Local scale adaptation for Random Walk
Metropolis

Supervisor: Prof. Jeffrey Rosenthal

Student: Xin Wang
Summer 2011



Contents

Abstract

1. Introduction

1.1 introduction

1.2 Metropolis-Hastings algorithm
1.3 optimal scaling

1.4 optimal acceptance rate

1.5 adaptive MCMC

1.6 motivation

2. Test of local acceptance rate® ()
2.1 idealist adaptation algorithm

2.2 methods to test o (.X)

2.3 Example 1: normal distribution in &'

2.3.1 Output

a(x)

2.3.2 How changes with parameters

2.3.3 How to improve the algorithm speed

2.4 Example 2: mixture of two normal distributions in &'
2.4.1 How to avoid numerical error

2.4.2 How to improve the algorithm speed

2.4.3 Output

2.4.4 How to make a(5) smaller

2.5 Example 3: mixture of three normal distributions in A&

2.5.1 How to avoid numerical error

2.5.2 Output

2.5.3 How to choose y



2.6 Example 4: normal distribution in  &*

2.6.1 How to learn from Example 1
2.6.2 How to improve the algorithm speed
2.6.3 Output

3. Efficiency comparison of adaptive and non-adaptive algorithm

3.1 efficiency measures to evaluate Markov Chain
3.1.1 varfact

3.1.2 variance/ standard error

3.1.3 average squared jump distance

3.2 Example 1: normal distribution in &'

3.2.1 varfact
3.2.2 variance/ standard error

3.2.3 average squared jump distance

3.3 Example 2: mixture of two normal distributions in &'

3.3.1 varfact
3.3.2 variance/ standard error
3.3.3 average squared jump distance
3.4 Example 3: mixture of three normal distributions in &'
3.4.1 varfact
3.4.2 variance/ standard error
3.4.3 average squared jump distance

3.5 Example 4: normal distribution in  &*

3.5.1 varfact



3.5.2 variance/ standard error

3.5.3 average squared jump distance

Conclusion
Reference

Appendix

1. Code

1.1 C code
1.1.1 C code to implement the adaptation algorithm and generate a Markov Chain (Example 1~3)
1.1.2 C code to implement the adaptation algorithm and generate a Markov Chain (Example 4)

1.2 R code

1.2.1R code to plot the final g(X) and o (.X) (Example 1~3)

1.2.2 R code to plot the final g(X) and o (X)) (Example 4)

1.2.3 R code to generate Markov Chain without adaption (Example 1)
1.2.4 R code to generate Markov Chain without adaption (Example 2)
1.2.5 R code to generate Markov Chain without adaption (Example 3)
1.2.6 R code to generate Markov Chain without adaption (Example 4)
1.2.7 R code to compute different efficiency measures (Example 1~3)

1.2.8 R code to compute different efficiency measures (Example 4)
1.2.9 R code to implement OLS in approximation of the final G(X)
2. Output
2.1 Example 1: normal distribution in Ve

|X\al

K(xr)y=e *

2.1.1 kernel function

()= —— =

2.1.2 kernel function B 1+ a, ‘ x

0,| x> 2* width
K(x) =3 —1* hegith, width <| x|< 2* width
1* height,| x|< width

2.1.3 kernel function

0,| x> 2*width or |x|< width
K=
2.1.4 kernel function 1’ width <‘ X|< 2% yrdth

2.1.5 Constant G(X) =C



2.1.6 varfact comparison
2.1.7 variance comparison

2.1.8 comparison of average squared jump distance

2.1.9 OLS in approximation of the final & (X))

1
2.2 Example 2: mixture of two normal distributions in £

|X\al

K(xr)y=e *

2.2.1 kernel function

1
2.2.2 kernel function [((x) - 1+a1 ‘ X|a2
0,| x> 2* width
K(x)=<—1* hegith, width <| x|< 2* width
1* height,| x|< width

2.2.3 kernel function

0,| x|22*width or |x|< width
_ K(x)=
2.2.4 kernel function 1, width <| }C|< 2% yidth

2.2.5 Constant O'(/Y) =C

2.2.6 varfact comparison
2.2.7 variance comparison

2.2.8 comparison of average squared jump distance

1
2.3 Example 3: mixture of three normal distributions in
o

|

K(xr)y=e *

2.3.1 kernel function

2.3.2 kernel function

K=t
l+a,|x|™
0,| x> 2* width
K(x)=1—1* hegith, width <| x|< 2* width
1* height,| x|< width

2.3.3 kernel function

0,| x|=2*width or |x|< width
K=
2.3.4 kernel function 1, width <| }C|< 2% yidth

2.3.5 Constant O'(X) =C

2.3.6 varfact comparison

2.3.7 variance comparison



2.3.8 comparison of average squared jump distance

2
2.4 Example 4: normal distribution in
o

|

K(x)=e *

2.4.1 kernel function

K="

2.4.2 kernel function - 1+a1 ‘ X|a2

0,| x> 2* width
K(x)=<—1* hegith, width <| x|< 2* width
1 * height,| x|< width

2.4.3 kernel function

0,| x|22*width or |x|< width
- K(r)=
2.4.4 kernel function 1, width <| }C|< 2% yidth

2.4.5 Constant O'(X) =C

2.4.6 varfact comparison
2.4.7 variance comparison

2.4.8 comparison of average squared jump distance



Report Local scale adaptation for Random Walk Metropolis Page 1

Abstract

This report investigates the use of adaptation algorithm to update the parameters automatically
during a Markov Chain. The target distribution we work on include normal distribution, the mixture of
two or three normal distributions in one or two dimension space. Computer simulation shows that the
adaptation algorithm makes a little improvement to the efficiency of Random Walk Metropolis than
non-adaptation algorithm.

The report starts by an introduction to the proposed adaptation algorithm in chapter 1, followed by
the test of local acceptance rate for some specific x in chapter 2. Then we will compare the efficiency
of adaptation and non-adaptation algorithm in some different measures in Chapter 3.

1. Introduction

1.1 Introduction

Although MCMC algorithms such as the Metropolis-Hastings algorithm are widely used to sample
from complicated target distribution, it has long been recognized that the choice of the proposal

density a(x,y) is crucial to the success of these algorithms. The most common case (which we will
focus on here) involves a symmetric random-walk Metropolis algorithm(RMW), in which the proposal

density is given by Yo=X,+Z

N, o

n, Where the increments Z, are i.i.d from some fixed symmetric

distribution(e.g. 2Id)). In this case, it is the crucial issue that how to choose the scale O .
If O is too small, then the chain will move slowly; if it is too large, the proposal will always be rejected
and then the chain always gets stuck. So we need a value of O between the two extremes, thus
achieving a reasonable-sized proposal moves together with a reasonable-high acceptance

probability. Thus, the main issue is to find proper values for all the parameters in O .

1.2 The Metropolis-Hastings Algorithm ™

Suppose that our target distribution 7Z has density with respect to some reference measure(usually
d-dimensional Lebesgue measure). Then, given the current state X“, a proposal value Yo is

~ *
generated from some pre-specified density (usually Yo = Xy +0(X,) "N, [d)) and accepted

(%, y) = min {n(y)q(y, X) 4 »

with probability 7(x)a(x.y) } . If the proposed value is accepted, we set Ko =Y ;

otherwise we set K =X, )

1.3 Optimal Scaling

The determining of proposal scale is both very important and very difficult. However, it is possible to
use theory to estimate the optimal proposal scalings and/or adaptive algorithms to attempt to find
good proposals automatically with little user intervention.



Report Local scale adaptation for Random Walk Metropolis Page 2

A simple way to avoid the extremes of the scale is to monitor the acceptance rate of the algorithm,
that is, the fraction of the proposed moves which is accepted. If this fraction is very close to 1, this
suggests very small O and very small movements. If this fraction is very close to 0, this suggests
large © and the high probability of the chain getting stuck. But if the fraction is both far from 0 and
from 1, then we have managed to avoid both extremes.

1.4 Optimal Acceptance Rate ™

Roberts et al.(1997) has proved that under some restrictive assumptions, as d— % | the optimal

acceptance rate is 0.234 They considered RWM on RY for very special target densities, of the
form:

Where f are some one-dimensional smooth density function . This means that we has to sample
from i.i.d components.

This result are all asymptotic as d = Numerical studies (Gelman et al.,1996; Roberts and
Rosenthal,2001) indicate that the limiting results do seem to well approximate the finite-dimensional

situation for d as small as 5. Also, numeric studies on normal distribution show that when d =1, the
optimal acceptance rate is approximately 0.44 . | will try both these optimal acceptance rate in the
following simulation for comparison.

1.5 Adaptive MCMC

An alternative approach is adaptive MCMC, which "learns" better parameter choice "automatically".

Suppose {P“ }aeA is a family of Markov Chains, each having stationary distribution 7 . An adaptive

MCMC algorithm would randomly update the value of & at each iteration, in an attempt to find the
best value.

Now see the scale O as the index parameter & , we can O update at each iteration to make the
acceptance rate around the one we want.

It is known that adaptive MCMC will not preserve stationarity of the target distribution. That means

L(X, )—7z(e)|=sup|P(X, A —x(A
”L(X")_”(.)” —0 , Where ” )=t )” A§5| o )= )|. However, there are several
conditions under which they will still converge. One is like the adaptation is done under regeneration
times, others are under various technical procedures. Roberts and Rosenthal®® proved ergodicity of
adaptive MCMC under conditions which doesn't require the adaptive parameters to converge; they
state that an adaptive scheme will converge if it satisfies diminishing adaptation and bounded

convergence conditons.
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Theorem: suppose an adaptive scheme updates X, to X, ,, using the kernel Prn , Where each fixed

kernel has the stationary distribution 77, but where I', are random indices chosen iteratively form
some collection y based on past output. The scheme will converge if it satisfies diminishing

adaptation and bounded convergence conditions:

(1) (diminishing adaptation) [jry) sup|P:,, (x,#) — P (x,#)| =0 in probability.

n—owo X&y

(2) (bounded convergence conditions) {Mg(Xn,Fn)}C::O is bounded in probability, £ >0
Where M _(X,y) =Iinf {n >1: HP;‘ (x,9) — 7z(X,o)H < g}

1.6 Motivation

Let @(X.Y)  4enote P(accept proposal Y |current state is X) 0 acceptance

probability from X to Y, and a(X) genote EIX(X.Y)IXT the jocal acceptance probability for X |
then global acceptance probability & is ¢ = Ela(X)] =E[E[a(Y [ X)| XT] |

—— #accepted moves
im

n—oo n

By ergodicity theorem, we know that . S0 we can estimate the global
acceptance probability by the global acceptance rate, i.e. the fraction of accepted movements
among all the proposals. The mentioned optimal acceptance rate choice in section 1.4 is to make

the global acceptance rate & around 0.234

If the global acceptance is around 0.234 , then the "average" of all the local acceptance rate a(X)

for the different X is 0-234  That indicatesa(x) is sometimes higher than 0.234 for some X

and sometimes lower than 0-234 for some X . So one may wonder whether it is a "even more

optimal choice" to make the the local acceptance rate a(X) around 0-234 for all the different X .
We are curious that: if we make this happen or during the procedure to do this, will the Markov
Chain has better efficiency, say having smaller varfact or bigger average squared jump distance?

So we will first try to achieve this goal(i.e. making a(X) around 0-234 for all the different X ) by
using adaptation algorithm in chapter 2 and then do some efficiency comparison of adaptation and
non-adaptation algorithm in chapter 3.

2. Test of Local Acceptance Rate

In this chapter, we will show some simulation results with the purpose of making Ela(X,Y)[X]

around 0-234 for all the different X by using the adaptation algorithm. Simulation results show that
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it is "impossible" to make a(X) around 0-234 for all the different X by using the adaptation
algorithm proposed in 2.1. Although we cannot achieve this goal in the end, we can still check
whether the adaptation algorithm improves the efficiency of RWM during the efforts to make around

0.234 The comparison of adaptation and non-adaptation algorithms will be shown in chapter 3.

2.1 Idealist Adaptation Algorithm

The procedure of the adaptation algorithm for a general target distribution is as follows:

Procedure

Step 1 set the initial value X,

Step 2 given the 1th, ..., nth value X,,..., X,, update o, (X)

o, () =h, (x)exp{9,(x)}

Mo v X=X |y
X))+ K (—— if x =
g4 (X) . ( . ) n=Ya

n n

Where g,(Xx)= XX |
0,200~ KE= )i x, 2y,

n n
Step 3 generate Y, , with proposal density : y,,; ~ N (Xn,o-nz(xn )
Step 4 generate an independentU, , ~U(0,1).

ﬂ(yn+l)q(xn ; yn+l)
”(Xn)q(ynﬂ; Xn) ,

Set Xn+l = yn+l if Un+1 < a(Xm yn+l) =

Otherwise set X, ,; = X,

Step 5 repeat step 2~4 M times
h, (X) 4, @2 () =h, () &p{g, (¥} ;¢

In this algorithm, we will update

h,(x) =e” *(L+C|x—c|)”

Where iz is updated by adaptive rules:
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*(1-0.234) if x =y,

*0.234 if x, =Yy,
Jn+5 Y

This suggests that if accepting the previous proposal y”, we make By bigger and thereby

bigger On ; if rejecting the previous proposal, we make By smaller and thereby smaller On

h,(x) (L+C|x—c])’ C|x—c|

In the second term of , the part is to modify the scale according to

how fat X is from the centerC =0 The far away X from the center, the bigger %n . This comes
from the intuition that the density is very small around the center. We will try different choice ofC’7

to make %(X) around 0-234 tor all different X .

