approximation 

So in order to avoid numeric error, I use approximation
2

2x
  for ]0,(x  , 

2

)10( 2


x
 for 

),10[ x  and compute the exact value of  )(log x  for )10,0(x in all the 73 cases. 

2.4.2 How to Improve the Algorithm Speed 

I try different parameter choice and kernel functions, which has 73 cases in total. For most cases, I 

use approximation II to approximate 
)(x

:  

1. Equally divide )50,50[   into 1000 parts, so we get 1000 small intervals: ]99.49,50[  , 

)98.4999.49[  ，  .... )5099.49[ ， . 

2. Compute and save the values of final
)(x

 for every left point: -50, -49.99,...,49.99.  

3. Approximate 
)(x

by 
)(
 at the left point of the small interval that x lies in.  

This approximation is used to compute
)(x

 when we generate Markov Chain and test the local 

acceptance rate. 

2.4.3 Output 

You can find the output of all the 73 cases in Appendix 2.2. Among all the cases, if we judge from 

whether the local acceptance rate is close to 0.234, then the best case is probably  case 74:  

kernel function: 2

1||

)(



x

exK


  

，
n

n 5.0)5(

1


 2,1.0,1,2 21   C

with fixed bandwidth 
1nb

  

alpha(5.000000) is 0.981209 

alpha(7.000000) is 0.595073 

alpha(10.000000) is 0.183040 

alpha(20.000000) is 0.182034 

alpha(30.000000) is 0.125577 

alpha(50.000000) is 0.081246 

alpha(70.000000) is 0.054118 

alpha(120.000000) is 0.032300 

alpha(150.000000) is 0.024200 
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Check the local acceptance rate for some specific x in case 74. 

 

 

 

 

 

 

 

 

Table 19  x for case 74 

)(x is about 0.99,  very big for x around the center 5. Then as x goes big, it first decreases to  

around 0.2 when 10x ; then increases to around 0.4 when  20x ; and decreases to 0 as x goes  

to infinity. 

Check the plot of final )(xg and )(x . 
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Figure 8 plot of final )(xg and )(x  for case 74 

it is reasonable: )(xg  has similar shape for  x<5 and x>5; it reaches the local minimum at 0 and 10, 

where we want the sampled x to stay most frequently. )(x  is symmetric around 5. It increases to 

big values when x goes big. This is also good, because the target distribution is very small for big x, 

and thereby we don't want the sampled variable to go very big. 

alpha(5.000000) is 0.994617 

alpha(7.000000) is 0.626367 

alpha(10.000000) is 0.179817 

alpha(20.000000) is 0.407404 

alpha(30.000000) is 0.364035 

alpha(50.000000) is 0.281372 

alpha(70.000000) is 0.229441 

alpha(120.000000) is 0.146200 

alpha(150.000000) is 0.125800 
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2.4.4 How to make )5(  smaller 

From table 19, we can see that the adaptation algorithm gives small scale for points around the 

center and thereby the acceptance rate is very high, nealy 1. So now our main problem we need to 

fix here is to make 
)5(

 smaller.  

In order to make 
)5(

smaller, we can try the below three changes: 

2.4.4.1 change I 

Change I:  

Use 
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Originally, we subtract the same value when the proposal is rejected as we add when it is accepted. 

Change I means, we subtract (1-0.234)*some value when the proposal is rejected and add 

0.234*some value when it is accepted. For comparison, check the local acceptance rate for some 

specific x in case 74 with change I. 

 

 

 

 

 

 

 

Table 20 )(x  for case 74 with change I 

The local acceptance rates for these x are almost the same as that without change I. 
)5(

is still too 

high. It seems that change I doesn't help a lot. 

2.4.4.2 change II 

Change II: Use 
)()()( xgxg eeex  
  

alpha(5.000000) is 0.999501 

alpha(7.000000) is 0.648121 

alpha(10.000000) is 0.191781 

alpha(20.000000) is 0.443123 

alpha(30.000000) is 0.419608 

alpha(50.000000) is 0.338141 

alpha(70.000000) is 0.278052 

alpha(120.000000) is 0.177113 

alpha(150.000000) is 0.158800 
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Professor J. Rosenthal suggest that maybe we can cancel the second term in the original )(x and 

it becomes: 
)()()( xgxg eeex   . I call this as change II and implement it in case 74. Now )(xg  

and )(x looks like: 
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Figure 9 plot of )(xg  and )(x for case 74 with change II 

)(xg  and )(x  have the same shape now since they only differ in a constant. They are symmetric 

around 5, and smooth.  

Check the local acceptance rate for some specific x in case 74 with change II. 

 

 

 

 

 

 

 

 

Table 21 )(x for case 74 with change II 

Now the acceptance rate is around 0.78 for points around the center, smaller than the previous 0.99. 

But it is still too high if our goal is 0.234. It seems that change II cannot help us to achieve this. 

Why does 
)5(

drop from around 1 to 0.8 ?  )(xg
 
doesn't change a lot from comparison of case 74 

with and without change II. Obviously, it is because that   is bigger with change II. Without change 

 alpha(5.000000) is 0.783000 

alpha(7.000000) is 0.516100 

alpha(10.000000) is 0.199000 

alpha(20.000000) is 0.506500 

alpha(30.000000) is 0.497500 

alpha(50.000000) is 0.499700 

alpha(70.000000) is 0.501400 

alpha(120.000000) is 0.499400 

alpha(150.000000) is 0.502400 
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II, 1.366644 ; while with change II , 2.119721 . Why does 
 
become bigger? Let's 

suppose that   remains the same , then for all the points except 5 )(x
 
will decrease since g(x) 

has very small change and )(x is originally 
)(|)5|1( xgexCe 

 and now
)(xgee

 . So the 

global acceptance rate now rises to a value bigger than 0.234. In order to ensure the global 

acceptance rate is around 0.234,  has to be pulled up. 

2.4.4.3 change III 

Although change II, which cancels the second term in 
)(x

, doesn't make 
)5(

 around 0.234, it 

makes it smaller anyway. This inspires us to fix our current problem by making some changes to the 

second term 
|)|1( cxC 

.  

Since I guess the approximate shape of g(x) is reasonable, I want to add the second term as the one 

whose shape similar to the shape of g(x)  in order to keep the shape. So I guess the second term 

satisfies these:
 

 For x=5, it reaches local maximum to make a bigger scale and therefore a smaller acceptance 

rate. 

 For x=0,10, it reaches local minimum to make a smaller scale and therefore a bigger 

acceptance rate. 

I try the second term as: 
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So now, 
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I try several choices of 121 ，，CC  and finally choose 1.11.01.0 121  ，，CC . The current 

local acceptance rate is as table 22: 

 

 

 

 

alpha(5.000000) is 0.550000 

alpha(8.000000) is 0.302000 

alpha(10.000000) is 0.176000 

alpha(20.000000) is 0.411000 

alpha(50.000000) is 0.379000 

alpha(70.000000) is 0.389000 
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Table 22  )(x for case 74 with change III 

Now  
)5(

 drops from 0.99 to around 0.55. Good. But it cannot make )(x  all around 0.234. 

The final )(xg and )(x are as figure 10: 
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Figure 10 )(xg  and )(x  for case 74 with change III 

)(xg have similar shape for x<5 and x>5; )(x  are symmetric around 5, and smooth. It reaches 

minimum at 0 and 10, where we want the sampled variable to stay most frequently. good. 

The above three changes cannot make )(x all round 0.234 for different x. It indicates that this 

adaptation algorithm might not achieve this goal for this target distribution, however we choose the 

parameters and functions. 

2.5 Example 3: mixture of three normal distributions in 1R  

Let's try one more difficult target distribution:  






















2

)10(

22

)10( 222

*3.0*4.0*3.0*)(
xxx

eeeCx  

This is a mixture of three normal distributions: N(0,1), N(-10,1),N(10,1).  

Figure 11 shows the un-normalized part of this density. It is symmetric around 0, reaches the 

maximum at 0, and local maximum at 10 and-10. 
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Figure 11 un-normalized part of the density 

Now the proposed scale becomes: 
 |)5|*|5|*1()( )(   xxCex xg

 

Where the definition of parameters and functions are the same as the above examples. 

2.5.1 How to Avoid Numerical Error 

Similar to section 2.4.1, numerical error still exists if we compute  )(log x directly for big x. In order 

to avoid this error, I will use approximation as the previous. 

I will approximate it for x with big absolute value. For big x, ，e
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So we can approximate it by
2
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 for big x. Similarly, for 

negative x with big absolute value, we can approximate it by 

2
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Below is the comparison of  )(log x and its approximation for ]50,50[x . They overlap very well. 

Good. In all the 65 cases I try, I will use this approximation to compute  )(log x in order to avoid 

numerical error. 
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Figure 12   )(log x  and its approximation 

2.5.2 Output 

Among the 65 cases, the best case to give the acceptance rate close to 0.234 is case 133:
 

，
n

n 5.0)5(

1


 5.0,10,1,1 21   C

with fixed bandwidth 
1nb

. It has 
)(x

 as table 23: 

 

 

 

 

 

 

 

alpha(0.000000) is 0.207800 

alpha(5.000000) is 0.696900 

alpha(10.000000) is 0.166300 

alpha(15.000000) is 0.354600 

alpha(20.000000) is 0 .365400 

alpha(50.000000) is 0.357700 

alpha(100.000000) is 0.363600 

alpha(150.000000) is 0.363200 

alpha(200.000000) is 0.369300 
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Table 23 
)(x

for case 133 

)(x
 is around 0.2 at 0, first increases to around 0.7 when x~5, then decreases to around 0.16 

when x~10， and then increases to around 0.36 when x goes to infinity. 

The other 64 cases have similar tendency of 
)(x

, which you check from Aappendix 2.4.1~2.4.4. 

Figure 13 is the plot of the final 
)(xg

and 
)(x

. 
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Figure 13  
)(xg

and 
)(x

for case 133
 

)(xg
and 

)(x
are symmetric around 0. 

)(x
 reaches the local minimum at 0, where we want the 

sampled variables to say around the most. Good. 

2.5.3 How  to choose   

When 1  , the final )(xg  and )(x
 
is symmetric around 0. The generated Markov Chain has a 

good mixing. When 1  , the final )(xg  is not symmetric around 0, bad. The generated Markov 

Chain has small steps and always gets stuck at 0, or 10, or -10.  Table 24 shows the plot of  )(xg
 

and )(x
  

for  5.0 ,  1 ,  5.1 ,  2 . In these four cases, Kennel 

function: 2

1||

)(



x

exK



,

2,1,1,1 21   C
 , 

2,1,5.0width,5.0height  C and 

1nb
 . 

Table 25 shows the generated Markov Chain for the four cases 

5.0   1  
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2  
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Table 24  plot of  )(xg
 
and )(x

  
for the four cases 
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Table 25 generated Markov Chain for the four cases 

From the above two tables, we can see that we need to choose 1 to make the Markov Chain 

have a good mixing.
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2.6 Example 4: normal distribution in 2R  

Now consider the target distribution as : 

2222

2222

**)(
yxyx

eeeCxf


  

This is Standard Normal distribution in
2R  and the logarithm of the density is: 

 
22

)(log
22 yx

xf   

Now the adaptation algorithm updates scale as: 

   |)0,0(|1)( )(   XCeX Xg
,  

Where X is 2 dimensional vector: 









2

1

X

X
X , )(x，g， is updated adaptively. ||  is the distance in 

2R rather than absolute value.
 

2.6.1 How to learn from Example 1  

Now our target distribution is Standard Normal distribution in 
2R , i.e. 











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X
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This means )1,0(~),1,0(~ 21 NXNX , and they are independent. So we can learn how to choose 

parameters from Example 1: Standard Normal distribution in 
1R . We can first consider all the good 

cases in Example 1, and then use the parameter choice in those cases to run the adaptation 

algorithm for this example. 

From the following discussion in Chapter 3, we will know for Example 1, the best case (in judge of 

varfact, variance, and average squared jump distance ) is case 57 and 65: 

Kernel function : 









widthxwidth

widthxorwidthx
xK

*2||,1

||*2||,0
)(  

Case 57: 
，

n
n 5.0)5(

1


 2,01.0,5width  C

with fixed bandwidth 
1nb

 

I will try these two parameter choices . And also I will try the parameters in some other cases, which 

has the smallest varfact, variance, or biggest average squared jump distance for each kernel 

function. 

You can check Appendix 2.4 for the output of all the 9 cases I try. 
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2.6.2 How to Improve the algorithm speed 

We already see how slow C generates Markov Chain and test the local acceptance rate without 

approximation II. The speed will become much worse in two-dimensional space. So in order to 

improve the speed, I will use Approximation II again in this example: 

1. Equally divide )30,30[*)30,30[    into 810000 parts, so we get 810000 small squares: 

)
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2. Compute and save the values of final
)(x

 for every lower-left point: 
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3. Approximate 
)(x

by 
)(
 at the lower-left point of the small square that x lies in.  

For case 194, I run the adaptation algorithm, generate Markov Chain and test 
)(x

both with and 

without approximation II. Table 26 shows the speed of both: 

With Approximation II Without Approximation II 
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it takes 310.314 seconds to run the adaptation algorithm 

it takes 9939.71 seconds to plot g and sigma 

it takes 512.742 seconds to generate the first Markov Chain 

it takes 471.932 seconds to generate second Markov Chain 

it takes 496.096 seconds to generate third Markov Chain 

it takes 514.006 seconds to generate fourth Markov Chain 

it takes 468.624 seconds to generate the fifth Markov Chain 

it takes 2030.625 seconds to test the local acceptance 

it takes 296.75 seconds to run the adaptation algorithm 

it takes 10001.9820 seconds to plot g and sigma 

it takes 3674.517 seconds to generate the first Markov Chain 

it takes 3806.229 seconds to generate second Markov Chain 

it takes 3813.156 seconds to generate the third Markov Chain 

it takes 3638.899 seconds to generate fourth Markov Chain 

it takes 3640.485 seconds to generate the fifth Markov Chain 

it takes 2712.386 seconds to test the local acceptance 

Table 26 running time for case 194 with and without Approximation II 

It takes 3600~3800 seconds to generate a Markov Chain without Approximation II, while now it only 

needs around 500 seconds to do this with Approximation II, good. This approximation also improves 

the speed of testing the local acceptance rate by about 700 seconds.  

Approximation II is good for this example too, for it gives similar plot of final )(xg  and )(x , and 

local acceptance rate for some specific x, which is shown in table 27. (black: x=0; blue: x=-2; green: 

x=-5; yellow: x=-10; red: x=-30). I will this approximation for the other cases. 

 With Approximation II Without Approximation II 

)(xg  
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)(x
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)(x
 

alpha(0.000000,0.000000) is about 0.677500 

alpha(0.000000,2.000000) is about 0.137900 

alpha(5.000000,5.000000) is about 0.025100 

alpha(2.000000,10.000000) is about 0.011400 

alpha(10.000000,10.000000) is about 0.007900 

alpha(20.000000,50.000000) is about 0.000900 

alpha(50.000000,50.000000) is about 0.000400 

alpha(0.000000,0.000000) is about 0.758800 

alpha(0.000000,2.000000) is about 0.138100 

alpha(5.000000,5.000000) is about 0.024000 

alpha(2.000000,10.000000) is about 0.015000 

alpha(10.000000,10.000000) is about 0.007900 

alpha(20.000000,50.000000) is about 0.000700 

alpha(50.000000,50.000000) is about 0.000200 

Table 27 output for case 194 with and without Approximation II 

2.6.3 Output 

if judged from whether it makes 
)(x

 
around 0.234, then probably the best case is case 196 :  

Kernel function:
2

1||

)(



x

exK




 

，
n

n 5.0)5(

1


 2,1.0,1,5.0 21   C

with fixed bandwidth 
1nb

 

It gives local acceptance rate as table 28 : 
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Table 28
)(x

 for case 197 

 The tendency of 
)(x

 
is quite similar to 1-dimensional space. As the distance of x and 0 goes 

bigger, 
)(x

 first increases from around 0.2 to 0.3, then decreases to 0.  But all the simulations until 

now suggests that it may not be possible to make 
)(x

 around 0.234 for different x. 

The plot of final 
)(xg  and )(x  

are as figure 14. 
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Figure 14 
)(xg  and )(x  

for case 197 

(Black: x= 0;blue: x = -2; green: x = -5; yellow: x= -10;red: x=-30) 

Both are symmetric around 0 and smooth, good. 
)(x

is the smallest at 0 , where we want the 

sampled variable to stay most frequently, good.  

When x goes form 0 to -30, i.e. the black line to the red, 
)(xg  

is more and more flat, and 
)(x

for 

each fixed point is increasing. This is good, because for every single variable, we want it to go to 0  

alpha(0.000000,0.000000) is about 0.215700 

alpha(0.000000,2.000000) is about 0.285000 

alpha(5.000000,5.000000) is about 0.328900 

alpha(2.000000,10.000000) is about 0.335800 

alpha(10.000000,10.000000) is about 0.319200 

alpha(20.000000,50.000000) is about 0.157600 

alpha(50.000000,50.000000) is about 0.124300 
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More frequently than  other values. 

When x goes from 0 to -30, i.e. The black line to the red, 
)(xg

 is more and more flat, and  for each 

fixed point is increasing. This is good, because for every single variable, we want it to go to 0 more 

frequently than other values. 