We will update 9 in this way:

| X=X, | )
gn—l(x)+ b K( ) If Xn = yn
9.(x) = " Ix "X |

Upa(X)—KE—)  if X, =y,
b, is the bandwidth of the update. We can choose it as a fixed constant or decreasing with respect

1

bn = T
to M. One possible choice is N°  We will test which is better, fixed or decreasing.
1 1
n, :—a,a c (—,1]
Tis the speed of adaptation. It is naturally chosen as: n 2 " Inthe code, we choose
o= (1]
n— ae(-,
it as N+5  we will also try other Tn with other 2 " to check whether they give better
performance.
K(x) is the kernel function, usually chosen as a polynomial or exponential function:
1
K(X)=—F—
1+ | X%
X

K(x)=e *
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0,| X [= 2*width
K (x) =1 —1*hegith, width <| x |< 2*width
1*height,| x |[< width

K(x) = 0,| x|>2*width or |x|<width
|1, width <| x |< 2*width

2.2 Methods to Test ¢(X)

Suppose that we get the final scale function as o(X) from the above adaptation algorithm. We can

estimate a(X) =E[a(Y | X)[X] in two different ways:

Method 1to test a(X)

step 1 generate n samples Y, ......, Y, from proposal density: Y ~ N(X,o.?(X))

j -
step 2 estimate a(X) as Hziﬂ“(\(i | X)

This method works because it's actually computing the target expectation by Monte Carlo Method.

Method 2 to test a(X)
step 1 generate n samples Y, ......, Y, from proposal density: Y ~ N(X,c.%(X))

step 2 generate n independent U,

1n
step 3 estimate a(X) as HZi:ll(Ui ma(Y;| X))

This method works because l(Ui ma(Y | X)) are independent distributed and
E[ERQU; 7 a(Y; 1 X))]=E[PU; 7 a(¥; | X))]=Ela(Y;  X)]=a(X) "5 by stong Law of

L3 10U, 7 aly, | X))

Large Numbers N will converge almost everywhere to a(X) .
Another more intuitive way to prove the validation of this method is:

a(X) =E[a(Y | X)| X]
= E[accept moving from X to Y|X]
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=Iimizin:11(accept moving from X to Yi)

n—o N

where Y, Y, are sampled from the proposal density.

2.3 Example 1: Normal Distribution in R

Let's start with one easy case: standard normal distribution in R N(01) with density function:

X2

f(x)=C,*e 2

To avoid numerical error, | will compute the logarithm of the un-normalized density and acceptance
probability instead of themselves directly.

The proposal density becomes:
o,(x) =h,(x)exp{g, (¥}

h,(x) =e” *(1+C| x|)

Where
0.0+ kR i -y,
9, (x) = ' |x—nx|
02 () - KE= )i X, 2y,
2.3.1 Output

| try different choices for parameters and kernel functions. You can refer to Appendix 2.1 for all the

66 cases | try. Appendix 2.1 includes the plot of final g(x),a(x), estimation of «(X) for some
specific X, and some Markov Chain generated using adaptation.

For the 66 cases, they all have reasonable trace plots and final g(x),o(x) plot. The global
acceptance rate is around 0-234, but none satisfies that a(0), a(2), a(5), a0), «(20),

(30), a(30) are around 0.234 .

Among them, case 30:

1

Kernel function: K(X) = —————,
1+ e, | X|*

-

1
h= (n+5)%%° a=La,=LC=Ly =2 decreasing bandwidth b, = no2
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gives the closest a(x) to 0-234 for these specific X :

alpha(0.000000) is 0.269674
alpha(2.000000) is 0.249986
alpha(5.000000) is 0.293759
alpha(10.000000) is 0.307941
alpha(20.000000) is 0.279936
alpha(50.000000) is 0.176204

alpha(100.000000) is 0.109100

alpha(150.000000) is 0.075300

Table 1 «(x) for some specific Xin case 30

a(X) is around 0.26 when X =0, first increases to around 0.3 when X =10, and then decreases to
0 as goes to infinity.

For case 30, the final 903, 5(%) 150ks like:

gvals
sigvals

Figure 1 plot of g(x),o(x) in case 30

They seem reasonable. They are symmetric around O . o(X) seems smooth and is the smallest
around 0. This is good because we want a small scale at the right mode so that the sampled random
variables will be more likely to lay around it, where the target distribution also reaches the maximum.

It is difficult to give the local acceptance rate for all X . So we will calculate «(X) for just some
specific x , like x=0,2,5,10,20,50,100,150 . The values of «(X) at these discrete points can
provide us with a general idea of how a(X) changes with X over the real line. | compute «(X) for

only positive X for it is symmetric around 0 and takes the same value for X and —x . a(Xx) for
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some specific X is as Table 1. In this case, a(X)is around 0-2~0-4for| x | around 5and always

stays around 0.5, not 0.234, for | x > around 5.

The output of all the different 66 cases suggests that however we choose the parameters, we
probably cannot make the local acceptance rate a(X) for some certain x, let alone for all the

different X . But it remains to be tested that whether the adaptation algorithm with good parameter
choices (like case 57) improves the efficiency of Markov Chain compared to non-adaptation
algorithm.

2.3.2 How «(x) changes with parameters

If we only change the value of one factor and keep others the same, we can get a rough idea of how

a(x) changes with parameters C,7,,0,,7, and different choice of kernel fuctions.
2.3.2.1 How «a(x) changes with kernel function

If we want to make all the local acceptance rate around 0.234, then different kernel functions give
almost the same good result. For the four kernel functions, the best cases are respectively case 18,
30, 34, 53:

M
Case 18: kernel function: K(x)=e “
- 4 =2a,-1C=01y=2 b — &
= (n+5)°°" N =50 =52 =USLY = C\with decreasing bandwidth 1 T 1102
. 1

Case 30: kernel function: K(x) = —

1+e, | X|*
1 1

s =La,=1C=1y=2

" e

with decreasing bandwidth b, = n°z
0,| x[> 2*width

K (x) =< —1*hegith, width <| x |< 2*width

* 1 < 1
Case 34: kernel function: 1*height,| x |< width

n,= height = 0.5, width=0.5,C =0.1,y = 2With fixed bandwidth b, =1

I
(n+5)°%’

0,| x|>2*width or |x|<width
K(x)=

. o
Case 53: kernel function: L width < x|< 2*width
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——1 width=0.5,C=0.1,y =2 b, =1
T (5P =Y =EST = S with fixed bandwidth O T
For these four cases, we have local acceptance rate as table 2 and final g(X)and o(X) as table
3:
Case 18 Case 30 Case 34 Case 53

alpha(0) is 0.205731
alpha(2) is 0.300010
alpha(b) is 0.330864
alpha(10) is 0.353506
alpha(20) is 0.317601
alpha(50) is 0.211646
alpha(100) is 0.1366

alpha(150) is 0.0894

alpha(0) is 0.269674
alpha(2) is 0.249986
alpha(b) is 0.293759
alpha(10) is 0.307941
alpha(20) is 0.279936
alpha(50) is 0.176204
alpha(100) is 0.1091

alpha(150) is 0.0753

Alpha(0) is 0.230635
alpha(2) is 0.321085
alpha(b) is 0.392833
alpha(10) is 0.407148
alpha(20) is 0.374904
alpha(50) is 0.263909
alpha(100) is 0.1645

alpha(150) is 0.11870

alpha(0) is 0.186088
alpha(2) is 0.255791
alpha(b) is 0.322271
alpha(10) is 0.361781
alpha(20) is 0.319420
alpha(50) is 0.215913
alpha(100) is 0.1306

alpha(150) is 0.0984

Table 2 a(x) for the best cases with different kernel functions

Case 18

Case 30

Case 34

Case 53

m
TR s

P [

o - wou g a0

Table 3 plot of the final g(X)and o(X) for the best cases with different kernel functions
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From the above two tables, we can see that even the kernel function is different, but adaptation
algorithm is still trying to make the final o(X) look some certain way. There is no strong support for

1

KX)=——
) 1+ | X|* a

the choice of any kernel function. However, | prefer the first two: nd

b

K(x)=e = , for their final g(x) and o(x) are smooth and this will facilitate our further discussion,

like approximation of the final o(X) .

2.3.2.2 How *(X) changes with C+7

1
From Appendix 2.1, we can see that if b, =1, and 7, =———=, then, a(X) has the same

(n+5)°%’

tendency as long as C.y have the same values, however we choose other parameters.

| X]

1) When €7 are big, (X) peaks at X =0 and decreases to 0 as goes to infinity. Among

these cases are CASE 1, 2, 3, 4, 5, 6, 7, 9, 11. Parameter choices are Iike:C20'5’7/>1;

C>0.1y>10

2) When &7 are small, #(X) reaches the global minimum at X =0, and increases to 0.5 as
| X |goes to infinity. Among these cases are CASE 10, 12, 13, 14. Parameter choices are like:
C<10,y<0.01;C<0.,y<1

X

Although the below section 2.3.3.2.1 and 2.3.3.2.2 are based on kernel function: K(x)=e “
similar results hold for other kernel functions, which you can check from the Appendix 2.1.

, the

| X

2.3.2.2.1 Why does a(X) decreaseto 0 as goes to infinity when C.y are big?

@+C|x|y o(x) =e 0 1+C|x|)”

C.y determines how big the effect the second term has on

If they are big, then the second term has a big influence on a(X) . Approximately, we can assume

4
that o(x) = @+C|x]) y SO o(X) grows very quickly as | X1 increases from 0 to infinity. It

grows so quickly that it becomes the most important factor to determine the value ofa(X) . The

bigger o(X) , the smaller acceptance rate a(X) . So a(X) decreases and goes to 0 as | X

to infinity.

goes

Figure 2 shows the different plot sof final o(X) when C.y are big and small . They are from case
11 ( ,=2,,=1,C=01y=10 with fixed bandwidth b, =1 ), and case 14



Report Local scale adaptation for Random Walk Metropolis Page 12

(o, =2,a,=1,C =0.1 y =0.1with fixed bandwidth b, =1), They have the same values for all the

o(X)

parameters except ¥ .You can see how quickly grows in CASE 11, in which Cy are hig.

For X =30 . o(X) takes the value around 10 in CASE 11, much bigger than 8 in CASE 14 .

8.0

1.2e+08
|

11
8.0e+07
|
12
6.5 7.0
I

4.0e+07

6.0

5.5
|

0.0e+00

-40 -20 0 20 40 -40 -20 0 20 40

case 11 (C=01r=10, case 14(¢ =017 =01,

Figure 2 the plot of final o(X) for three different cases

X|

2.3.2.2.2 Why does a(X) increase to 0.5 as | goes to infinity whenc’y are small?

If C.y are both small, then the second term has a small effect on a(X) . So approximately, we can

assume that a(x) e e’

a(X) a5 1 X1

. Unfortunately, we cannot get any conclusion about the tendency of
goes to infinity from this rough approximation because we don't know the express of

g9(Xx) . We need some more precise analysis.
Let's go back to the definition of the local acceptance probability:

a(x) = E(a(x, ) = E(min{w 1}}
7(X)q,(Y)

Since A, (¥) is symmetric at X , the reason thata(x) takes the value of 0.5 for big enough X is

n{w 1} n{ﬁ(y)qy(x) 1}
probably that 7(X)0(Y) for Y on one side of X and 7(X)0(Y)

on the other side of X. Now let't try to check whether it is true.

~
~

~
~

for y
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1 s ¥ (Jx—yfjg

For qX(y) B O'(X) y , we have ﬁgy;qy((xi — exp( 2 )EXF: ZG(Y()Z ::()
7 (X)d, (y X (x—y

o(y)ep(- )exp( 2000’ J

:cdmem (x=y)’  x* (x=y)* y*
o(y) 20(x)> 2 20(y)? 2 )

Since a(X) takes the form of recursion and the exact mathematical express of o(X) is very

complicated, it is better to use some approximation function to reflect the tendency of a(x) , like

C=0.1y=0.1

exponential function or polynomial function. Below | will use CASE 14 ( ) as an

o(x)

example to explain how to approximate and checka(x) . Other cases of this kind of parameter

choice follow the similar idea.

Let's firstly check the plot of final o(X) .

75
1

7.0
1

12

55
1

Figure 3 the plot of final a(X) for CASE 14
From Figure 3, we guess maybe a mixture of two exponential functions centered at 0 can be used to
C,*[x™ +C,Jx <3

C
C,*IX|” +C,|x|>3 .
4 | 6 .l use R and implement OLS to get

X

o(X) =
X

approximate the final a(x) , like

the estimation as: C1 = 0.3,C2 =1.4,C3 =5.572407 ,C14~0.1,C5 ~0.63,Cs ~6.773458. | will call
this as approximation I. We can believe this is a good approximation from Figure 4, the comparison

of the final o(x) and its approximation o(X) : they overlap a lot, especially when x is large.
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Figure 4 plot of the final o(X) and the approximation @) (plack: (X) req: o (X) )

For big x, say 30,50,80,150,200,300,

2(x)0 (y)

(99,09

has the tendency as Figure 5:

when x= when x=

30 50
o o
o | o |
3 3
o | o |
3 3
< <
S s
o 7 o 7

°
24 C— 24 C—
3 3

T T T T T T T T T
10 20 30 50 30 40 50 60 70
y y
when x= when x=

80 150
o o
o | o |
3 3
o | o |
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< < |
S s
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°
2 2 —
24 — 24
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y y
when x= when x=

200 300
o o
o | o |
3 3
o | o |
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< < |
S s
o 7 o 7
o o
24 — 24 ——
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y
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{n(y)qy(x) 1}
Figure 5 plot of 7(X)0,(y) for big x
min{w,]}z
From Figure 5, for each fixed big X 7(X)a,(¥) for ¥Y<X and
min{w’]}z
7(x)0,(y) for y>Xx Since d,(Y) is symmetric at X

2()a, ()
E["""{z(x)q ) (%), ()
(99,0

i I}

we can also use approximation of a(x) to see why when Cy are between the two extremes,
X

c mm{ 7(y)d, (x)
72(0)a,(Y)’

Comparing the local acceptance rate of the three situations, we find it better to choose C.y between
C=01y=2

.S0 a(X) =E(a(x,y)) = E(mi {

H for very big x, like case 16.

the two extremes, like . Because we want a(X) to neither decrease quickly to O nor

always stay around 0.5. If we choose C.y between the two extremes, then a(X)

0, but in a much slower speed; it stays around 0.2~0.4 for | X = 50. This is the closet situation to
our goal of making all the local acceptance around 0.234. But we are not sure whether it has better
efficiency than the non-adaptation algorithm, which will be discussed in Chapter 3.

still converges to

2.3.2.3 How #(X) Changes With

If C.y remain the same, then changes in the value of has little influence over the tendency of local
acceptance rate.