From Example 1~4, simulation studies indicates that probably it is impossible to make 
)(x

 around 

0.234 for different x. 

Since we cannot make the local acceptance rate )(x  around 234.0  or all different x  , so far we 

don't get any conclusion about whether this is a better idea than the current optimal choice. It still  

remains to be evaluated whether the adaptation algorithm improves the efficiency of RWM.  

Now let's go one step back. Even if we cannot achieve the goal to make all )(x around 234.0 ,  but 

during our efforts to achieve this, the efficiency still improves in comparison without adaption 

algorithm. So I will use different measures to check this in Chapter 3 . 

3. Efficiency Comparison of Adaptive and Non-adaptive Algorithm 

3.1 Efficiency Measures to Evaluate Markov Chain 

There are many different measures to evaluate the efficiency of Markov Chain. Some usual 

measures are varfact, variance/ standard error, and average squared jump distance. 

3.1.1 Varfact 

3.1.1.1 Autocorrelation
[4] 

Autocorrelation of a random process describes the correlation between values of the process at 

different points in time, as a function of the two times or of the time difference. Let X be some 

repeatable process, and i be some point in time after the start of that process. Then Xi is the value 

(or realization) produced by a given run of the process at time i. Suppose that the process is further 

known to have defined values for mean μi and variance σi
2
 for all times i. Then the definition of the 

autocorrelation between times s and t is 

    
)var(*)var(

)(*)(
),(

st

sstt

XX

XEXXEXE
tsR


  

If the function R is well-defined, its value must lie in the range [−1, 1], with 1 indicating perfect 

correlation and −1 indicating perfect anti-correlation. 

If Xt is a second-order stationary process then the mean μ and the variance σ
2
 are time-independent, 

and further the autocorrelation depends only on the difference between t and s: the correlation 

depends only on the time-distance between the pair of values but not on their position in time. This 

further implies that the autocorrelation can be expressed as a function of the time-lag, and that this  

/wiki/Random_process
/wiki/Correlation
/wiki/Realization_(probability)
/wiki/Execution_(computing)
/wiki/Mean
/wiki/Variance
/w/index.php?title=Anti-correlation&action=edit&redlink=1
/wiki/Stationary_process#Second-order_stationarity
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would be an even function of the lag τ = s − t. This gives the more familiar form 

         
),(

**
)( 02

0

2 k
kktt XXcorr

XXEXXE
kR 





 








 

3.1.1.2 Varfact 
[5]

 

Varfact is integrated autocorrelation time, defined as: 















1

0

11

),(21),0(21)(21varfact
k

k

kk

XXcorrkRkR  

It is used to measure the  autocorrelation of a Markov Chain. We can use it times the i.i.d variance to 

estimate the variance( 























BM

Xh

v

M

Bi

i

1

)(

var

), i.e. Uncertainty, where h is the function we are interested 

in. 

 

Usually, in order to compute varfact, we don't sum over all k, just, say, until 05.0),0( kR . 

3.1.2 variance 

Suppose P1 and P2 are two Markov Chains, each with the same stationary distribution )(x  . Then 

we say P1 has smaller variance than P2 if 





















n

Xh
n

i

i

1

)(

var
 is smaller when 

 nX
 follows P1  than it 

follows P2. 

/wiki/Even_and_odd_functions
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If Markov Chain  nX  is stationary, then for large n,  )(varfact*)var(
1

)(

var 1 hh
nn

Xh
n

i

i























,  

3.1.3 average squared jump distance 

Markov chain is better if it allows for faster exploration of the state space. We say P1 mixes faster 

than P2 if   2

1 nn XXE  (average squared jump distance) is  larger under P1 than  P2. Of course, 

  2

1 nn XXE can be estimated by   
BM

XX
M

Bi

ii








1

2

1)(

. 

3.1.4 Relationship between the three measures 

1) Since )(varfact*)var(
1

)(

var 1 hh
nn

Xh
n

i

i





















  it is  obvious that the bigger the varfact, the bigger 

variance 

2) We can see that: 

    

BM

XEXXEX

BM

XX

M

Bi

iiii

M

Bi

ii

























2
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)()(
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distancejumpsquaredaverage
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From this, we get the smaller varfact, the bigger average squared jump distance. 
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So for the efficiency of Markov Chain, we want smaller varfact, smaller variance, and bigger 

averaged jump distance. Now I will use the three measures to compare that whether the adaptation 

algorithm improves the efficiency of Markov Chain than non-adaption algorithm. 

3.2 Example 1: Normal Distribution in 
1R  

For all the 66 different cases, I generate 5 independent Markov Chains for each case and then 

compute their varfact, variance and average squared jump distance. You can refer to Appendix 

2.2.6~2.2.8 for output of each case. In the below discussion, I will list the best cases, i.e. Having the 

smallest varfact or variance, or having the biggest average squared jump distance.
 

3.2.1 varfact 

For the four kernel functions, table 29 shows the best case who has smaller varfact than others with 

the same kernel function. 

kernel function 
2

1||

)(



x

exK



 

1  
C  


 n  nb

 
First run

 
Second 

run
 

Third run
 

Fourth run
 

Fifth run 

2 0.1 2 
5.0)5(

1

n  
1 

6.533223
 

6.42219
 

6.045298
 

6.83526
 

6.91115
 

kernel function 2||1

1
)(

1

 x
xK




 

1  
C  


 n  nb

 
First run

 
Second 

run
 

Third run
 

Fourth run
 

Fifth run
 

1 0.1 1 
5.0)5(

1

n  
1 

7.185476
 

6.92573
 

6.877931
 

7.298966
 

7.185476
 

kernel function 
















widthxheight

widthxwidthhegith

widthx

xK

||,*1
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
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First run

 
Second 

run
 

Third run
 

Fourth run
 

Fifth run
 

0.01 10 0.5 0.

5 5.0)5(
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1 

5.84989
 

6.229419
 

5.915948
 

6.139981
 

6.5259
 

Kernel function 
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


widthxwidth

widthxorwidthx
xK

*2||,1

||*2||,0
)(

 

C
 

width
 


 n  

nb

 
First run

 
Second 

run
 

Third run
 

Fourth run
 

Fifth run
 



Report                          Local scale adaptation for Random Walk Metropolis                                       Page 45 

 

0.0

1 
5 2 

5.0)5(

1

n  
1 

5.72553 5.958359 5.350588 5.822084 5.500506 

constant
 

Cx )(
 

6.032679
 

6.428601
 

6.010923
 

6.143806
 

6.654467
 

Table 29 varfact  

Among the four best cases, the last one, case 57: kernel function: 










widthxwidth

widthxorwidthx
xK

*2||,1

||*2||,0
)(

 

 
，

n
n 5.0)5(

1


 2,01.0,5width  C

with fixed bandwidth 
1nb

 

has the smallest varfact, about 5.7~5.8. This is a little smaller than non-adaption algorithm, which is 

around 6.0. 

3.2.2 variance/ standard error 

Now compare the variance. For each kernel function, I choose the best one with the smallest 

variance from all  the cases I try.  

kernel function 
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1||
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First run
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run
 

Third run
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Fifth run 

2 0.1 2 
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0.008631
 

0.008396
 

0.008139
 

0.008740
 

0.008697
 

kernel function 2||1
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Third run
 

Fourth run
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1 0.1 10 
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1

n  
1 

0.008920
 

0.008758
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0.01 10 0.5 0.

5 5.0)5(

1

n  
1 

0.008052
 

0.008275
 

0.008178
 

0.008147
 

0.008477
 

Kernel function 
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First run
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run
 

Third run
 

Fourth run
 

Fifth run
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5 2 

5.0)5(

1

n  
1 

0.007925 0.008171 0.007620 0.00800 0.007780 

constant
 

Cx )(
 

0.008154
 

0.008419
 

0.008097
 

0.008276
 

0.008502
 

Table 30 variance 

Among the four best cases,  case 57 still performs the best. It has the smallest variance, around 

0.008, a little smaller than non-adaptation algorithm, which has the variance of about 0.0082~0.0084. 

3.2.3 average squared jump distance 

For each kernel function, I choose the best one with the biggest average squared jump distance 

from all  the cases I try.  

kernel function 
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Third run
 

Fourth run
 

Fifth run
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0.561479 0.54956 0.584170 0.563489 0.569779 

kernel function 
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0.585138
 

0.546282
 

0.555975
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Kernel function 



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run
 

Third run
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0.611305
 

0.597235
 

0.604059
 

0.616791
 

0.610068
 

constant
 

Cx )(
 

0.553845
 

0.554989
 

0.537098
 

0.56998
 

0.547339
 

Table 31 average squared jump distance 

From table 12, we can see that case 65: 

 
，

n
n 5.0)5(

1


 2,01.0,5width  C

with decreasing bandwidth 2.0

1

n
bn    

has the biggest average squared jump distance, about 0.60~0.61,a little bigger than 0.54~0.56. 