In case 1~5,C7 are fixed © =17 =2 pandwidth is fixed as b,=1,and 7, = =, while the

1
(n+5)°
value of % varies from 0.1 to 10. The tendency ofa(x) are very similar: starts from around 0.3

and then decreases to 0. Also, the plot of final o(X) have the same shape.

Case 1

o =1

Case 2

o =2

Case 3

=10

Case 4

=0.1

Case 5

=0.5

alpha(0) is 0.294400

alpha(0) is 0.275100

alpha(0) is 0.287000

alpha(0) is 0.263300

alpha(0)is 0.309200
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alpha(2) is 0.146900
alpha(5) is 0.079300
alpha(10) is 0.047600
alpha(20) is 0.022500
alpha(50) is 0.009100
alpha(100) is 0.00580

alpha(150) is 0.00260

alpha(2) is 0.123300
alpha(b) is 0.065000
alpha(10) is 0.036300
alpha(20) is 0.020400
alpha(50) is 0.008500
alpha(100) is 0.00370

alpha(150) is 0.00440

alpha(2) is 0.146700
alpha(5) is 0.067300
alpha(10) is 0.042100
alpha(20) is 0.022000
alpha(50) is 0.008600
alpha(100) is 0.0055

alpha(150) is 0.0025

alpha(2) is 0.135800
alpha(5) is 0.070300
alpha(10) is 0.041900
alpha(20) is 0.021200
alpha(50) is 0.008200
alpha(100) is 0.00560

alpha(150) is 0.00400

alpha(2) is 0.150900
alpha(b) is 0.076500
alpha(10) is 0.045300
alpha(20) is 0.022600
alpha(50) is 0.010200
alpha(100) is 0.00330

alpha(150) is 0.00340

Table 4 (X) for case 1~5

Case 1l

I
[

Case 2

I
N

Case 3

o, =10

Case 4

o, =0.1

Case 5

o, =05

sigals

1000 2000 3000 4000

0

0 1000 2000 3000 4000

sigvals
| | | |

0 1000 2000 3000 4000

0 1000 2000 3000 4000

sigals
1000 2000 3000 4000

0
I

40

From the above two tables, we can see that the fina

Table 5 plot of the final a(X) for case 1~5

| o(X)

is quite similar for difference choice of

% and thereby it doesn't make big changes to the tendency of a(X) when we change =

The same result holds for the different choice of kernel functions, which you can check from the first
several cases in Appendix 2.1.1~2.1.4.

2.3.2.4 How #(X) Changes With bandwidth b,

Different b, does not change the general tendency of a(X); it only affects the speed in which
a(X) goes to 0 or 0.5.
b, is different and all the other parameters are the same
0,| x|> 2*width
(a=20,=LC=0Ly=2y yorel function is K(x)=1—1*hegith,width < x |< 2*width . In
1*height,| x |[< width

In case 37, 47, 48, 49,
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b, are fixed as a constant 1, 10 , 0.1 respectively, while in case 49, | choose
1

case 37 , 47 , 48,

decreasing bandwidth " on . However, a(X) has similar tendency and plot of final o(X) is
also similar to each other. Table 6 and 7 shows the local acceptance rate and plot of g(x)and

(%) for these four cases.

Case 37 Case 47 Case 48 Case 49
b, =1 b, =10 b, =0.1 b -t
n no.z

alpha(0) is 0.194871
alpha(2) is 0.334081
alpha(5) is 0.494616
alpha(10) is 0.501907
alpha(20) is 0.503077
alpha(50) is 0.499887
alpha(100) is 0.49540

alpha(150) is 0.49668

alpha(0) is 0.191540
alpha(2) is 0.3355
alpha(5) is 0.479633
alpha(10) is 0.498527
alpha(20) is 0.500063
alpha(50) is 0.505558
alpha(100) is 0.50062

alpha(150) is 0.49368

alpha(0) is 0.198912
alpha(2) is 0.328186
alpha(5) is 0.474185
alpha(10) is 0.494897
alpha(20) is 0.509700
alpha(50) is 0.493201
alpha(100) is 0.50840

alpha(150) is 0.49711

alpha(0) is 0.168346
alpha(2) is 0.303514
alpha(5) is 0.473132
alpha(10) is 0.508745
alpha(20) is 0.500702
alpha(50) is 0.502543
alpha(100) is 0.50144

alpha(150) is 0.50043

Table 6 (X)) for different b,

Case 37 Case 47
=1 bn 10

x

‘?!s |,- '

ii it i'l

i TR N 1

o0 ] : @

! ;“ H

Case 48 Case 49
b =0.1
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Table 7 plot of g(x)and o(X) for different b,

For other kernel functions, you can conclude the same statement.

2.3.2.5 How %(X) changes With bandwidth 7,

In section 2.1, we discusses there are different choices of the power of 77, . We can try 0.5, and also

some real value between 0.5 and 1. So | try 0.5 and 0.8 to compare which one is better. Simulation

indicates that there is no big difference in the power choice of

Let's choose case 27 and 31 for comparison:

L s =La,=1C=0L1y=2

Case 27:'n = (n+5)

Case 31:" = () 508" A =1a, =1C=0.17=2 ity fixed bandwidth * =

1
Ui

= (n+5) power .

with fixed bandwidth P =

10

10

1

= (n+5)°°

Case 27

1

h= (n+5)°8

Case 31

alpha(0.000000) is 0.201310
alpha(2.000000) is 0.301568
alpha(5.000000) is 0.366086
alpha(10.000000) is 0.380836
alpha(20.000000) is 0.352299
alpha(50.000000) is 0.239894
alpha(100.000000) is 0.155501

alpha(150.000000) is 0.105800

alpha(0.000000) is 0.221199
alpha(2.000000) is 0.320933
alpha(5.000000) is 0.391188
alpha(10.000000) is 0.401987
alpha(20.000000) is 0.378950
alpha(50.000000) is 0.264811
alpha(100.000000) is 0.163500

alpha(150.000000) is 0.120201
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Table 8 a(X) for different n,

1 1
e —y P —y Y
Case 27 (n + 5)0 ° Case 31 (n + 5)0 °

Table 9 plot of g(x)and (X) for different m,

1
T = 5)05
From the above tables, you can see that there is no big difference wether we choose (n+5)
_ 1
I (n+5)*

or

a(X)

So if we want to make close to 0.234, it is more important to find good values of C,y than

other parameters.
2.3.3 how to improve the algorithm speed

The current algorithm is running in a quite slow speed. It takes around 40 minutes to generate one
Markov Chain and around 38 minutes to test the local acceptance for eight points. This is quite time-
consuming. We need to explore some methods to improve the algorithm speed.

The reason why it runs so slow is that we use the exact value of final o(x) every time the Markov
Chain moves to a different state x. So we need 10* times of iterations to compute each 9(x) and
o(x) for every x and needs much time. One way to improve the speed is to use approximation

instead of exact value. We know that good approximation of o(X) can significantly improve the
algorithm speed.

We can divide the real area that the chain stays at most time ( say, X €[—30,30) ) into several

smaller intervals (say, equally 6000 intervals) , then compute and save the values of final o(X) for

every left point. That means we record a(X) for x €[—30,30) with the separation of 0.01. For each

X €[-30,30) that is not the left point of any small interval, approximate o(X) by () at the left
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point of the small interval that x lies in. For each X ¢ [-30,30), just use their exact value of o (x) ;

this will not cost much time because for the random variable of the standard normal distribution will

seldom go to the area X ¢ [-30,30) .

I will call this approximation of o(X) as Approximation Il. Now run the algorithm with Approximation

Il for case 1, and check the speed for comparison.

Without Approximation Il

With Approximation Il

it takes 218.947 seconds to run the adaptation algorithm

it takes 95.419 seconds to compute g and sigma

it takes 2380.314 seconds to generate the first Markov Chain
it takes 2367.3 seconds to generate the second Markov Chain
it takes 2386.311 seconds to generate the third Markov Chain
it takes 2402.55 seconds to generate the fourth Markov Chain
it takes 2402.489seconds to generate the fifth Markov Chain

it takes 2144.659 seconds to test the local acceptance

it takes 233.63636 seconds to run the adaptation algorithm

it takes 95.5646 seconds to compute g and sigma

it takes 21.525 seconds to generate the first Markov Chain

it takes 25.25 seconds to generate the second Markov Chain
it takes 23.8585 seconds to generate the third Markov Chain
it takes 21.156 seconds to generate the fourth Markov Chain
it takes 26.6363 seconds to generate the fifth Markov Chain

it takes 1564.99 seconds to test the local acceptance

Table 10 running time with and without Approximation Il

From table 10, we can see that the speed is significantly faster: now it takes only around 20 seconds
to generate a Markov Chain with Approximation I, while it needs around 40 minutes without
Approximation Il; and it takes around 25 minutes to test the local acceptance rate for 8 different X's,
while it needs around 40 minutes without Approximation II.

The speed is good now; but will the algorithm with Approximation Il give the similar result to that

without it? Table 11 and 12 show a(x) and the plot of final 9(x) and o(x) . They are similar to each

other. So Approximation Il is a good method to significantly improve the speed of the algorithm.

Without Approximation I

With Approximation Il

alpha(0.000000) is 0.307000
alpha(2.000000) is 0.145700
alpha(5.000000) is 0.078100
alpha(10.000000) is 0.042800
alpha(20.000000) is 0.022500
alpha(50.000000) is 0.009400

alpha(100.000000) is 0.003800000)

alpha(0.000000) is 0.294400
alpha(2.000000) is 0.146900
alpha(5.000000) is 0.079300
alpha(10.000000) is 0.047600
alpha(20.000000) is 0.022500
alpha(50.000000) is 0.009100

alpha(100.000000) is 0.0058
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Table 11 a(x)for case 1 with and without Approximation Il

Without Approximation I

With Approximation Il

s a0 B0 W w0

10

50

0

Table 12 plot of g(x)and o(x)for case 1 with and without Approximation Il

The speed to generate a Markov Chain is much faster now, about 100 times faster than without
Approximation Il. But the speed to test the local acceptance rate doesn't get as much improvement

as generating. This is because when testing a(x)for big x, we need to compute o(x) for big x,

which isn't approximated in Approximation I. One way to improve this is to use Approximation |
instead, which gives approximation for every single x, not just a part of the real numbers.

Now run the algorithm with Approximation | for case 14, and check the speed for comparison.

With Approximation |

With Approximation Il

alpha(0.000000) is 0.289099
alpha(2.000000) is 0.404383
alpha(5.000000) is 0.425934
alpha(10.000000) is 0.501186
alpha(20.000000) is 0.497216
alpha(50.000000) is 0.498001

alpha(100.000000) is 0.498768

alpha(0.000000) is 0.168239
alpha(2.000000) is 0.273334
alpha(5.000000) is 0.440324
alpha(10.000000) is 0.502495
alpha(20.000000) is 0.499843
alpha(50.000000) is 0.496880

alpha(100.000000) is 0.498992

Table 13 M for case 14 with

and without Approximation |

With Approximation |

With Approximation Il

it takes 0.345 seconds to generate second Markov Chain
it takes 0.387 seconds to generate third Markov Chain

it takes 0.40 seconds to generate fourth Markov Chain

it takes 0.354 seconds to generate fifth Markov Chain

it takes 0.166 seconds to test the local acceptance

it takes 16.43 seconds to generate second Markov Chain
it takes 16.54 seconds to generate third Markov Chain

it takes 16.62seconds to generate fourth Markov Chain

it takes 16.72seconds to generate fifth Markov Chain

it takes 1005.606 seconds to test the local acceptance

Table 14 running time for case 14 with Approximation | and Il
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Now it is very quick to test the local acceptance rate. It takes about less than 1 second to test a(x)
for 8 points, much faster than Approximate Il, which needs around 1000 seonds. But from table 10,

you, it has good estimation ofa(x) for big x and bad estimation of a(X) for small x, which is
untenable. So the advantage of Approximation | is to improve the speed of both generating Markov

Chain and testing a(x)

significantly, however big x is. But it doesn't give believable estimation of
a(x) for small x. While Approximation Il gives good estimation of a(x) for every x, although it is

slow to test a(X) for big x. Another disadvantage of Approximation | is that we need to estimate the
parameters in it before we can use it, like we do in section 2.3.2.2.1. While for Approximation Il, we
only need to let the computer record the values of o(x)for some x. In all the other cases, | will use

Approximation II.

2.4 Example 2: Mixture of Two Normal Distributions in R*

Now consider the target distribution as mixture of two normal distributions in R N(01) and
N (10,1), so the density is

xX* (x-10)°
f(x)=C,*|e 2 +e 2

Figure 6 shows the un-normalized part of this density function. It reaches the maximum at O and 10.

06 08 1.0
|

0.4
|

0.2

-30 20 -10 0 10 20 30

Figure 6 un-normalized part of the density

The proposal density will become :
o,(x) =h,(x)exp{g, (¥}

Where h,(x) =e” *(L+C|x-5]),
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9,200+ Bk X0l it <y,
9, (x) = ’ |X_”X|
0rs ()~ K= )i X, 2y,

n n

The same method to update parameters and test a(X) is conducted for this example.
2.4.1 How to Avoid Numeric Error

Numerical error may arise from he finite precision of computations. For example, to compute
Iog(ex) for x <900 .t is easy to get Iog(ex): X if we calculate it by ourselves. But if we let a
computer to do this calculation, it first computes € for x « —900 and gets a value very close to 0 ,
say y, and then compute Iog(y) . y is usually so close to 0 that the computer calculates Iog(ex) as

Iog(O), which is infinity. So the computer will probably return NA or -INF. The same problem exists

X2 (x-10)?
in our target distribution: 7(X)ce 2 +e 2 when has big absolute value.

2.4.1.1 Why does the numerical error happen?
In our C code, we usually compute the logarithm of 7z (X) instead of itself:

x2 _(x-10)?

log(z(x))=log(e 2 +e 2 )

ISR 10?40
when x is too big, say 50, then € 2 =e 2 =e*®3nde 2 =e 2 =
compute in C. C will first compute e *%4s a small value very close to 0 and e as a even smaller
value much closer to 0, and then sum them to a small value close to 0, whose logarithm will be
treated as log(0) in C.That's why C returns _ o for Iog(ﬂ(x)) when x is too big. It's the same with
negative x with big absolute value.

e poth very small to

-1250

Table 15 gives the computed value of Iog(;z(x)) for some y in C:

when y=-50.000000, logpi(-50.000000)=-1.#INFOO
when y=-30.000000, logpi(-30.000000)=-450.000000
when y=-10.000000, logpi(-10.000000)=-50.000000
when y=10.000000, logpi(10.000000)=0.000000
when y=30.000000, logpi(30.000000)=-200.000000

when y=50.000000, l0gpi(50.000000)=-1.#INF00




Report

Local scale adaptation for Random Walk Metropolis

Table 15 IOg(”(X)) for somey

2.4.1.2 How to approximate log(rz(x))?

Although for big x, e 2and e

XZ

XZ

_(x-10)?

2

X

_(x-10)?

2 areverysmall, € 2 is much smallerthan e 2

Page 24

2 (x-10? x* K
% = 2 = g% This inspires us to ignore the term e 2 and approximate log(z(x))
e 2
OO (x-1002 o
by |Og(7Z'(X)) ~logle ? )=--——"—for big x. Similarly, for negative x with big absolute value,
X _10? _(10?

although e 2 and e 2 are very small, e is  much smaller than
(x-10)2

O T (e, G107

e 2 - g2 2 e'®>% _ Then we can ignore the term € 2 and approximate
e 2

log((x)) by log(x(x)) ~log(e ?) =~

We can check the properness of this approximation by the table below:(the computation is in R)

2

2

X
? for small x.

25 3 0 5 6 8 10 12 20
XZ
o7 1.9e-136 | 1.11e-2 1 3.73e-6 | 1.52e-8 | 1.7e-14 | 1.9e-22 | 5.3e-32 | 1.3e-87
2
ef@ 9.8e-267 | 2.0e-37 | 1.9e-22 | 3.73e-6 | 3.35e-4 | 1.35e-1 1 1.35e-1 | 1.9e-22
x? (x—lO)2
L e 1.2e-136 | 1.11e-2 1 7.45¢-6 | 3.35e-4 | 1.35e-1 1 1.35e-1 | 1.9e-22
e 2 +e
2
| (—% —(X‘;O) 3125 45 0 -11.8 -8.00 2 0 2 50
ogle 2 +e
2
X -312.5 -45 0 -12.5 -
2
_ (x-107 125 -8 -2 0 2 -50
2

Table 16 some values for some x

The approximation returns the exact value of |Og(7Z'(X)) computed by R directly except x €[4,6].

The below is a plot of |Og(7Z'(X)) and its approximation for X € [-50,60] . From table 16 and figure
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7, we can see that this is a good approximation of Iog(;r(x)) for x with big absolute value.

yllist
-200
|

-400
I

-600
I

-40 -20 0 20 40 60

xlist

Figure 7 Iog(ﬁ(x))and its approximation (red: Iog(ﬂ(x)); black:its approximation)

Let's see how the approximation avoid the numeric error. For case 67:

X

a3

kernel function: K(x) =e

L o =La,=1C=1y=2

- = 1
(n+5)

I with fixed bandwidth P =

if we don't use approxiamtion to avoid the numeric error, then the local aceptance rate is as following:

alpha(5.000000) is 0.981800

alpha(7.000000) is 0.615156

alpha(10.000000) is 0.212396
alpha(20.000000) is 0.188700
alpha(30.000000) is 0.137032
alpha(50.000000) is 1.000000
alpha(60.000000) is 1.000000

alpha(70.000000) is 1.000000

Table 17 a(x)for case 67 without approximation

while more accurate results without numeric error is:
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alpha(5.000000) is 0.981209
alpha(7.000000) is 0.595073
alpha(10.000000) is 0.183040
alpha(20.000000) is 0.182034
alpha(30.000000) is 0.125577
alpha(50.000000) is 0.081246

alpha(70.000000) is 0.054118

Table 18 a(x)for case 67 with approximation

(x-10)?2

2
. . . . . X
So in order to avoid numeric error, | use approximation - — for xe(—o0] , - for

X €[10,4+0) and compute the exact value of Iog(;r(x)) for x €(0,10) in all the 73 cases.

2.4.2 How to Improve the Algorithm Speed

| try different parameter choice and kernel functions, which has 73 cases in total. For most cases, |
use approximation Il to approximate o(X),

1. Equally divide [-50,50) into 1000 parts, so we get 1000 small intervals: [-50,—49.99] ,
[-49.99,—-49.98) .... [49.99,50).

2. Compute and save the values of final a(X) for every left point: -50, -49.99,...,49.99.

3. Approximate o(X) by o(*) at the left point of the small interval that x lies in.

o(x)
This approximation is used to compute when we generate Markov Chain and test the local
acceptance rate.

2.4.3 Output

You can find the output of all the 73 cases in Appendix 2.2. Among all the cases, if we judge from
whether the local acceptance rate is close to 0.234, then the best case is probably case 74:

X

ar

kernel function: K(x) =e

L s =2,0,=1,C=0Ly=2 1

" ey

with fixed bandwidth P =
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Check the local acceptance rate for some specific x in case 74.

alpha(5.000000) is 0.994617
alpha(7.000000) is 0.626367
alpha(10.000000) is 0.179817
alpha(20.000000) is 0.407404
alpha(30.000000) is 0.364035
alpha(50.000000) is 0.281372
alpha(70.000000) is 0.229441
alpha(120.000000) is 0.146200

alpha(150.000000) is 0.125800

Table 19 a(x)for case 74
a(X) is about 0.99, very big for x around the center 5. Then as x goes big, it first decreases to
around 0.2 when X ~10; then increases to around 0.4 when X =~ 20; and decreases to 0 as x goes
to infinity.

Check the plot of final g(x)and o(X).

0.00
I

150
I

-0.02
L

100
I

gvals
sigvals

-0.06

-0.08
L
50

I

-0.10

Figure 8 plot of final g(x)and o(x) for case 74

it is reasonable: g(X) has similar shape for x<5 and x>5; it reaches the local minimum at 0 and 10,

where we want the sampled x to stay most frequently. o(X) is symmetric around 5. It increases to

big values when x goes big. This is also good, because the target distribution is very small for big X,
and thereby we don't want the sampled variable to go very big.
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2.4.4 How to make 2®) smaller

From table 19, we can see that the adaptation algorithm gives small scale for points around the
center and thereby the acceptance rate is very high, nealy 1. So now our main problem we need to

a(5)

fix here is to make smaller.

a(b)

In order to make smaller, we can try the below three changes:

2.4.4.1 change |

Change I:

n

gn_l(x)+c2*(1—o.234)*%K('XB—X“') if x =y

Use g,(x) =
gn_l(x)—C2*0.234*Z—” K('XB—X"') it x %y,

n n

Originally, we subtract the same value when the proposal is rejected as we add when it is accepted.
Change | means, we subtract (1-0.234)*some value when the proposal is rejected and add
0.234*some value when it is accepted. For comparison, check the local acceptance rate for some
specific x in case 74 with change I.

alpha(5.000000) is 0.999501

alpha(7.000000) is 0.648121

alpha(10.000000) is 0.191781
alpha(20.000000) is 0.443123
alpha(30.000000) is 0.419608
alpha(50.000000) is 0.338141
alpha(70.000000) is 0.278052

alpha(120.000000) is 0.177113

Table 20 a(x) for case 74 with change |

, @)

The local acceptance rates for these x are almost the same as that without change is still too

high. It seems that change | doesn't help a lot.

2.4.4.2 change Il

Change II: Use o(x) =e”e9® =g/
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Professor J. Rosenthal suggest that maybe we can cancel the second term in the original o(x) and
it becomes: o(x) =e”e?™ =e”*9™ | call this as change Il and implement it in case 74. Now g(X)
and o(X) looks like:

8.0

7.5
|

sigvals
7.0

6.5
|

gvals
-0.30 -0.25 -0.20 -0.15 -0.10 -0.05 0.00

Figure 9 plot of g(x) and o(x) for case 74 with change II

g(x) and o(x) have the same shape now since they only differ in a constant. They are symmetric

around 5, and smooth.
Check the local acceptance rate for some specific x in case 74 with change II.

alpha(5.000000) is 0.783000
alpha(7.000000) is 0.516100

alpha(10.000000) is 0.199000
alpha(20.000000) is 0.506500
alpha(30.000000) is 0.497500
alpha(50.000000) is 0.499700
alpha(70.000000) is 0.501400

alpha(120.000000) is 0.499400

alpha(150.000000) is 0.502400

Table 21 a(x) for case 74 with change II

Now the acceptance rate is around 0.78 for points around the center, smaller than the previous 0.99.
But it is still too high if our goal is 0.234. It seems that change Il cannot help us to achieve this.

Why does a(®) drop from around 1 to 0.8 ? g(X) doesn't change a lot from comparison of case 74
with and without change II. Obviously, it is because that £ is bigger with change Il. Without change
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Il, p~1.366644 ; while with change Il , #~2.119721 . Why does S become bigger? Let's
suppose that # remains the same , then for all the points except 5 o(X) will decrease since g(x)

has very small change and o(X) is originally €’ (1+C |x—5[)"€’® and now e’e” . So the

global acceptance rate now rises to a value bigger than 0.234. In order to ensure the global
acceptance rate is around 0.234, £ has to be pulled up.

2.4.4.3 change Il

_ o (X) a(5) _
Although change II, which cancels the second term in , doesn't make around 0.234, it
makes it smaller anyway. This inspires us to fix our current problem by making some changes to the

second term @+Clx-ch” .

Since | guess the approximate shape of g(x) is reasonable, | want to add the second term as the one
whose shape similar to the shape of g(x) in order to keep the shape. So | guess the second term
satisfies these:

e For x=5, it reaches local maximum to make a bigger scale and therefore a smaller acceptance
rate.

e For x=0,10, it reaches local minimum to make a smaller scale and therefore a bigger
acceptance rate.

| try the second term as:

C,|x=5[*(1(|x-5p5)—1(x-5<5))+2C, *5%1(|x-5<5)+C,
” —C,|x-5[*+2C,*5% +C, if |x-5K5
" |C,|x=5["+C,, if |x-5p5

So now,

o(x) = eﬂn+9n<”*(c1 |x=5[* (1(|x=5>5)— (| x—5|<5))+2C, *5% 1 (| x =5 [< 5)+cz)
e 0 x(LC | x5 +2C,*5% +C,) if [x—5[<5

ie. o(x)=
{eﬂn+9n<x>*(c1|x—5|“l +C,) if |x-5p5
| try several choices of C,, C,, ¢, and finally choose C, =0.1, ¢, =0.1, o4 =1.1. The current

local acceptance rate is as table 22:
alpha(5.000000) is 0.550000

alpha(8.000000) is 0.302000

alpha(10.000000) is 0.176000
alpha(20.000000) is 0.411000
alpha(50.000000) is 0.379000

alpha(70.000000) is 0.389000
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Table 22 «(x) for case 74 with change IlI

Now a(5) drops from 0.99 to around 0.55. Good. But it cannot make x(X) all around 0.234.

The final g(x)and o(X) are as figure 10:

-0.05
80
|

gvals
-0.20 -0.15 -0.10
sigvals
20 40
I I

-0.25

-40 -20 0 20 40 -40 -20 0 20 40

Figure 10 g(x) and o(x) for case 74 with change I

g(x) have similar shape for x<5 and x>5; o(X) are symmetric around 5, and smooth. It reaches
minimum at 0 and 10, where we want the sampled variable to stay most frequently. good.

The above three changes cannot make «(X) all round 0.234 for different x. It indicates that this

adaptation algorithm might not achieve this goal for this target distribution, however we choose the
parameters and functions.

2.5 Example 3: mixture of three normal distributions in R*

Let's try one more difficult target distribution:

_(x+10)° X2 _(x-10)
7(x)=C*/03*e 2 +04*e 2 +03*e 2
This is a mixture of three normal distributions: N(0,1), N(-10,1),N(10,1).

Figure 11 shows the un-normalized part of this density. It is symmetric around O, reaches the
maximum at 0, and local maximum at 10 and-10.
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0.2 0.3 0.4
|

0.1

0.0
L

-30 -20 -10 0 10 20 30

Figure 11 un-normalized part of the density
Now the proposed scale becomes: o(x) =e”*9™® (1+C*| x+5|*| x—-5|)”
Where the definition of parameters and functions are the same as the above examples.

2.5.1 How to Avoid Numerical Error

Similar to section 2.4.1, numerical error still exists if we compute log(z(x))directly for big x. In order
to avoid this error, | will use approximation as the previous.

(x+10)? x?2
I will approximate it for x with big absolute value. For big X, 0.3*e 2 , 0.4%e 2,
_(x-10)? _(x-10)°
0.3*¢ 2 will be small, and 0.3*¢ 2  is much bigger than the other two:
0.3* e_(X—;O)Z x*_(x-10)* 0.3* e_(X—;O)Z (x+10)° _(x-10)
——————=075%2 2 =075%¢"" and ——aw =t ° 2 =g
0.4%*e 2 0.3*e ?