So if measured in variance and varfact, case 57 is the best; if measured in average squared jump 

distance, case 65 is the best. Table 15 shows the comparison of case 57, 65 and non-adaptation 

algorithm. 

 varfact variance   average sq. distance 

Case 57 5.4~5.8 0.0077~0.0080 0.54~0.55 

Case 65 7.7~7.9 0.0092~0.0095 0.60~0.61 

Cx )(
 

6.0~6.6 0.0081~0.0085 0.54~0.56 

Table 32 comparison of the best three cases 

This table shows that adaptive algorithm performs a little better than non-adaptation algorithm, but 

this advantage is not significant. 

3.3 Example 2: Mixture of Two Normal Distributions in 
1R  

I try 62 kinds of parameter choice and kernel functions to implement the adaptation algorithm; and 

then generate 5 Markov Chains according to the final )(x
. 

You can check the varfact, variance 

and average squared jump distance of them in Appendix 2.3.6~2.3.8. 

3.3.1 varfact 

For the four kernel functions, the below four cases have the smaller varfact than others with the 

same kernel functions. 
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kernel function 
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 13.29707

 

Table 33 varfact 

Among the four best cases, the last one, case 116 : 
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has the smallest varfact, about 11.2~12.9, while non-adaption algorithm has the varfact of about 

13.2~13.8. 

3.3.2 variance/ standard error 

Now compare the variance. For each kernel function, I choose the best one with the smallest 

variance from all  the cases I try.  
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Table 34 variance 
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Among the four best cases,  case 116 still performs the best. It has the smallest variance, around 

0.057~0.061, a little smaller than non-adaptation algorithm, which has the variance of about 

0.061~0.065. 

3.3.3 average squared jump distance 

For each kernel function, I choose the best one with the biggest average squared jump distance 

from all  the cases I try.  
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Table 35 average squared jump distance 

From table 35 we can see that case 116 has the biggest average squared jump distance, about 

7.7~8.1,a little bigger than 7.2~7.4. 
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So among all the 62 cases I try, case 116 gives the smallest variance and varfact, and biggest 

average squared jump distance, a little better than non-adaptation algorithm. You check check this 

from table 36. 

 varfact variance   average sq. distance 

Case 116 11.2~12.9 0.057~0.061 7.7~8.1 

Cx )(
 

13.2~13.8 0.061~0.065 7.2~7.4 

Table 36 comparison of the best cases 

3.4  Example 3: Mixture of Three Normal Distributions in 
1R  

As the first two examples, I try 65 kinds of parameter choice and kernel functions to implement the 

adaptation algorithm; and then generate 5 Markov Chains according to the final )(x
. 

You can 

check the varfact, variance and average squared jump distance of them in Appendix 3.3.6~3.3.8. I 

will not include the cases that the Markov Chain has bad mixing, like cases when 2 .  

3.4.1 varfact 

For the four kernel functions, the below four cases have the smaller varfact than others with the 

same kernel functions. 

kernel function 
2

1||

)(



x

exK



 

1  
C  


 n  nb

 
First run

 
Second 

run
 

Third run
 

Fourth run
 

Fifth run 

1 10 0.5 
5.0)5(

1

n  
1 12.64651

 
12.96737

 
12.65248

 
 13.67789

 
 12.82574

 

kernel function 2||1

1
)(

1

 x
xK




 

1  
C  


 n  nb

 
First run

 
Second 

run
 

Third run
 

Fourth run
 

Fifth run
 

10 10 0.5 
5.0)5(

1

n  
1 13.3392

 
12.24885

 
13.38762

 
13.53404

 
13.72235

 

kernel function 
















widthxheight

widthxwidthhegith

widthx

xK

||,*1

*2||,*1

*2||,0

)(
 

C
 


 

hei
ght

 

wi
dt
h

 

n  
nb

 
First run

 
Second 

run
 

Third run
 

Fourth run
 

Fifth run
 



Report                          Local scale adaptation for Random Walk Metropolis                                       Page 52 
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Table 37 varfact 

Among the four best cases, the last two,  

case 173: 
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Have close performance. They have the smallest varfact, about 12.4~12.98, while non-adaption 

algorithm has the varfact of about 14~15.4. 

3.4.2 variance/ standard error 

Now compare the variance. For each kernel function, I choose the best one with the smallest 

variance from all  the cases I try.  
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Table 38 varfact 

Among the four best cases,  case 173 and 182 still perform the best. They have the smallest 

variance, around 0.092~0.094, a little smaller than non-adaptation algorithm, which has the variance 

of about 0.097~0.10. 

3.2.3 average squared jump distance 

For each kernel function, I choose the best one with the biggest average squared jump distance 

from all  the cases I try.  
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Table 39 average squared jump distance 

From table 39, we can see that case 173 has the biggest average squared jump distance, about 

17.7~18.1,a little bigger than 15.3~15.5. 

 varfact variance   average sq. distance 

Case 173 12.4~12.98 0.092~0.094 17.7~18.1 

Cx )(
 

14~15.4 0.097~0.10 15.3~15.5 

Table 40 comparison of the best cases 
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So among all the 65 cases I try, case 173 gives the smallest variance and varfact, and biggest 

average squared jump distance, a little better than non-adaptation algorithm. 

3.5  Example 4: Normal Distribution in 
2R  

I first learn some good parameter choices from Example 1:Normal Distribution in 
2R , then try these 

parameter choices to run the adaptation algorithm in this example. According to the final )(xσ  
from 

the adaptation algorithm, I generate 5 Markov Chain for each case. I try 9 cases in total. The 

generated Markov Chain all have good mixing. Now I want to compare them with constant )(xσ  
in 

the above measures. 

3.5.1 varfact 

First compare the varfact of these cases.Table 41 list the varfact of 5 Markov Chain generated for 

each case I try. The first line is the results for the list of x1, the first component of the random 

variance, and the second line is for that of x2, the second component.
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constant
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Table 41 varfact 

For the adaptation algorithm, the best case is case 201 : 
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In case 201, the varfact is around 7.7~8.5 for x1 and 7.7~8.4 for x2. While non-adaptation algorithm  

has the varfact of about 8.3~8.5 for x1 and 8.3~9.9 for x2. So adaptation algorithm works a little 

better. 

3.5.2 variance/ standard error 

Table 42 list the standard error of 5 Markov Chain generated for each case I try. The first line is the 

results for the list of x1, and the second line is for that of x2. 
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Kernel function :
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Table 42 variance
 

The adaptation algorithm's standard error is quite close to non-adaptation algorithm. So if measured  

in variance/standard error, it is hard to say which one is better for this example by the cases I try. 

3.5.3 average squared jump distance 

Table 43 list the average squared jump distance  of 5 Markov Chain generated for each case I try. 

The first line is the results for the list of x1, and the second line is for that of x2. 
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Table 43 average squared jump distance

 

If measured in average squared jump distance, case 196 : 

Kernel function : 2

1||

)( α

αx

exK
−

=
 

，
nn 5.0)5(

1
+

=η 2,1.0,1,5.0 21 ==== γαα C
with fixed bandwidth 

1=nb
 

performs better than the non-adaptation algorithm and the other adaptation algorithm:  

Its average squared jump distance is about 0.5, bigger than around 0.42~0.43 innon-adaptation 

algorithm . So if measured in average squared jump distance, non-adaptation algorithm performs a 

little better.
 

Conclusion 

We explore the efficiency of adaptation algorithm for Random Walk Metropolis. Simulation studies 

indicate that probably it is impossible to make the local acceptance rate around 0.234 for all different 

x. But during the procedure to achieve this, the adaptation algorithm makes a little improvement to 

the efficiency of Markov Chain, if measured in variance, varfact, and average squared jump distance.  
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AppendixAppendixAppendixAppendix

1.1.1.1. CodeCodeCodeCode

1.1 C code
1.1.1 C code to implement the adaptation algorithm and generate a Markov
Chain (Example 1~3)
1.1.2 C code to implement the adaptation algorithm and generate a Markov
Chain (Example 4)

1.2 R code

1.2.1 R code to plot the final )(Xg and )(Xσ (Example 1~3)

1.2.2 R code to plot the final )(Xg and )(Xσ (Example 4)

1.2.3 R code to generate Markov Chain without adaption (Example 1)
1.2.4 R code to generate Markov Chain without adaption (Example 2)
1.2.5 R code to generate Markov Chain without adaption (Example 3)
1.2.6 R code to generate Markov Chain without adaption (Example 4)
1.2.7 R code to compute different efficiency measures (Example 1~3)
1.2.8 R code to compute different efficiency measures (Example 4)