_(><—10)2 (X _ 10)2
So we can approximate it by log| 0.3*e 2 =|09(0.3)—T for big x. Similarly, for

negative X with big absolute value, we can approximate it by

2

_(x+10)

Iog£0.3*e 2 ]zlog(0.3)—
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log(0.3

2
)—@ it x<-12

_(x+10) x2 _(x-10)

log(z(x))= |og[o.3*e 2 104%e 2 +0.3%e 2 J if —12<x<12

log(0.3 if x>12

(x—10)°
T

Below is the comparison of Iog(ﬁ(x))and its approximation for x € [-50,50]. They overlap very well.

Good. In all the 65 cases I try, | will use this approximation to compute log(7z(x))in order to avoid
numerical error.

yllist
400 -200 0
| | |

-600
|

-40 -20 0 20 40

list

Figure 12 Iog(ﬂ(x)) and its approximation

2.5.2 Output

Among the 65 cases, the best case to give the acceptance rate close to 0.234 is case 133:
1

= (nep)es A =1, =1.C=10,7 =05 i fived bandwidth =1 it has () as table 23:

alpha(0.000000) is 0.207800
alpha(5.000000) is 0.696900
alpha(10.000000) is 0.166300
alpha(15.000000) is 0.354600
alpha(20.000000) is 0 .365400
alpha(50.000000) is 0.357700
alpha(100.000000) is 0.363600

alpha(150.000000) is 0.363200
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Table 23 a(X) for case 133

a(x) is around 0.2 at O, first increases to around 0.7 when x~5, then decreases to around 0.16
when x~10, and then increases to around 0.36 when x goes to infinity.

The other 64 cases have similar tendency of a(x) , Which you check from Aappendix 2.4.1~2.4.4.

Figure 13 is the plot of the final 9(x) and o(X) .

-0.05 0.00
I I

gvals
-0.10

-0.15
L

-0.20
0
I

Figure 13 9(x) and o(X) for case 133

9(x) and o(X) are symmetric around O. o(X) reaches the local minimum at 0, where we want the
sampled variables to say around the most. Good.

2.5.3 How to choose 7

Wheny <1 , the final g(x) and o(X) is symmetric around 0. The generated Markov Chain has a
good mixing. Wheny >1 , the final g(X) is not symmetric around 0, bad. The generated Markov
Chain has small steps and always gets stuck at 0, or 10, or -10. Table 24 shows the plot of g(x)
and o(x) for =05, y=1, y=15, y=2 . In these four cases, Kennel

M

function: K(x)=e “ o =L0a,=1C=Ly=2 height =0.5,width=0.5,C =1, =2 and

b, =1 Table 25 shows the generated Markov Chain for the four cases

y=0.5 y=1
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Table 25 generated Markov Chain for the four cases

From the above two tables, we can see that we need to choose y <1to make the Markov Chain
have a good mixing.
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2.6 Example 4: normal distribution in R?

Now consider the target distribution as :

XZ y2 X2 y2

f(x)=C*e 2*e 2 e 2 2

This is Standard Normal distribution in R? and the logarithm of the density is:

2 2

log(f ()=~

Now the adaptation algorithm updates scale as:

o(X)=e# 90 1+C| X —(0,0)|) ,

Xl

Where X is 2 dimensional vector: X :[ j , B, 7. &(X)is updated adaptively. | ®|is the distance in

2

RZrather than absolute value.

2.6.1 How to learn from Example 1

X 0y(1 O
Now our target distribution is Standard Normal distribution in R? ie. X = (Xl] ~ N((O}(O JJ
2

This means X; ~ N(0,1), X, ~ N(0,1), and they are independent. So we can learn how to choose

parameters from Example 1: Standard Normal distribution in R'. We can first consider all the good
cases in Example 1, and then use the parameter choice in those cases to run the adaptation
algorithm for this example.

From the following discussion in Chapter 3, we will know for Example 1, the best case (in judge of
varfact, variance, and average squared jump distance ) is case 57 and 65:

0, x> 2*width or |x|<width

Kernel function : K(X) = ] ]
1, width <| x |< 2*width

width=5,C =0.01, 5 =2 b, =1

1
Case 57: " = (7 5)%5’ with fixed bandwidth

I will try these two parameter choices . And also | will try the parameters in some other cases, which
has the smallest varfact, variance, or biggest average squared jump distance for each kernel
function.

You can check Appendix 2.4 for the output of all the 9 cases | try.
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2.6.2 How to Improve the algorithm speed

We already see how slow C generates Markov Chain and test the local acceptance rate without
approximation Il. The speed will become much worse in two-dimensional space. So in order to
improve the speed, | will use Approximation Il again in this example:

1. Equally divide [-30,30)*[-30,30) into 810000 parts, so we get 810000 small squares:

[£30,-30+ ) *[-30,-30+ 1) , [£30,-30+ =) *[-30,-30+ -2
15 15 15 15

1 1
~30,-30+-—-)*[30,30— ),
[ =)l =)

[-30+ -1 ,-3042)*[-30,-80+ 1)  ,  [-30+-=,—30+-2)*[-30,-30+-2)
15 15 15 15 15 15

[£30+ -~ ,—30+-2)*[30,30— ).
15 15 15

1 1 1 2 1 1
30— -—,30)*[-30,-30+-—), [30—-—,30) *[-30,~30 +-—) ... [30—-=,30)*[30,30— ),
[30---30)*1 1) 3018071 15 308071 =)

2. Compute and save the values of final a(X) for every lower-left point:

1 1
~30,-30), (-30,-30+ ), ... (-30,30—->), ....
( ): ( =) 5

(=30+ - —30), (-30+ = —30+-5),.. (=30+ -1 30— 1),
15 1515 15" 15
(30—~ -30), (30— = —30+-%),.. (30--L30-1).
15 15 15 15 15

3. Approximate o(X) by o(*) at the lower-left point of the small square that x lies in.

For case 194, | run the adaptation algorithm, generate Markov Chain and test a(X) both with and
without approximation Il. Table 26 shows the speed of both:

With Approximation Il Without Approximation Il
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it takes 310.314 seconds to run the adaptation algorithm

it takes 9939.71 seconds to plot g and sigma

it takes 512.742 seconds to generate the first Markov Chain
it takes 471.932 seconds to generate second Markov Chain
it takes 496.096 seconds to generate third Markov Chain

it takes 514.006 seconds to generate fourth Markov Chain
it takes 468.624 seconds to generate the fifth Markov Chain

it takes 2030.625 seconds to test the local acceptance

it takes 296.75 seconds to run the adaptation algorithm

it takes 10001.9820 seconds to plot g and sigma

it takes 3674.517 seconds to generate the first Markov Chain
it takes 3806.229 seconds to generate second Markov Chain

it takes 3813.156 seconds to generate the third Markov Chain
it takes 3638.899 seconds to generate fourth Markov Chain

it takes 3640.485 seconds to generate the fifth Markov Chain

it takes 2712.386 seconds to test the local acceptance

Table 26 running time for case 194 with and without Approximation Il

It takes 3600~3800 seconds to generate a Markov Chain without Approximation II, while now it only
needs around 500 seconds to do this with Approximation Il, good. This approximation also improves
the speed of testing the local acceptance rate by about 700 seconds.

Approximation Il is good for this example too,

for it gives similar plot of final g(x) and o(x), and

local acceptance rate for some specific x, which is shown in table 27. (black: x=0; blue: x=-2; green:
x=-5; yellow: x=-10; red: x=-30). | will this approximation for the other cases.

With Approximation 1

Without Approximation Il

0.00

Vs
S

BBV ILS, 000000003
0000000006

o
o

-0.04

g(x)

-0.08

-0.12

-30 -20 -10

o

10 20 30

x

9(x%.%)

-0.06 -0.02

-0.10
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sig(x,*) sig(x.”)
o o
o — o —
[¢°] [¢3]
o o
o — o —
© O
a(X) 2 8- 2 8-
o o
S S
N N
o o
| I I I I I I | I I I I I I
30 -20 -10 0 10 20 30 -30 20 -10 0 10 20 30
X X
alpha(0.000000,0.000000) is about 0.677500 alpha(0.000000,0.000000) is about 0.758800
alpha(0.000000,2.000000) is about 0.137900 alpha(0.000000,2.000000) is about 0.138100
alpha(5.000000,5.000000) is about 0.025100 alpha(5.000000,5.000000) is about 0.024000
(I(X) alpha(2.000000,10.000000) is about 0.011400 alpha(2.000000,10.000000) is about 0.015000
alpha(10.000000,10.000000) is about 0.007900 alpha(10.000000,10.000000) is about 0.007900
alpha(20.000000,50.000000) is about 0.000900 alpha(20.000000,50.000000) is about 0.000700
alpha(50.000000,50.000000) is about 0.000400 alpha(50.000000,50.000000) is about 0.000200

Table 27 output for case 194 with and without Approximation Il

2.6.3 Output

if judged from whether it makes

a(X)

M
Kernel function: K(x)=e =
1
W, a,=05a,=,C=01y=2

It gives local acceptance rate as table 28 :

with fixed bandwidth

around 0.234, then probably the best case is case 196 :

b, =1
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alpha(0.000000,0.000000) is about 0.215700
alpha(0.000000,2.000000) is about 0.285000
alpha(5.000000,5.000000) is about 0.328900
alpha(2.000000,10.000000) is about 0.335800
alpha(10.000000,10.000000) is about 0.319200
alpha(20.000000,50.000000) is about 0.157600

alpha(50.000000,50.000000) is about 0.124300

a(x)
Table 28 for case 197

a(X)
The tendency of is quite similar to 1-dimensional space. As the distance of x and O goes
a(X)
bigger, first increases from around 0.2 to 0.3, then decreases to 0. But all the simulations until
a(X)
now suggests that it may not be possible to make around 0.234 for different x.

(x) and o(x)

The plot of final 9 are as figure 14.

g(x,*) sig(x,*)
o
o
o
n
o |
3
[e2]
o
— —
S
n
— _]
Q [ T T T T T I [ T T T T T I
-30  -20 -10 0 10 20 30 -30  -20 -10 0 10 20 30
X X

Figure 14 9(x) and o(x) for case 197

(Black: x= 0;blue: x = -2; green: x = -5; yellow: x= -10;red: x=-30)

Both are symmetric around 0 and smooth, good. o (x) is the smallest at 0 , where we want the
sampled variable to stay most frequently, good.

When x goes form O to -30, i.e. the black line to the red, 9(x) is more and more flat, and o (x) for
each fixed point is increasing. This is good, because for every single variable, we want it to go to 0
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More frequently than other values.

When x goes from 0 to -30, i.e. The black line to the red, 9(x) is more and more flat, and for each
fixed point is increasing. This is good, because for every single variable, we want it to go to 0 more
frequently than other values.

a(X)
From Example 1~4, simulation studies indicates that probably it is impossible to make around
0.234 for different x.

Since we cannot make the local acceptance rate a(X) around 0-234 or all different X , so far we
don't get any conclusion about whether this is a better idea than the current optimal choice. It still
remains to be evaluated whether the adaptation algorithm improves the efficiency of RWM.

Now let's go one step back. Even if we cannot achieve the goal to make all a(x) around 0-234 , but
during our efforts to achieve this, the efficiency still improves in comparison without adaption
algorithm. So | will use different measures to check this in Chapter 3 .

3. Efficiency Comparison of Adaptive and Non-adaptive Algorithm

3.1 Efficiency Measures to Evaluate Markov Chain

There are many different measures to evaluate the efficiency of Markov Chain. Some usual
measures are varfact, variance/ standard error, and average squared jump distance.

3.1.1 Varfact

3.1.1.1 Autocorrelation

Autocorrelation of a random process describes the correlation between values of the process at
different points in time, as a function of the two times or of the time difference. Let X be some
repeatable process, and i be some point in time after the start of that process. Then X; is the value
(or realization) produced by a given run of the process at time i. Suppose that the process is further
known to have defined values for mean y; and variance o? for all times i. Then the definition of the
autocorrelation between times s and t is

E((X. —E(XX))*(X, —E(X,)))
Jvar(X,)*var(X,)

R(s,t) =

If the function R is well-defined, its value must lie in the range [-1, 1], with 1 indicating perfect
correlation and —1 indicating perfect anti-correlation.

If X, is a second-order stationary process then the mean p and the variance o are time-independent,
and further the autocorrelation depends only on the difference between t and s: the correlation
depends only on the time-distance between the pair of values but not on their position in time. This
further implies that the autocorrelation can be expressed as a function of the time-lag, and that this


/wiki/Random_process
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/wiki/Execution_(computing)
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would be an even function of the lag T = s - t. This gives the more familiar form

R(k) = E((Xt _;Uz:z(xuk _:u)) _ E((Xo _ﬂ;:(xk _:U)) =corr(X,, X, )

3.1.1.2 Varfact ®

Varfact is integrated autocorrelation time, defined as:
varfact =1+2> R(k) =1+2>_R(0,k) =1+2> corr(X,, X,)
k=1 k=1 k=1

It is used to measure the autocorrelation of a Markov Chain. We can use it times the i.i.d variance to

M
2 h(X;)
vV =var —‘:"3\;'1 5
estimate the variance( - ), i.e. Uncertainty, where h is the function we are interested
in.
1 M 2 1 M _ 2
v E”K(M—B Z I"(Xi)) _E“”")) } - E”[(M—B Z “”X"]j ]
i=B+1 i=B+1
I. P 2 ‘ ) P -
= m [(M — B)E,(h(X;)*) +2(M — B - 1)E, (h(X;)h(X;11))

1AM — B — B, (R(X)h(Xisa)) + .- }

1
~ M-B
1 _

—92 — — —
= — 2 Corr . ; 2Corr i), 2] )+ ..
ﬂ[—BE“(h ](l+ Corr (B(X;), h(X;41))+2 Corr (h(X;), h(X;12)) )

(E:ff} + 2Ex(R(Xi)R(Xi41)) + 2 Ex (R(X0)R(Xi42)) + ... )

= _1 Var, (k) (wn‘fﬂct-) = (1d variance) (varfact) ,

Jl[ - B
Usually, in order to compute varfact, we don't sum over all k, just, say, until R(0,k) <0.05.