1.2.9 R code to implement OLS in approximation of the final )(Xσ

2.2.2.2. OutputOutputOutputOutput

2.1 Example 1: normal distribution in 1R

2.1.1 kernel function
2

1||

)( α

αx

exK
−

=

2.1.1.1 case 1 ,
nn 5.0)5(
1
+

=η 2,1,1,1 21 ==== γαα C with fixed bandwidth 1=nb

2.1.1.2 case 2 ,
nn 5.0)5(
1
+

=η 2,1,1,2 21 ==== γαα C with fixed bandwidth 1=nb

2.1.1.3 case 3 ,
nn 5.0)5(
1
+

=η 2,1,1,10 21 ==== γαα C with fixed bandwidth 1=nb



2.1.1.4 case 4 ,
nn 5.0)5(
1
+

=η 2,1,1,1.0 21 ==== γαα C with fixed bandwidth 1=nb

2.1.1.5 case 5 ,
nn 5.0)5(
1
+

=η 2,1,1,5.0 21 ==== γαα C with fixed bandwidth 1=nb

2.1.1.6 case 6 ,
nn 5.0)5(
1
+

=η 2,2,1,2 21 ==== γαα C with fixed bandwidth 1=nb

2.1.1.7 case 7 ,
nn 5.0)5(
1
+

=η 2,10,1,2 21 ==== γαα C with fixed bandwidth 1=nb

2.1.1.8 case 8 ,
nn 5.0)5(
1
+

=η 2,1.0,1,2 21 ==== γαα C with fixed bandwidth 1=nb

2.1.1.9 case 9 ,
nn 5.0)5(
1
+

=η 2,5.0,1,2 21 ==== γαα C with fixed bandwidth 1=nb

2.1.1.10 case 10 ,
nn 5.0)5(

1
+

=η 2,01.0,1,2 21 ==== γαα C with fixed bandwidth

1=nb

2.1.1.11 case 11 ,
nn 5.0)5(

1
+

=η 10,1.0,1,2 21 ==== γαα C with fixed bandwidth

1=nb

2.1.1.12 case 12 ,
nn 5.0)5(

1
+

=η 5.0,1.0,1,2 21 ==== γαα C with fixed bandwidth

1=nb

2.1.1.13 case 13 ,
nn 5.0)5(

1
+

=η 1,1.0,1,2 21 ==== γαα C with fixed bandwidth

1=nb

2.1.1.14 case 14 ,
nn 5.0)5(

1
+

=η 1.0,1.0,1,2 21 ==== γαα C with fixed bandwidth

1=nb



2.1.1.15 case 15 ,
nn 8.0)5(

1
+

=η 2,1.0,1,2 21 ==== γαα C with fixed bandwidth

1=nb

2.1.1.16 case 16 ,
nn 5.0)5(

1
+

=η 2,1.0,1,2 21 ==== γαα C with fixed bandwidth

10=nb

2.1.1.17 case 17 ,
nn 5.0)5(

1
+

=η 2,1.0,1,2 21 ==== γαα C with fixed bandwidth

0.1=nb

2.1.1.18 case 18 ,
nn 5.0)5(
1
+

=η 2,1.0,1,2 21 ==== γαα C with decreasing

bandwidth 2.0

1
n

bn =

2.1.2 kernel function 2||1
1)(
1

αα x
xK

+
=

2.1.2.1 case 19 ,
nn 5.0)5(
1
+

=η 2,1,1,1 21 ==== γαα C with fixed bandwidth 1=nb

2.1.2.2 case 20 ,
nn 5.0)5(
1
+

=η 2,1,1,10 21 ==== γαα C with fixed bandwidth 1=nb

2.1.2.3 case 21 ,
nn 5.0)5(

1
+

=η 2,1,1,1.0 21 ==== γαα C with fixed bandwidth

1=nb

2.1.2.4 case 22 ,
nn 5.0)5(
1
+

=η 2,10,1,1 21 ==== γαα C with fixed bandwidth 1=nb

2.1.2.5 case 23 ,
nn 5.0)5(
1
+

=η 2,1.0,1,1 21 ==== γαα C with fixed bandwidth

1=nb

2.1.2.6 case 24 ,
nn 5.0)5(
1
+

=η 2,01.0,1,1 21 ==== γαα C with fixed bandwidth



1=nb

2.1.2.7 case 25 ,
nn 5.0)5(

1
+

=η 1,1.0,1,1 21 ==== γαα C with fixed bandwidth 1=nb

2.1.2.8 case 26 ,
nn 5.0)5(
1
+

=η 10,1.0,1,1 21 ==== γαα C with fixed bandwidth

1=nb

2.1.2.9 case 27 ,
nn 5.0)5(
1
+

=η 2,1.0,1,1 21 ==== γαα C with fixed bandwidth

10=nb

2.1.2.10 case 28 ,
nn 5.0)5(
1
+

=η 2,1.0,1,1 21 ==== γαα C with fixed bandwidth

1.0=nb

2.1.2.11 case 29 ,
nn 5.0)5(

1
+

=η 1.0,1.0,1,1 21 ==== γαα C with fixed bandwidth

01=nb

2.1.2.12 case 30 ,
nn 5.0)5(
1
+

=η 2,1,1,1 21 ==== γαα C with decreasing bandwidth

2.0

1
n

bn =

2.1.2.13 case 31 ,
nn 8.0)5(

1
+

=η 2,1,1,1.0 21 ==== γαα C with fixed bandwidth

01=nb

2.1.3 kernel function
⎪
⎩

⎪
⎨

⎧

≤
<<−

≥
=

widthxheight
widthxwidthhegith

widthx
xK

||,*1
*2||,*1

*2||,0
)(

2.1.3.1 case 32 ,
nn 5.0)5(
1
+

=η 2,1,5.0width,5.0 ==== γCheight with fixed

bandwidth 1=nb



2.1.3.2 case 33 ,
nn 5.0)5(

1
+

=η 2,10,5.0width,5.0 ==== γCheight with fixed

bandwidth 1=nb

2.1.3.3 case 34 ,
nn 5.0)5(
1
+

=η 2,1.0,5.0width,5.0 ==== γCheight with fixed

bandwidth 1=nb

2.1.3.4 case 35 ,
nn 5.0)5(
1
+

=η 2,01.0,5.0width,5.0 ==== γCheight with fixed

bandwidth 1=nb

2.1.3.5 case 36 ,
nn 5.0)5(
1
+

=η 2,0,5.0width,5.0 ==== γCheight with fixed

bandwidth 1=nb

2.1.3.6 case 37 ,
nn 5.0)5(

1
+

=η 2,001.0,5.0width,5.0 ==== γCheight with fixed

bandwidth 1=nb

2.1.3.7 case 38 ,
nn 5.0)5(

1
+

=η 10,001.0,5.0width,5.0 ==== γCheight with fixed

bandwidth 1=nb

2.1.3.8 case 39 ,
nn 5.0)5(

1
+

=η 1,001.0,5.0width,5.0 ==== γCheight with fixed

bandwidth 1=nb

2.1.3.9 case 40 ,
nn 5.0)5(

1
+

=η 1.0,001.0,5.0width,5.0 ==== γCheight with fixed

bandwidth 1=nb

2.1.3.10 case 41 ,
nn 5.0)5(

1
+

=η 2,01.0,5.0width,1 ==== γCheight with fixed

bandwidth 1=nb



2.1.3.11 case 42 ,
nn 5.0)5(

1
+

=η 2,01.0,5.0width,10 ==== γCheight with fixed

bandwidth 1=nb

2.1.3.12 case 43 ,
nn 5.0)5(

1
+

=η 2,01.0,5.0width,1.0 ==== γCheight with fixed

bandwidth 1=nb

2.1.3.13 case 44 ,
nn 5.0)5(
1
+

=η 2,01.0,2width,5.0 ==== γCheight with fixed

bandwidth 1=nb

2.1.3.14 case 45 ,
nn 5.0)5(

1
+

=η 2,01.0,5width,5.0 ==== γCheight with fixed

bandwidth 1=nb

2.1.3.15 case 46 ,
nn 5.0)5(

1
+

=η 2,01.0,1.0width,5.0 ==== γCheight with fixed

bandwidth 1=nb

2.1.3.16 case 47 ,
nn 5.0)5(

1
+

=η 2,01.0,5.0width,5.0 ==== γCheight with fixed

bandwidth 10=nb

2.1.3.17 case 48 ,
nn 5.0)5(

1
+

=η 2,01.0,5.0width,5.0 ==== γCheight with fixed

bandwidth 1.0=nb

2.1.3.18 case 49 ,
nn 5.0)5(

1
+

=η 2,01.0,5.0width,5.0 ==== γCheight with

decreasing bandwidth 2.0

1
n

bn =

2.1.3.19 case 50 ,
nn 8.0)5(

1
+

=η 2,01.0,5.0width,5.0 ==== γCheight with fixed

bandwidth 1=nb



2.1.4 kernel function ⎩
⎨
⎧

<<
≤≥

=
widthxwidth

widthxorwidthx
xK

*2||,1
||*2||,0

)(

2.1.4.1 case 51 ,
nn 5.0)5(
1
+

=η 2,1,5.0width === γC with fixed bandwidth 1=nb

2.1.4.2 case 52 ,
nn 5.0)5(
1
+

=η 2,10,5.0width === γC with fixed bandwidth 1=nb

2.1.4.3 case 53 ,
nn 5.0)5(
1
+

=η 2,1.0,5.0width === γC with fixed bandwidth 1=nb

2.1.4.4 case 54 ,
nn 5.0)5(
1
+

=η 2,01.0,5.0width === γC with fixed bandwidth

1=nb

2.1.4.5 case 55 ,
nn 5.0)5(

1
+

=η 2,001.0,5.0width === γC with fixed bandwidth

1=nb

2.1.4.6 case 56 ,
nn 5.0)5(
1
+

=η 2,01.0,1width === γC with fixed bandwidth 1=nb

2.1.4.7 case 57 ,
nn 5.0)5(
1
+

=η 2,01.0,5width === γC with fixed bandwidth 1=nb

2.1.4.8 case 58 ,
nn 5.0)5(
1
+

=η 2,01.0,1.0width === γC with fixed bandwidth

1=nb

2.1.4.9 case 59 ,
nn 5.0)5(
1
+

=η 2,01.0,8width === γC with fixed bandwidth 1=nb

2.1.4.10 case 60 ,
nn 5.0)5(
1
+

=η 5,01.0,5width === γC with fixed bandwidth 1=nb

2.1.4.11 case 61 ,
nn 5.0)5(
1
+

=η 1,01.0,5width === γC with fixed bandwidth 1=nb

2.1.4.12 case 62 ,
nn 5.0)5(
1
+

=η 1.0,01.0,5width === γC with fixed bandwidth



1=nb

2.1.4.13 case 63 ,
nn 5.0)5(

1
+

=η 2,01.0,5width === γC with fixed bandwidth

10=nb

2.1.4.14 case 64 ,
nn 5.0)5(

1
+

=η 2,01.0,5width === γC with fixed bandwidth

1.0=nb

2.1.4.15 case 65 ,
nn 5.0)5(
1
+

=η 2,01.0,5width === γC with decreasing bandwidth

2.0

1
n

bn =

2.1.4.16 case 66 ,
nn 8.0)5(

1
+

=η 2,01.0,5width === γC with fixed bandwidth 1=nb

2.1.5 constant Cx =)(σ

2.1.6 varfact comparison
2.1.7 variance comparison
2.1.8 comparison of average squared jump distance