3.1.2 variance

Suppose P1 and P2 are two Markov Chains, each with the same stationary distribution 7(x) . Then

Sh(X,)

var| = — X,

we say P1 has smaller variance than P2 if n is smaller when follows P1 than it

follows P2.


/wiki/Even_and_odd_functions
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Sh(X,)

If Markov Chain {Xn} is stationary, then for large n, var| i==——— |~ = var(h) * varfact (h)
n n ,

3.1.3 average squared jump distance

Markov chain is better if it allows for faster exploration of the state space. We say P1 mixes faster
than P2 if E[(Xn — anl)ZJ (average squared jump distance) is larger under P1 than P2. Of course,

Z(xi - Xi—l)z

El(xn - Xn_l)ZJcan be estimated by i=B+1 Vi

3.1.4 Relationship between the three measures

Sh(X,)

1) Since var| ===—— |~ —var(h) *varfact (h) itis obvious that the bigger the varfact, the bigger
n n

variance

2) We can see that:

average squared jump distance

i(xi—x”)z
~ e
D [(X, ~ E(X)~ (X~ EX, )
- M_B
S~ EOOIF + X,y B ~ 20X, ~EKOIX - E(X,)]
== M_B
=constant — 2 icorr(xi,xi_l)
zCOﬂStant—mCItB_?-
M —B
=C0n5tant—LfaCt
M -B

From this, we get the smaller varfact, the bigger average squared jump distance.



Report

Local scale adaptation for Random Walk Metropolis

Page 44

So for the efficiency of Markov Chain, we want smaller varfact, smaller variance, and bigger
averaged jump distance. Now | will use the three measures to compare that whether the adaptation
algorithm improves the efficiency of Markov Chain than non-adaption algorithm.

3.2 Example 1: Normal Distribution in R

For all the 66 different cases, | generate 5 independent Markov Chains for each case and then
compute their varfact, variance and average squared jump distance. You can refer to Appendix
2.2.6~2.2.8 for output of each case. In the below discussion, | will list the best cases, i.e. Having the
smallest varfact or variance, or having the biggest average squared jump distance.

3.2.1 varfact

For the four kernel functions, table 29 shows the best case who has smaller varfact than others with
the same kernel function.

L
kernel function K(x)=e *
o, C v 7, b, First run Siﬁ?]nd Third run | Fourth run | Fifth run
1
2. 1012 —= | 1] 6533203 | 6.42219 | 6.045298 | 6.83526 | 6.91115
(n+5)~
1
on KOO ==
kernel function 1+ | x|
o, C v n, b, First run Ser(;?]nd Third run | Fourth run | Fifth run
1 |01 1 1 1
05 7.185476 6.92573 6.877931 | 7.298966 | 7.185476
(n+5)
0,| x|= 2*width
_J_1=* H H * /1
kernel function K (x) =4 —1*hegith, width <| x |< 2*width
1*height,| x |[< width
o wi
C /4 hei dt 7, b” First run Second Third run | Fourth run | Fifth run
ght run
h
0. 1
001110 1 05 5 0% ! 5.84989 | 6.229419 | 5.915948 | 6.139981 6.5259
(n+5)
, 0,| x[>2*width or |x|[<width
Kernel function K(Xx) = ] )
1, width <| x |< 2*width
C | width e 7, b, First run SE;(LJJC:]nd Third run | Fourth run | Fifth run
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—— % 5.72553 | 5.958359 | 5.350588 | 5.822084 | 5.500506
1 (n+5)°*°
constant o(x) =C 6.032679 | 6.428601 | 6.010923 | 6.143806 | 6.654467
Table 29 varfact
Among the four best <cases, the last one, <case 57. kernel function:
| X |< width

K(x) =

M=

1
(n+5)°°"

{O,| X |[> 2*width or

1, width <| x |< 2*width

width=5,C =0.01, y = 2

with fixed bandwidth P =

1

has the smallest varfact, about 5.7~5.8. This is a little smaller than non-adaption algorithm, which is

around 6.0.

3.2.2 variance/ standard error

Now compare the variance. For each kernel function, | choose the best one with the smallest
variance from all the cases | try.

M2
kernel function K(x)=e “
b,| . Second : .
o, C v M First run un Third run | Fourth run | Fifth run
2 | 01| 2 1 1
(n+5)°'5 0.008631 | 0.008396 | 0.008139 | 0.008740 | 0.008697
1
. K(X)=—
kernel function 1+ | x|
a, C /4 7, b” First run Ser(L:J(r)1nd Third run | Fourth run | Fifth run
1
1 0.1 10 W 1 0.008920 | 0.008758 0.00868 0.008971 | 0.009006
0,| x|> 2*width
—J_1%* 1 1 * 1
kernel function K(x) =< —1*hegith, width <| x |< 2*width
1*height,| x |[< width
S| owi
C e hei dt 7, b, First run Second Third run | Fourth run | Fifth run
ght h run
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00110 |05 |9 1 1

’ ' 5 W 0.008052 | 0.008275 | 0.008178 | 0.008147 | 0.008477
_ 0, x> 2*width or |x|<width
Kernel function K(Xx) = ] )
1, width <| x |< 2*width

C | width e n, b, First run Sert;?]nd Third run | Fourth run | Fifth run
1 W 0.007925 | 0.008171 | 0.007620 0.00800 0.007780
constant o(x) =C 0.008154 | 0.008419 | 0.008097 | 0.008276 | 0.008502

Table 30 variance

Among the four best cases, case 57 still performs the best. It has the smallest variance, around
0.008, a little smaller than non-adaptation algorithm, which has the variance of about 0.0082~0.0084.

3.2.3 average squared jump distance

For each kernel function, | choose the best one with the biggest average squared jump distance
from all the cases I try.

M
kernel function < (X)=¢€
b,| . Second : .
Qa C /4 M First run un Third run | Fourth run | Fifth run
2 | 01| 2 1 1
(n+5)°'5 0.545549 | 0.525287 | 0.520330 | 0.535221 | 0.530106
1
. K(X)=—
kernel function 1+ | x|
o, C /4 7, b” First run Seri?jnd Third run | Fourth run | Fifth run
1
! 0.1 0.1 W 10 0.561479 0.54956 | 0.584170 | 0.563489 | 0.569779
0,| x|> 2*width
_J_1% H H *\A/1
kernel function K (x) =< —1*hegith, width <| x |< 2*width
1*height,| X |[< width
S owi
C e gﬁl dt 7, b, First run Serz?lnd Third run | Fourth run | Fifth run
h
0. 1
001110 |05 —— ot 1 0.57572 0.56505 | 0.585138 | 0.546282 | 0.555975
S| (n+5)*
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_ 0,| x[>2*width or |x|<width
Kernel function K(X) = ] )
1, width <| x|< 2*width

C | width v 7, b, First run Serﬁ(;nd Third run | Fourth run | Fifth run

0.0 5 2 1 1
1 05 o4 0.611305 | 0.597235 | 0.604059 | 0.616791 | 0.610068

(n+5) n

constant o(x) =C 0.553845 | 0.554989 | 0.537098 0.56998 0.547339

Table 31 average squared jump distance

From table 12, we can see that case 65:

1

width=5,C =0.0Ly =2, i, yecreasing bandwidth ° = 7oz

_ 1
d (n+5)°°"

has the biggest average squared jump distance, about 0.60~0.61,a little bigger than 0.54~0.56.

So if measured in variance and varfact, case 57 is the best; if measured in average squared jump
distance, case 65 is the best. Table 15 shows the comparison of case 57, 65 and non-adaptation
algorithm.

varfact variance average sq. distance
Case 57 5.4~5.8 0.0077~0.0080 0.54~0.55
Case 65 7.7~7.9 0.0092~0.0095 0.60~0.61
o(x)=C 6.0~6.6 0.0081~0.0085 0.54~0.56

Table 32 comparison of the best three cases

This table shows that adaptive algorithm performs a little better than non-adaptation algorithm, but
this advantage is not significant.

3.3 Example 2: Mixture of Two Normal Distributions in R*

| try 62 kinds of parameter choice and kernel functions to implement the adaptation algorithm; and
then generate 5 Markov Chains according to the final o(X) You can check the varfact, variance

and average squared jump distance of them in Appendix 2.3.6~2.3.8.
3.3.1 varfact

For the four kernel functions, the below four cases have the smaller varfact than others with the
same kernel functions.
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L
kernel function K(x)=e ™
b, . Second . .
a, C v U First run un Third run | Fourth run | Fifth run
2 0.1 2 1 10 | 12.86394 12.7031 | 11.99687 | 12.00228 | 12.88139
(n+5)°°
1
on K==
kernel function 1+ | x|
a, C U b, First run Serﬁ(;nd Third run | Fourth run | Fifth run
10 0.1 10 1 1 | 13.58733 | 12.41142 | 12.40737 | 13.24543 | 12.94998
(n+5)°°
0,| x|= 2*width
—_J)_1%* i i * /i
kernel function K (x) =1 —1*hegith, width <| x |< 2*width
1*height,| x |[< width
C ol owi
C Y hei dt n, b” First run Second Third run | Fourth run | Fifth run
ght h run
01 ]o1| 1 |© 1 | 11.79056 | 12.93844 | 12.33559 12.7613 | 11.16328
L1 (n+5°® | n%
_ 0,| x[>2*width or |x|<width
Kernel function K(X) = ] )
1, width <| x |< 2*width
C | width e 1, b, First run SercL:jcr)]nd Third run | Fourth run | Fifth run
01| 01 0.5 1 1 | 13.11484 | 13.85565 | 12.77984 | 13.13842 | 12.94547
(n+5)°*°
constant o(x) =C 13.13618 | 13.87016 | 13.78088 | 13.15203 13.29707
Table 33 varfact
Among the four best cases, the last one, case 116 :
0,| x> 2*width
_J)_1* H H *\psi
kernel function K(x) =< —1*hegith, width <| x |< 2*width
1*height,| x |< width
—# C=0.1,y=0.1 height =1, width=0.1 L
77n (n+5)0.5’ ' }/ . 1 b

with decreasing bandwidth b, = no2
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has the smallest varfact, about 11.2~12.9, while non-adaption algorithm has the varfact of about

13.2~13.8.

3.3.2 variance/ standard error

Now compare the variance. For each kernel function, | choose the best one with the smallest
variance from all the cases I try.

Ll
kernel function K(x)=e ™
a, C v 7, b, First run Seri(r)]nd Third run | Fourth run | Fifth run
2 0.1 2 1 10 | 0.060903 | 0.060613 | 0.05894 | 0.058761 | 0.061143
(n+5)°°
1
on KOO ==
kernel function 1+ | x|
a, C v U b, First run Seri(r)]nd Third run | Fourth run | Fifth run
10 0.1 10 1 1 | 0.062730 | 0.059807 | 0.059948 | 0.06195 | 0.061115
(n+5)°°
0,| x|= 2*width
_J_1=* H H * /i
kernel function K (x) =1 —1*hegith, width <| x |< 2*width
1*height,| x |[< width
o wi
C /4 hei dt n, b” First run Second Third run | Fourth run | Fifth run
ght h run
01 | 2 1|0 1 | 0.058331 | 0.061151 | 0.059702 | 0.060674 | 0.056919
L1 (n+5)° | n%
_ 0, x> 2*width or |x|<width
Kernel function K(x) = ) )
1, width <] x |< 2*width
C | width Y M b, First run SercL:Jcr)1nd Third run | Fourth run | Fifth run
01| 0.2 0.1 1 0.1 | 0.06208 | 0.062719 | 0.065429 | 0.062305 | 0.063206
(n+5)%°
constant or(x) = C 0.061665 | 0.063307 | 0.063017 | 0.061586 |  geca6q

Table 34 variance
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Among the four best cases, case 116 still performs the best. It has the smallest variance, around
0.057~0.061, a little smaller than non-adaptation algorithm, which has the variance of about
0.061~0.065.

3.3.3 average squared jump distance

For each kernel function, | choose the best one with the biggest average squared jump distance
from all the cases I try.

g
kernel function K(x)=e ™
b, . Second . .
a, C 4 M First run un Third run | Fourth run | Fifth run
2 0.1 2 1 10 | 7.728795 | 7.719727 | 8.015229 | 7.980781 | 7.709572
(n+5)%°
1
. K(X)=—
kernel function 1+, | x|
a, C 4 M b, First run Siﬁ%nd Third run | Fourth run | Fifth run
10 10 0.1 1 1 | 7.445668 | 7.493031 7.48323 | 7.579445 7.64341
(n+5)%°
0,| x [> 2*width
—_J_1% i i *\ /1
kernel function K(x) =< —=1*hegith, width <| x |< 2*width
1*height,| x [< width
Sl owi
C /4 hei dt 7, b” First run Second Third run | Fourth run | Fifth run
ght h run
001] 10|05 |9 1 1 | 8.03459 | 8.031316 | 7.766907 7.8188 8.158163
S| (n+5)°*
_ 0,| x[>2*width or |x|<width
Kernel function K(X) = ] )
1, width <| x|< 2*width
C | width v 7, b, First run Ser(;?]nd Third run | Fourth run | Fifth run
01| 05 0.1 1 1 | 7.522012 | 7.63438 | 7.592666 7.63681 7.74818
(n+5)°°
constant &(x) = C 7.204595 | 7.282846 | 7.396178 | 7.31972 7 25605

Table 35 average squared jump distance

From table 35 we can see that case 116 has the biggest average squared jump distance, about
7.7~8.1,a little bigger than 7.2~7.4.
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So among all the 62 cases | try, case 116 gives the smallest variance and varfact, and biggest
average squared jump distance, a little better than non-adaptation algorithm. You check check this
from table 36.

varfact variance average sq. distance
Case 116 11.2~12.9 0.057~0.061 7.7~8.1
o(x)=C 13.2~13.8 0.061~0.065 7.2~7.4

Table 36 comparison of the best cases

3.4 Example 3: Mixture of Three Normal Distributions in R’

As the first two examples, | try 65 kinds of parameter choice and kernel functions to implement the
adaptation algorithm; and then generate 5 Markov Chains according to the final o(X) You can

check the varfact, variance and average squared jump distance of them in Appendix 3.3.6~3.3.8. |
will not include the cases that the Markov Chain has bad mixing, like cases when y =2 .