2.1.9 OLS in approximation of the final )(xσ

2.2 Example 2: mixture of two normal distributions in
1R

2.2.1 kernel function
2

1||

)( α

αx

exK
−

=

2.2.1.1 case 67 ,
nn 5.0)5(
1
+

=η 2,1,1,1 21 ==== γαα C with fixed bandwidth 1=nb

2.2.1.2 case 68 ,
nn 5.0)5(
1
+

=η 2,1,1,2 21 ==== γαα C with fixed bandwidth 1=nb

2.2.1.3 case 69 ,
nn 5.0)5(
1
+

=η 2,1,1,10 21 ==== γαα C with fixed bandwidth 1=nb

2.2.1.4 case 70 ,
nn 5.0)5(

1
+

=η 2,1,1,1.0 21 ==== γαα C with fixed bandwidth



1=nb

2.2.1.5 case 71 ,
nn 5.0)5(

1
+

=η 2,1,1,5.0 21 ==== γαα C with fixed bandwidth

1=nb

2.2.1.6 case 72 ,
nn 5.0)5(
1
+

=η 2,1,1,01.0 21 ==== γαα C with fixed bandwidth

1=nb

2.2.1.7 case 73 ,
nn 5.0)5(
1
+

=η 2,10,1,2 21 ==== γαα C with fixed bandwidth

1=nb

2.2.1.8 case 74 ,
nn 5.0)5(

1
+

=η 2,1.0,1,2 21 ==== γαα C with fixed bandwidth

1=nb

2.2.1.9 case 75 ,
nn 5.0)5(

1
+

=η 10,1.0,1,2 21 ==== γαα C with fixed bandwidth

1=nb

2.2.1.10 case 76 ,
nn 5.0)5(

1
+

=η 1,1.0,1,2 21 ==== γαα C with fixed bandwidth

1=nb

2.2.1.11 case 77 ,
nn 5.0)5(

1
+

=η 1.0,1.0,1,2 21 ==== γαα C with fixed bandwidth

1=nb

2.2.1.12 case 78 ,
nn 5.0)5(

1
+

=η 2,1.0,1,2 21 ==== γαα C with fixed bandwidth

10=nb

2.2.1.13 case 79 ,
nn 5.0)5(

1
+

=η 2,1.0,1,2 21 ==== γαα C with fixed bandwidth



0.1=nb

2.2.1.14 case 80 ,
nn 5.0)5(

1
+

=η 2,1.0,1,2 21 ==== γαα C with decreasing

bandwidth 2.0

1
n

bn =

2.2.1.15 case 81 ,
nn 8.0)5(

1
+

=η 2,1.0,1,2 21 ==== γαα C with fixed bandwidth

10=nb

2.2.2 kernel function 2||1
1)(
1

αα x
xK

+
=

2.2.2.1 case 90 ,
nn 5.0)5(
1
+

=η 2,1,1,1 21 ==== γαα C with fixed bandwidth 1=nb

2.2.2.2 case 91 ,
nn 5.0)5(
1
+

=η 2,1,1,10 21 ==== γαα C with fixed bandwidth 1=nb

2.2.2.3 case 92 ,
nn 5.0)5(

1
+

=η 2,1,1,1.0 21 ==== γαα C with fixed bandwidth

1=nb

2.2.2.4 case 93 ,
nn 5.0)5(
1
+

=η 2,1,1,12 21 ==== γαα C with fixed bandwidth 1=nb

2.2.2.5 case 94 ,
nn 5.0)5(
1
+

=η 2,1,1,5 21 ==== γαα C with fixed bandwidth 1=nb

2.2.2.6 case 95 ,
nn 5.0)5(

1
+

=η 10,1,1,10 21 ==== γαα C with fixed bandwidth

1=nb

2.2.2.7 case 96 ,
nn 5.0)5(
1
+

=η 1.0,1,1,10 21 ==== γαα C with fixed bandwidth

1=nb

2.2.2.8 case 97 ,
nn 5.0)5(
1
+

=η 1.0,10,1,10 21 ==== γαα C with fixed bandwidth



1=nb

2.2.2.9 case 98 ,
nn 5.0)5(

1
+

=η 1.0,1.0,1,10 21 ==== γαα C with fixed bandwidth

1=nb

2.2.2.10 case 99 ,
nn 5.0)5(

1
+

=η 1.0,1.0,1,10 21 ==== γαα C with fixed bandwidth

10=nb

2.2.2.11 case 100 ,
nn 5.0)5(
1
+

=η 1.0,1.0,1,10 21 ==== γαα C with fixed bandwidth

1.0=nb

2.2.2.12 case 101 ,
nn 5.0)5(

1
+

=η 1.0,1.0,1,10 21 ==== γαα C with decreasing

bandwidth 2.0

1
n

bn =

2.2.2.13 case 102 ,
nn 8.0)5(

1
+

=η 1.0,1.0,1,10 21 ==== γαα C with fixed bandwidth

1=nb

2.2.3 kernel function
⎪
⎩

⎪
⎨

⎧

≤
<<−

≥
=

widthxheight
widthxwidthhegith

widthx
xK

||,*1
*2||,*1

*2||,0
)(

2.2.3.1 case 103 ,
nn 5.0)5(

1
+

=η ,5.0width0.5,height,2,1 ==== γC with fixed

bandwidth 1=nb

2.2.3.2 case 104 ,
nn 5.0)5(
1
+

=η ,5.0width0.5,height,2,10 ==== γC with fixed

bandwidth 1=nb

2.2.3.3 case 105 ,
nn 5.0)5(

1
+

=η ,5.0width0.5,height,2,1.0 ==== γC with fixed



bandwidth 1=nb

2.2.3.4 case 106 ,
nn 5.0)5(

1
+

=η ,5.0width0.5,height,10,1.0 ==== γC with fixed

bandwidth 1=nb

2.2.3.5 case 107 ,
nn 5.0)5(

1
+

=η ,5.0width0.5,height,1.0,1.0 ==== γC with fixed

bandwidth 1=nb

2.2.3.6 case 108 ,
nn 5.0)5(
1
+

=η ,5.0width1,height,2,1.0 ==== γC with fixed

bandwidth 1=nb

2.2.3.7 case 109 ,
nn 5.0)5(
1
+

=η ,5.0width5,height,2,1.0 ==== γC with fixed

bandwidth 1=nb

2.2.3.8 case 110 ,
nn 5.0)5(

1
+

=η ,5.0width1,.0height,2,1.0 ==== γC with fixed

bandwidth 1=nb

2.2.3.9 case 111 ,
nn 5.0)5(

1
+

=η ,1width1,height,1.0,1 ==== γC with fixed

bandwidth 1=nb

2.2.3.10 case 112 ,
nn 5.0)5(
1
+

=η ,5width1,height,1.0,1.0 ==== γC with fixed

bandwidth 1=nb

2.2.3.11 case 113 ,
nn 5.0)5(

1
+

=η ,1.0width1,height,1.0,1.0 ==== γC with fixed

bandwidth 1=nb

2.2.3.12 case 114 ,
nn 5.0)5(
1
+

=η ,1.0width1,height,1.0,1.0 ==== γC with fixed



bandwidth 10=nb

2.2.3.13 case 115 ,
nn 5.0)5(
1
+

=η ,1.0width1,height,1.0,1.0 ==== γC with fixed

bandwidth 1.0=nb

2.2.3.14 case 116 ,
nn 5.0)5(

1
+

=η ,1.0width1,height,1.0,1.0 ==== γC with

decreasing bandwidth 2.0

1
n

bn =

2.2.3.15 case 117 ,
nn 8.0)5(

1
+

=η ,1.0width1,height,1.0,1.0 ==== γC with

decreasing bandwidth 2.0

1
n

bn =

2.2.4 kernel function ⎩
⎨
⎧

<<
≤≥

=
widthxwidth

widthxorwidthx
xK

*2||,1
||*2||,0

)(

2.2.4.1 case 118 ,
nn 5.0)5(
1
+

=η ,5.0width,2,1 === γC with fixed bandwidth 1=nb

2.2.4.2 case 119 ,
nn 5.0)5(

1
+

=η ,5.0width,2,1.0 === γC with fixed bandwidth

1=nb

2.2.4.3 case 120 ,
nn 5.0)5(
1
+

=η ,5.0width,2,10 === γC with fixed bandwidth

1=nb

2.2.4.4 case 121 ,
nn 5.0)5(
1
+

=η ,5.0width,10,1.0 === γC with fixed bandwidth

1=nb

2.2.4.5 case 122 ,
nn 5.0)5(

1
+

=η ,5.0width,1.0,1.0 === γC with fixed bandwidth

1=nb



2.2.4.6 case 123 ,
nn 5.0)5(
1
+

=η ,1width,1.0,1.0 === γC with fixed bandwidth

1=nb

2.2.4.7 case 124 ,
nn 5.0)5(
1
+

=η ,2width,1.0,1.0 === γC with fixed bandwidth

1=nb

2.2.4.8 case 125 ,
nn 5.0)5(
1
+

=η ,5width,1.0,1.0 === γC with fixed bandwidth

1=nb

2.2.4.9 case 126 ,
nn 5.0)5(

1
+

=η ,2.0width,1.0,1.0 === γC with fixed bandwidth

1=nb

2.2.4.10 case 127 ,
nn 5.0)5(

1
+

=η ,2.0width,1.0,1.0 === γC with fixed bandwidth

10=nb

2.2.4.11 case 128 ,
nn 5.0)5(

1
+

=η ,2.0width,1.0,1.0 === γC with fixed bandwidth

0.1=nb

2.2.4.12 case 127 ,
nn 5.0)5(

1
+

=η ,2.0width,1.0,1.0 === γC with decreasing

bandwidth 2.0

1
n

bn =

2.2.4.13 case 128 ,
nn 8.0)5(

1
+

=η ,2.0width,1.0,1.0 === γC with fixed bandwidth

1=nb

2.2.5 constant Cx =)(σ

2.2.6 varfact comparison
2.2.7 variance comparison



2.2.8 comparison of average squared jump distance

2.3 Example 3: mixture of three normal distributions in
1R

2.3.1 kernel function
2

1||

)( α

αx

exK
−

=

2.3.1.1 case 129 ,
nn 5.0)5(

1
+

=η 2,1,1,1 21 ==== γαα C with fixed bandwidth

1=nb

2.3.1.2 case 130 ,
nn 5.0)5(

1
+

=η 2,1,1,10 21 ==== γαα C with fixed bandwidth

1=nb

2.3.1.3 case 131 ,
nn 5.0)5(

1
+

=η 2,1,1,1.0 21 ==== γαα C with fixed bandwidth

1=nb

2.3.1.4 case 132 ,
nn 5.0)5(

1
+

=η 5.0,1,1,1 21 ==== γαα C with fixed bandwidth

1=nb

2.3.1.5 case 131 ,
nn 5.0)5(

1
+

=η 5.0,1,1,10 21 ==== γαα C with fixed bandwidth

1=nb

2.3.1.6 case 132 ,
nn 5.0)5(

1
+

=η 5.0,1,1,1.0 21 ==== γαα C with fixed bandwidth

1=nb

2.3.1.7 case 133 ,
nn 5.0)5(

1
+

=η 5.0,10,1,1 21 ==== γαα C with fixed bandwidth

1=nb

2.3.1.8 case 134 ,
nn 5.0)5(

1
+

=η 5.0,10,1,1.0 21 ==== γαα C with fixed bandwidth



1=nb

2.3.1.9 case 135 ,
nn 5.0)5(

1
+

=η 5.0,1.0,1,1.0 21 ==== γαα C with fixed bandwidth

1=nb

2.3.1.10 case 136 ,
nn 5.0)5(

1
+

=η 5.0,1.0,1,1.0 21 ==== γαα C with fixed

bandwidth 10=nb

2.3.1.11 case 137 ,
nn 5.0)5(

1
+

=η 5.0,1.0,1,1.0 21 ==== γαα C with fixed

bandwidth 0.1=nb

2.3.1.12 case 138 ,
nn 5.0)5(

1
+

=η 5.0,1,1,1.0 21 ==== γαα C with decreasing

bandwidth
2.0

1
n

bn =

2.3.1.13 case 139 ,
nn 8.0)5(

1
+

=η 5.0,1,1,1.0 21 ==== γαα C with fixed bandwidth

1=nb

2.3.2 kernel function 2||1
1)(
1

αα x
xK

+
=

2.3.2.1 case 140 ,
nn 5.0)5(

1
+

=η 2,1,1,1 21 ==== γαα C with fixed bandwidth 1=nb

2.3.2.2 case 141 ,
nn 5.0)5(

1
+

=η 2,1,1,10 21 ==== γαα C with fixed bandwidth

1=nb

2.3.2.3 case 142 ,
nn 5.0)5(

1
+

=η 2,1,1,1.0 21 ==== γαα C with fixed bandwidth

1=nb



2.3.2.4 case 143 ,
nn 5.0)5(

1
+

=η 2,1.0,1,1 21 ==== γαα C with fixed bandwidth

1=nb

2.3.2.5 case 144 ,
nn 5.0)5(

1
+

=η 2,10,1,1 21 ==== γαα C with fixed bandwidth

1=nb

2.3.2.6 case 145 ,
nn 5.0)5(

1
+

=η 5.0,1,1,1 21 ==== γαα C with fixed bandwidth

1=nb

2.3.2.7 case 146 ,
nn 5.0)5(

1
+

=η 5.0,1,1,10 21 ==== γαα C with fixed bandwidth

1=nb

2.3.2.8 case 147 ,
nn 5.0)5(

1
+

=η 5.0,1,1,1.0 21 ==== γαα C with fixed bandwidth

1=nb

2.3.2.9 case 148 ,
nn 5.0)5(

1
+

=η 5.0,10,1,10 21 ==== γαα C with fixed bandwidth

1=nb

2.3.2.10 case 149 ,
nn 5.0)5(

1
+

=η 5.0,1.0,1,10 21 ==== γαα C with fixed bandwidth

1=nb

2.3.2.11 case 150 ,
nn 5.0)5(

1
+

=η 1.0,10,1,10 21 ==== γαα C with fixed bandwidth

1=nb

2.3.2.12 case 151 ,
nn 5.0)5(

1
+

=η 1,10,1,10 21 ==== γαα C with fixed bandwidth

1=nb



2.3.2.13 case 152 ,
nn 5.0)5(

1
+

=η 5.0,10,1,10 21 ==== γαα C with fixed bandwidth

10=nb

2.3.2.14 case 153 ,
nn 5.0)5(

1
+

=η 5.0,10,1,10 21 ==== γαα C with fixed bandwidth

0.1=nb

2.3.2.15 case 154 ,
nn 5.0)5(

1
+

=η 5.0,10,1,10 21 ==== γαα C withdecreasing

bandwidth
2.0

1
n

bn =

2.3.2.16 case 155 ,
nn 8.0)5(

1
+

=η 5.0,10,1,10 21 ==== γαα C fixed bandwidth

1=nb

2.3.3 kernel function
⎪
⎩

⎪
⎨

⎧

≤
<<−

≥
=

widthxheight
widthxwidthhegith

widthx
xK

||,*1
*2||,*1

*2||,0
)(

2.3.3.1 case 156 ,
nn 5.0)5(

1
+

=η 2,1,5.0width,5.0height ==== γC with fixed

bandwidth 1=nb

2.3.3.2 case 157 ,
nn 5.0)5(

1
+

=η 2,10,5.0width,5.0height ==== γC with fixed

bandwidth 1=nb

2.3.3.3 case 158 ,
nn 5.0)5(

1
+

=η 2,1.0,5.0width,5.0height ==== γC with fixed

bandwidth 1=nb

2.3.3.4 case 159 ,
nn 5.0)5(

1
+

=η 2,1.0,5.0width,2height ==== γC with fixed

bandwidth 1=nb



2.3.3.5 case 160 ,
nn 5.0)5(

1
+