3.4.1 varfact

For the four kernel functions, the below four cases have the smaller varfact than others with the
same kernel functions.

K
kernel function K(x)=e
o, C v 7 b, First run Ser(l:;nd Third run | Fourth run | Fifth run
1 10 0.5 1 1 | 12.64651 | 12.96737 | 12.65248 | 13.67789 | 12.82574
(n+5)°%°
1
. K(X)=—
kernel function 1+ | x|
o, C v 7 b, First run Ser(l:;nd Third run | Fourth run | Fifth run
10 10 0.5 1 1 | 13.3392 | 12.24885 | 13.38762 | 13.53404 | 13.72235
(n+5)°%°
0,| x|> 2*width

K(x) =< —1*hegith, width <| x |< 2*width
1*height,| x |[< width

kernel function

S owi
C Y hei dt 17, b” First run Second Third run | Fourth run | Fifth run
ght h run
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01 |05 01 ]| 2 1 10 | 12.76971 12.85744 | 12.76055 | 12.98399 | 12.9673
(n+5)°*°

_ 0, x> 2*width or |x|<width
Kernel function K(Xx) = ] )
1, width <| x |< 2*width

width e n, b, First run Sert;?]nd Third run | Fourth run | Fifth run
0.5 0.5 1 1 | 12.43654 | 12.98527 12.4032 12.94385 | 12.92349
(n+5)°*°

constant o(x) = C 14.15845 | 15.31856 | 13.73391 | 15.47598 | 14.98496

Table 37 varfact
Among the four best cases, the last two,
case 173:
0,| x|> 2*width

K(x) =< —=1*hegith, width <| x |< 2*width
1*height,| X |[< width

Kernel function:

height =0.1, width=2,C =0.1,» =0.5 b, =10

= with fixed bandwidth ~n

1
(n+5)%°’
case 182 :

0,| x|=2*width or |x|<width
ion: KX =1, :
Kernel function: 1, width <] x |< 2*width

1

:W, WldchOS,C :1,]/:0.5
N )

T with fixed bandwidth P =1

Have close performance. They have the smallest varfact, about 12.4~12.98, while non-adaption

algorithm has the varfact of about 14~15.4.

3.4.2 variance/ standard error

Now compare the variance. For each kernel function, | choose the best one with the smallest
variance from all the cases I try.
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L
— a3
kernel function K(x)=e
o, C 4 N, b, First run Serﬁ(;nd Third run | Fourth run | Fifth run
1 10 05 1 1 0.092925 | 0.093307 | 0.092218 | 0.097322 | 0.093457
(n+5)0.5 19 61 1 62 14
1
on KO)=————
kernel function 1+ | x|
o, C /4 7, b, First run Serﬁ(;nd Third run | Fourth run | Fifth run
10 10 05 1 1 0.094868 | 0.090432 | 0.095753 | 0.096414 | 0.096500
(n+5)0.5 4 56 66 64 97
0,| x|= 2*width
_J_1=* H H *\AsT
kernel function K (x) =1 —1*hegith, width <| x |< 2*width
1*height,| x |[< width
C ol owi
C /4 hei dt n, b” First run Second Third run | Fourth run | Fifth run
ght h run
01 |05]01]| 2 1 1) 0.093088 | 0.093172 | 0093848 | 0.091052 | 0.090727
(n+5)o.5 n%4 3 7
_ 0,| x[>2*width or |x|<width
Kernel function K(X) = ] )
1, width <| x |< 2*width
C | width Y M b, First run SercL:jcr)]nd Third run | Fourth run | Fifth run
1 05 05 1 1 0.091608 | 0.093255 | 0.092064 | 0.093385 | 0.093535
(n+5)o.5 58 67 86 38 89
0.097670 | 0.101192 | 0.097137 | 0.098421 | 0.102212
constant (T(X) =C 42 4 88 07 6

Among the four best cases,

Table 38 varfact

case 173 and 182 still perform the best. They have the smallest

variance, around 0.092~0.094, a little smaller than non-adaptation algorithm, which has the variance
of about 0.097~0.10.

3.2.3 average squared jump distance

For each kernel function, | choose the best one with the biggest average squared jump distance
from all the cases | try.

kernel function

_

K(x)=e *
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a, C 4 U b, First run Ser(L;jc:]nd Third run | Fourth run | Fifth run
1
1 10 0.5 W 1 | 17.64668 | 17.55073 | 17.72917 | 17.68229 | 17.58393
1
on KOO =——=——
kernel function 1+ | x|
o, C /4 7, b” First run Serﬁ(;nd Third run | Fourth run | Fifth run
1
10 10 0.5 W 1 17.2243 17.46561 | 17.20456 | 17.48782 | 17.49019
0,| X > 2*width
—_J_1% i i *\ /1
kernel function K (x) =< —1*hegith, width <| x |< 2*width
1*height,| x [< width
S owi
C e hei dt 7, b, First run Second Third run | Fourth run | Fifth run
ght h run
1
01 |05|01| 2 W 10 | 18.04347 | 18.16659 | 17.67161 | 17.90958 | 17.7375
_ 0,| x[>2*width or |x|<width
Kernel function K(x) = . )
1, width <| x |< 2*width
C | width v N b, First run SercL:jcr)]nd Third run | Fourth run | Fifth run
1
1 0.5 0.5 W 1 | 17.93946 | 17.42754 | 17.92938 | 17.68764 | 17.78533
constant o(x) = C 15.54288 | 15.35994 15.284 15.54276 | 15.54288
Table 39 average squared jump distance

From table 39, we can see that case 173 has the biggest average squared
17.7~18.1,a little bigger than 15.3~15.5.

jump distance, about

varfact variance average sq. distance
Case 173 12.4~12.98 0.092~0.094 17.7~18.1
o(x)=C 14~154 0.097~0.10 15.3~15.5
Table 40 comparison of the best cases
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So among all the 65 cases | try, case 173 gives the smallest variance and varfact, and biggest
average squared jump distance, a little better than non-adaptation algorithm.

3.5 Example 4: Normal Distribution in R

| first learn some good parameter choices from Example 1:Normal Distribution in RZ, then try these
parameter choices to run the adaptation algorithm in this example. According to the final o(x) from

the adaptation algorithm, | generate 5 Markov Chain for each case. | try 9 cases in total. The
generated Markov Chain all have good mixing. Now | want to compare them with constant o(x) in

the above measures.

3.5.1 varfact

First compare the varfact of these cases.Table 41 list the varfact of 5 Markov Chain generated for
each case | try. The first line is the results for the list of x1, the first component of the random
variance, and the second line is for that of x2, the second component.

[x

Kernel function: K(x)=e *

First run Second Third run Fourth Fifth run
! C 7/ bn ' run run
0.5 0.1 2 1 1 8.01143 8.12074 8.02683 8.63622 7.84477
(n+ 5)0-5 8.39018 8.68444 8.25877 8.12773 8.08205
1
Kernel function : K(X) = —————
1+ | X]
First run Second Third run Fourth Fifth run
! C 7/ bn ' run run
1 0.1 1 1 1 9.01875 8.05305 7.61042 8.13736 8.28670
(n+ 5)0-5 7.95014 8.35461 8.29565 8.04215 8.34854
0,| x|= 2*width
Kernel function : K (Xx) =4 —1*hegith, width <| x |< 2*width
1*height,| x |[< width
hei | wid First S d Third Fourth Fifth
C 7/ bn 1, irst run econ ird run our ifth run
aht th run run
05 | 05 0.0 10 1 1 7.74167 7.79554 8.50804 8.24295 8.0193
1 (n+ 5)0-5 8.51949 7.76981 8.37399 8.40765 8.05531
_ 0,| x[=2*width or |x|<width
Kernel function : K(X) = . )
1, width <| x |< 2*width
widt i i i
C 7/ bn 1, First run Second Third run Fourth Fifth run
h run run
5 0.01 2 1 1 9.5072 8.8876 8.8812 8.7593 8.6037
(n+ 5)0-5 9.2312 8.9168 9.160 9.0149 9.0498




Report Local scale adaptation for Random Walk Metropolis Page 56

constant o(X) =C

8.584404 8.331632 8.68917 8.07853 8.492082

8.08258 8.4440 8.334455 8.904434 8.6586

Table 41 varfact

For the adaptation algorithm, the best case is case 201 :
0,| x> 2* width

K (X) = {—1* hegith, width <| x |< 2* width
1* height, | x |< width

Kernel function:

1

_ , 1
(n+5)°°

height = 0.5, width = 0.5,C = 0.01, y = 10

T with fixed bandwidth o =

In case 201, the varfact is around 7.7~8.5 for x1 and 7.7~8.4 for x2. While non-adaptation algorithm
has the varfact of about 8.3~8.5 for x1 and 8.3~9.9 for x2. So adaptation algorithm works a little

better.
3.5.2 variance/ standard error

Table 42 list the standard error of 5 Markov Chain generated for each case | try. The first line is the
results for the list of x1, and the second line is for that of x2.

X

Kernel function : K(X) =e “2

First run Second Third run Fourth run Fifth run
al C 7/ bn 77[1 run
05 01 5 1 1 0.0099647 | 0.0101173 | 0.0099771 | 0.0104498 | 0.0099363
(n + 5)0-5 0.0103432 | 0.0105912 | 0.0101549 | 0.0100481 | 0.0101184
, 1
Kernel function : K (X) = —————
1+ | x|
First run Second Third run Fourth run Fifth run
al C 7/ bn 77['] run
1 01 1 1 1 0.0105313 | 0.0097265 | 0.0096214 | 0.0099982 | 0.0099314
(n + 5)0-5 0.0097723 | 0.0099487 | 0.0098910 | 0.0098809 | 0.0100729
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0,| x> 2* width
Kernel function : K (X) = < —1* hegith, width <| x |< 2* width
1* height, | x |< width
heig | widt C 7/ b 7 First run Second Third run | Fourth run Fifth run
ht h n n run
05 05 | 001 | 10 1 1 0.0094858 | 0.0095293 | 0.0099355 | 0.0098088 | 0.0097593
(n +5)% 0.0100096 | 0.0095595 | 0.0099169 | 0.0098439 | 0.0099373
0,| X[ 2*width or |x[<width
Kernel function : K (X) = . )
1, width <| x < 2* width
widt C 7/ b 1 First run Second Third run | Fourth run Fifth run
h n n run
5 0.01 2 1 1 0.01031 0.00998 0.01007 0.00984 0.00987
(n +5 05 0.01010 0.01016 0.01006 0.01013 0.01010
constant (X) =C
0.00972953 0.0097068 0.009780478 0.00939504 0.009631347
0.0094686 0.009739506 0.00954663 0.009958031 0.009772716

Table 42 variance
The adaptation algorithm's standard error is quite close to non-adaptation algorithm. So if measured

in variance/standard error, it is hard to say which one is better for this example by the cases | try.

3.5.3 average squared jump distance

Table 43 list the average squared jump distance of 5 Markov Chain generated for each case | try.
The first line is the results for the list of x1, and the second line is for that of x2.

M

Kernel function : K(X) =e “2

First run Second Third run Fourth run Fifth run
al C 7/ bn 77[1 run
05 01 5 1 1 0.506856 0.504129 0.493900 0.491895 0.491927
(n + 5)0-5 0.506880 0.50175 0.495962 0.480626 0.496152
1
Kernel function : K (X) = —————
1+, | X[
First run Second Third run Fourth run Fifth run
al C 7/ bn 77[1 run
1 01 1 1 1 0.458961 0.461018 0.4751 0.480245 0.47135
(n + 5)0-5 0.466943 0.467047 0.4542 0.4680 0.45683
0,| x|= 2* width

Kernel function : K (X) = < —1* hegith, width <| x |< 2* width
1* height,| x [< width
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heig | widt C 7/ bn n First run Second Third run | Fourth run Fifth run

ht h n run
05 | 05 | 001!l 10 1 1 0.463001 0.46015 0.449489 | 0.465211 | 0.457632
(n + 5)0-5 0.461200 | 0.465179 0.456853 | 0.452455 0.461372

0,| X[ 2*width or |x[Kwidth

Kernel function : K (X) = ) .
1, width <| x < 2* width

width C 7/ b n First run Second Third run Fourth run Fifth run
n n run

5 0.01 5 1 1 0.394871 0.406117 0.404594 0.396869 0.414291

(n + 5)0-5 0.40248 0.421151 0.404090 0.40975 0.413094

constant o(X) = C

0.4365735 0.4408152 0.421703 0.4340354 0.4279432

0.4396845 0.4289132 0.4226133 0.4327815 0.4182256

Table 43 average squared jump distance
If measured in average squared jump distance, case 196 :

b
Kernel function : K(xX)=e
1
(n+5)%’

ar

o,=05¢0,=1C=01y=2 1

T with fixed bandwidth P =

performs better than the non-adaptation algorithm and the other adaptation algorithm:

Its average squared jump distance is about 0.5, bigger than around 0.42~0.43 innon-adaptation
algorithm . So if measured in average squared jump distance, non-adaptation algorithm performs a
little better.