=η 2,1.0,2width,5.0height ==== γC with fixed

bandwidth 1=nb

2.3.3.6 case 161 ,
nn 5.0)5(

1
+

=η 5.0,1,5.0width,5.0height ==== γC with fixed

bandwidth 1=nb

2.3.3.7 case 162 ,
nn 5.0)5(

1
+

=η 5.0,10,5.0width,5.0height ==== γC with fixed

bandwidth 1=nb

2.3.3.8 case 163 ,
nn 5.0)5(

1
+

=η 5.0,1.0,5.0width,5.0height ==== γC with fixed

bandwidth 1=nb

2.3.3.9 case 164 ,
nn 5.0)5(

1
+

=η 5.0,1.0,5.0width,2height ==== γC with fixed

bandwidth 1=nb

2.3.3.10 case 165 ,
nn 5.0)5(

1
+

=η 5.0,1.0,5.0width,5height ==== γC with fixed

bandwidth 1=nb

2.3.3.11 case 166 ,
nn 5.0)5(

1
+

=η 5.0,1.0,5.0width,10height ==== γC with fixed

bandwidth 1=nb

2.3.3.12 case 167 ,
nn 5.0)5(

1
+

=η 5.0,1.0,5.0width,1.0height ==== γC with fixed

bandwidth 1=nb

2.3.3.13 case 168 ,
nn 5.0)5(

1
+

=η 5.0,1.0,2width,1.0height ==== γC with fixed

bandwidth 1=nb



2.3.3.14 case 169 ,
nn 5.0)5(

1
+

=η 5.0,1.0,8width,1.0height ==== γC with fixed

bandwidth 1=nb

2.3.3.15 case 170 ,
nn 5.0)5(

1
+

=η 5.0,1.0,15width,1.0height ==== γC with fixed

bandwidth 1=nb

2.3.3.16 case 171 ,
nn 5.0)5(

1
+

=η 5.0,1.0,1.0width,1.0height ==== γC with fixed

bandwidth 1=nb

2.3.3.17 case 172 ,
nn 5.0)5(

1
+

=η 1.0,1.0,2width,1.0height ==== γC with fixed

bandwidth 1=nb

2.3.3.18 case 173 ,
nn 5.0)5(

1
+

=η 5.0,1.0,2width,1.0height ==== γC with fixed

bandwidth 10=nb

2.3.3.19 case 174 ,
nn 5.0)5(

1
+

=η 5.0,1.0,2width,1.0height ==== γC with fixed

bandwidth 0.1=nb

2.3.3.20 case 175 ,
nn 5.0)5(

1
+

=η 5.0,1.0,2width,1.0height ==== γC with

decreasing bandwidth
2.0

1
n

bn =

2.3.3.21 case 176 ,
nn 8.0)5(

1
+

=η 5.0,1.0,2width,1.0height ==== γC with fixed

bandwidth 1=nb

2.3.4 kernel function ⎩
⎨
⎧

<<
≤≥

=
widthxwidth

widthxorwidthx
xK

*2||,1
||*2||,0

)(



2.3.4.1 case 177 ,
nn 5.0)5(

1
+

=η 2,1,5.0width === γC with fixed bandwidth 1=nb

2.3.4.2 case 178 ,
nn 5.0)5(

1
+

=η 2,10,5.0width === γC with fixed bandwidth 1=nb

2.3.4.3 case 179 ,
nn 5.0)5(

1
+

=η 2,1.0,5.0width === γC with fixed bandwidth

1=nb

2.3.4.4 case 180 ,
nn 5.0)5(

1
+

=η 2,1,2width === γC with fixed bandwidth 1=nb

2.3.4.5 case 181 ,
nn 5.0)5(

1
+

=η 2,1,1.0width === γC with fixed bandwidth 1=nb

2.3.4.6 case 182 ,
nn 5.0)5(

1
+

=η 5.0,1,5.0width === γC with fixed bandwidth

1=nb

2.3.4.7 case 183 ,
nn 5.0)5(

1
+

=η 5.0,10,5.0width === γC with fixed bandwidth

1=nb

2.3.4.8 case 184 ,
nn 5.0)5(

1
+

=η 5.0,1.0,5.0width === γC with fixed bandwidth

1=nb

2.3.4.9 case 185 ,
nn 5.0)5(

1
+

=η 5.0,1,2width === γC with fixed bandwidth 1=nb

2.3.4.10 case 186 ,
nn 5.0)5(

1
+

=η 5.0,1,8width === γC with fixed bandwidth 1=nb

2.3.4.11 case 187 ,
nn 5.0)5(

1
+

=η 5.0,1,15width === γC with fixed bandwidth

1=nb



2.3.4.12 case 189 ,
nn 5.0)5(

1
+

=η 5.0,1,1.0width === γC with fixed bandwidth

1=nb

2.3.4.13 case 190 ,
nn 5.0)5(

1
+

=η 5.0,1,5.0width === γC with fixed bandwidth

10=nb

2.3.4.14 case 191 ,
nn 5.0)5(

1
+

=η 5.0,1,5.0width === γC with fixed bandwidth

1.0=nb

2.3.4.15 case 192 ,
nn 5.0)5(

1
+

=η 5.0,1,5.0width === γC with decreasing bandwidth

2.0

1
n

bn =

2.3.4.16 case 193 ,
nn 8.0)5(

1
+

=η 5.0,1,5.0width === γC with fixed bandwidth

1=nb

2.3.5 constant Cx =)(σ

2.3.6 varfact comparison
2.3.7 variance comparison
2.3.8 comparison of average squared jump distance

2.4 Example 4: normal distribution in
2R

2.4.1 kernel function
2

1||

)( α

αx

exK
−

=

2.4.1.1 case 194 ,
nn 5.0)5(
1
+

=η 2,1,1,1 21 ==== γαα C with fixed bandwidth 1=nb

2.4.1.2 case 195 ,
nn 5.0)5(
1
+

=η 2,1,1,5.0 21 ==== γαα C with fixed bandwidth

1=nb



2.4.1.3 case 196 ,
nn 5.0)5(

1
+

=η 2,1.0,1,5.0 21 ==== γαα C with fixed bandwidth

1=nb

2.4.1.4 case 197 ,
nn 5.0)5(
1
+

=η 2,1.0,1,2 21 ==== γαα C with fixed bandwidth

1=nb

2.4.2 kernel function 2||1
1)(
1

αα x
xK

+
=

2.4.2.1 case 198 ,
nn 5.0)5(
1
+

=η 2,1,1,1 21 ==== γαα C with fixed bandwidth 1=nb

2.4.2.2 case 199 ,
nn 5.0)5(

1
+

=η 1,1.0,1,1 21 ==== γαα C with fixed bandwidth

1=nb

2.4.2.3 case 200 ,
nn 8.0)5(

1
+

=η 2,1.0,1,1 21 ==== γαα C with fixed bandwidth

10=nb

2.4.3 kernel function
⎪
⎩

⎪
⎨

⎧

≤
<<−

≥
=

widthxheight
widthxwidthhegith

widthx
xK

||,*1
*2||,*1

*2||,0
)(

2.4.3.1 case 201 ,
nn 5.0)5(
1
+

=η 10,01.0,5.0width,5.0 ==== γCheight with fixed

bandwidth 1=nb

2.4.4 kernel function ⎩
⎨
⎧

<<
≤≥

=
widthxwidth

widthxorwidthx
xK

*2||,1
||*2||,0

)(

2.4.4.1 case 202 ,
nn 5.0)5(
1
+

=η 2,01.0,5width === γC with fixed bandwidth 1=nb

2.4.5 constant Cx =)(σ

2.4.6 varfact comparison



2.4.7 variance comparison
2.4.8 comparison of average squared jump distance