Conclusion

We explore the efficiency of adaptation algorithm for Random Walk Metropolis. Simulation studies
indicate that probably it is impossible to make the local acceptance rate around 0.234 for all different
X. But during the procedure to achieve this, the adaptation algorithm makes a little improvement to
the efficiency of Markov Chain, if measured in variance, varfact, and average squared jump distance.
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Appendix
1. Code
1.1 C code

1.1.1 C code to implement the adaptation algorithm and generate a
Chain (Example 1~3)

1.1.2 C code to implement the adaptation algorithm and generate a
Chain (Example 4)

1.2 R code

1.2.1 R code to plot the final g(.X) and o(.X)(Example 1~3)

1.2.2 R code to plot the final g(X) and o(.X)(Example 4)

1.2.3 R code to generate Markov Chain without adaption (Example 1)
1.2.4 R code to generate Markov Chain without adaption (Example 2)
1.2.5 R code to generate Markov Chain without adaption (Example 3)
1.2.6 R code to generate Markov Chain without adaption (Example 4)
1.2.7 R code to compute different efficiency measures (Example 1~3)
1.2.8 R code to compute different efficiency measures (Example 4)

1.2.9 R code to implement OLS in approximation of the final o (.Y)

2. Output

2.1 Example 1: normal distribution in  #'

A

2.1.1 kernel function £(¥=¢

1

2111 case1 :—(Hs)oy a,=Loa,=1,C=1y=2

with fixed bandwidth

1

2.1.1.2 case 2 n,= (”+5)0A5’ o, =2,0,=1,C=1y =2

with fixed bandwidth

1

2.1.1.3 case 3 n,= (”+5)0A5’ a,=10,a,=1,C=1y =2

with fixed bandwidth

Markov

Markov

b,=1

n

b,=1

n

b,=1

n



1

2.1.1.4 case 4 n,= (”+5)0A5’ a,=0la,=1,C=1y=2

with fixed bandwidth 2 =1

= 1 b =1
2.1.1.5case 5 n,= (”+5)0A5’ =

a;=0.5,a,=1C=Ly =2 4 fired bandwidth 2~

1

2.1.1.6 case 6 n,= (”+5)0A5’ o, =2,0,=1,C=2,y =2

with fixed bandwidth 27 = |

1

2.1.1.7 case 7 n,= (”+5)0A5’ o, =2,0,=1,C=10,y =2

with fixed bandwidth 2 =

1
21.18case8 '~ (505t 4T 2,0, =1, =01y =2 ity fixed bandwidth 2 =1

1
21.1.9case9 T Tepes 1T 2,0, =1L,C=0.57 =2 it fixed bandwidth 2 =

1
2.1.1.10 case 10 1+~ (745 @ =2,0, =1,C=0.0Ly =2 ity fixed bandwidth

b, =1

n

o,=2,0,=1,C=0.1,y =10

2.1.1.11 case 11 n”:(”+5)0-5’ with fixed bandwidth

b, =1

n

1

21112 case 12 T’}z = (”+5)0A5; al :25(12 :1, C:().l,y :0.5

with fixed bandwidth

b, =1

n

1

2.1.1.13 case 13 n”:—(”+5)0.5' a,=2,a,=1,C=0.1y =1

with fixed bandwidth

b, =1

n

1

2.1.1.14 case 14 n”:(/z+5)0_5, a,=2,a,=1,C=0.1,y =0.1

with fixed bandwidth



1
21.1.15 case 15 = (58 % =2,0,=LC=0.LY=2 it fixed bandwidth

b, =1

n

1
21.1.16 case 16 "~ (, 505" % =2,0,=LC=0.LY=2 it fixed bandwidth

b,=10

n

1
21117 case 17 1= (505" % =2,0,=LC=0.LY=2 it fixed bandwidth

b,=0.1

n

o,=2,a,=1,C=0.1,y =2

21118 case 18 n”:(”+5)0~5’ with  decreasing

1

bandwidth 27 = 72

2.1.2 kernel function ()= 1+a, |7

1
2121 case 19 T g5 A1 Loy =1L, E=LY =2 ith fixed bandwidth & =1

1
2122case20 T gpes AT 10,2, =L =LY =2 ith fixed bandwidth 2 = !

1
2123 case 21 T, a5 @ =0La =LE=Ly=2 \ith fixed bandwidth

b, =1

n

= ! b =1
2124 case22 = 115 =

a,=la,=1LC=10,y =2 s fived bandwidth 2

1

2125 case 23 n”:—(”_i_s)os’ a,=Lo,=1,C=0.1,y =2

with fixed bandwidth

b, =1

n

1

2126 case 24 I :—(Hs)oy a,=La,=1,C=0.01,y =2

with fixed bandwidth



1

2127case25 » = (”+5)0A5‘; o,=lLa,=1,C=0.1,y =1

with fixed bandwidth 2 =

1

2.1.2.8 case 26 ’7”:—(%5)05; a,=Lo,=1,C=0.1,y =10

with fixed bandwidth

b, =1

n

1

21.2.9 case 27 n”:—(”_i_s)os’ a,=Lo,=1,C=0.1,y =2

with fixed bandwidth

b, =10

n

1

2.1.2.10 case 28 n”:—(”_i_s)os’ a, =la,=1,C=0.1y=2

with fixed bandwidth

b,=0.1

n

1

21211 case 29 nn = (”+5)0_5; al :1’a2 :1, C:().l,y :0.1

with fixed bandwidth

b,=10
-l g sLa,=LC=1y=2
21212 case 30 17,505t M1 T 0% TLET LY T 2 yith decreasing bandwidth
1
b, =55
7 ”0.2

1

2.1.2.13 case 31 77n:(”JFS)o.s' a,=0.la,=1,C=1y=2

with fixed bandwidth

b,=10

n

0,| x|> 2* width
K(x)=1—1* hegith, width <| x|< 2* width
1* height,| x |< width

2.1.3 kernel function

height =0.5,width =0.5,C=1y =2

1
2131 case 32 7 (505 with  fixed

bandwidth 2 =1



1 , .
2132 case 33 M= W height =0.5,width =0.5,C=10,y =2

with fixed
bandwidth 2 =1
2133 case 34 7 ﬁ height =0.5,width =0.5,C'=0.Ly =2 . fiyeq
bandwidth 2 =1
2134 case 35 = ﬁ height =0.5,width =0.5,C=0.01,y =2 with fixed
bandwidth 2 =1
2.1.35 case 36 v ﬁ height =0.5,width =0.5,C'=0,y =2 i fived

bandwidth 2 =1

1 ) .
o5, /#eight =0.5,width =0.5,C=0.001,y =2

2136 case 37 7 (%) with fixed

bandwidth 2 =1

1 . )
o5, height =0.5,width =0.5,C=0.001,y =10

2137 case 388 ' T, 505 with fixed

bandwidth 2 =1

1 . )
o5, height =0.5,width =0.5,C=0.001,y =1

2138 case 39 T, 50 with fixed

bandwidth 2 =1

1 ) .
o5, height =0.5,width =0.5,C=0.001,y =0.1

2139 case 40 "7 (15 with fixed

bandwidth 2 =1

height =1,width =0.5,C=0.01,y =2

1
21310 case 41 n 7 (1505 with fixed

bandwidth 2 =1



height =10,width =0.5,C=0.01,y =2

1
21311 case 42 1T (55 with fixed

bandwidth 2 =1

height =0.1,width =0.5,C=0.01,y =2 wi

1
21312 case 43 1T (505 ith fixed

bandwidth 2 =1

height =0.5,width =2,C=0.01,y =2

1
21313 case 44 11T (55 with fixed

bandwidth 2 =1

height =0.5,width =5,C=0.01,y =2

1
21314 case 45 1T (g5 with fixed

bandwidth 2 =1

height =0.5,width =0.1,C=0.01,y =2 wi

1
2.1.3.15 case 46 1T (505’ ith fixed

bandwidth 2 =1

1 ) .
o5, neight =0.5,width =0.5,C=0.01,y =2

2.1.3.16 case 47 11 T (505 with fixed

bandwidth 2 =10

1 . .
o5, /neight =0.5,width =0.5,C=0.01,y =2

21317 case 48 11T, 50 with fixed

bandwidth 2 = 0-1

height =0.5,width =0.5,C=0.01,y =2

21318 case 49 7T, a5 with
oL
decreasing bandwidth ~~ 02
1 . .
21319 case 50 = —(”+5)0_8 , height =0.5,width =0.5,C=0.01,y =2 with fixed

bandwidth 2 =1



Kix) = 0,| x|=22*width or |x|< width
2.1.4 kernel function ()= 1, width <| x|< 2 * width

width =0.5,C=1,y =2 b =1

1
214.1case51 '~ (n+5)*" with fixed bandwidth ~~

width =0.5,C=10,y =2 b =1

1
2142case52 '~ (n+5)*" with fixed bandwidth ~~

width =0.5,C=0.1y =2 b =1

1
2143case53 '~ (n+5)*" with fixed bandwidth ~~

width =0.5,C=0.01,y =2

1
2144 case 54 7 (n+5)*" with fixed bandwidth

b, =1

n

width =0.5,C=0.001,y =2

1
2145 case 55 "~ (n+5)*" with fixed bandwidth

b, =1

n

width =1,C=0.01,y =2 b =1

1
21.4.6case56 7~ (n+5)*" with fixed bandwidth ~~

width =5,C=0.01,y =2 b =1

1
2147 case57 '~ (n+5)*" with fixed bandwidth ~~

width =0.1,C=0.01,y =2

1
2148 case 58 '~ (n+5)*" with fixed bandwidth

b, =1

n

b,=1

width =8, C'=0.0Ly =2 o 6ved bandwidth 2

1
21.49case59 1= 15

width =5,C=0.01,y =5 b =1

1
2.1.4.10 case 60 7 = (n+5)*" with fixed bandwidth ~~

b,=1

width =5,0=0.0Ly =1 4 6 ed bandwidth

1
21411 case 61 1n = (5

width =5,C=0.01,y =0.1

1
21.4.12 case 62 177 (n+5)*" with fixed bandwidth



1 .
21413 case 63 '1n = (745 width =3,C'=0.0Ly =2 i fixed bandwidth

b,=10

n

1 .
21414 case 64 11~ (745 width =3,C'=0.0Ly =2 i fixed bandwidth

b,=0.1

n

width =5,C=0.01,y =2

1
2.1.4.15 case 65 17~ (n+5)*" with decreasing bandwidth

1
b =—
n ”0.2

width =5,C=0.01,y =2 =1

1
2.1.4.16 case 66 17 ~ (n+5)* with fixed bandwidth 4,

2.1.5constant o(x)=C

2.1.6 varfact comparison
2.1.7 variance comparison
2.1.8 comparison of average squared jump distance

2.1.9 OLS in approximation of the final @)

2.2 Example 2: mixture of two normal distributions in R

A

2.2.1 kernel function £(¥=¢

1

2211 case 67 'l :—(”+5)0.5' a, =la,=1,C=1y=2

with fixed bandwidth 2 =1

1

2212case68 n = (n+5)% =1

o =2,0,=1,C=Ly =2 i fived bandwidth 2

1

2213 case69 ' :—(”+5)0.5' a,=10,a,=1,C=1y =2

with fixed bandwidth 2 =1

1

2214 case 70 ’7”:—(%5)0‘5: a,=0.lLa,=1,C=1y=2

with fixed bandwidth



1

2215 case 71 T a5 % =030, =LC=LY =2 it fixed
b,=1

-l 4 =00La,=1C=1y=2
2216 case 72 "7 (55t DT UELGRTLETLY TS yith fixed
b,=1

-l g =20,=1,0=10y=2
2217 case 78 1T g5t AT ST TLETIRY TS wiith fixed
b,=1

- 4 =2a,=1C=01y=2
2218 case 74 T g5 BTG TLETNLTT it fixed
b,=1

-l 4 =2a,=1C=01y=10
2219 case 75 1T, gps DT H%TLEZRLYZI ith fixed
b,=1

-l 4 =2a,=1C=01Ly=1
22110 case 76 1T (g5 N TSR TLETRLT T yith fixed
b,=1

-l =2a,=1LC=01y=01
22111 case 77 T Tgpese N T S%TLETRLT 0 with fixed
b,=1

-l 4 =2a,=1C=01y=2
22112 case 78 1T (g5 BTG TLETRLTTS with fixed
5,=10

-l 4 =2a,=1C=01y=2
22113 case 79 1T (g5 BT 0% TLETRLTTS with fixed

bandwidth

bandwidth

bandwidth

bandwidth

bandwidth

bandwidth

bandwidth

bandwidth

bandwidth



1

2.21.14 case 80 ””:(n+5)0-s" a,=2,a,=1,C=0.1L,y =2

with  decreasing

1

bandwidth b,= =

1

2.2.1.15 case 81 ’7”:—(%5)0‘8: a,=2,a,=1,C=0.1,y =2

with fixed bandwidth

b,=10

n

1
2.2.2 kernel function ()= 1+a, |7

1

2221case90 1+ = 15 a, =la,=1,C=1y=2

with fixed bandwidth 2 = !

1

2222case91 » = 15 a, =10,a,=1,C=1y =2

with fixed bandwidth 2 = !

1

2223 case 92 1n = 15 a,=0.La,=1,C=1y=2

with fixed bandwidth

b, =1

n

1

2224case93 1= 15 a, =12,a,=1,C=1y =2 b =1

with fixed bandwidth ™~

1

2.225case 94 'l :—(”+5)0.5' a =5a,=1,C=1y =2 b =1

with fixed bandwidth ~~

1

2226 case 95 n”:—(”+5)0.5' a, =10,a,=1,C=1y =10

with fixed bandwidth

b, =1

n

1

2227 case 96 nn = (”+5)05 » al = lo,az = 1, C: 1,7/ = 0.1

with fixed bandwidth

b, =1

n

1

2228 case 97 nn = (”+5)05 ’ al zlo,az ZI,CZIO,J/ :0.1

with fixed bandwidth



1
2229 case 98 ' :—(”+5)0.5'

b, =1

n

1
2.2.2.10 case 99 l» :—(”+5)0.5'

b,=10

n

1
2.2.2.11 case 100 ' :—(”+5)0.5'

b,=0.1

n

1

22212 case 101 ’7”:—(“5)0.5

1

bandwidth b, = 02
o
2.2.2.13 case 102 '1» = 5"

b, =1

n

0,

2.2.3 kernel function
1*

1
2.2.3.1 case 103 ’7”:—(“5)0.5;

bandwidth 2 =1

1
2.2.3.2 case 104 ’7”:—(%5)0.5;

bandwidth 2 =1

1
2.2.3.3 case 105 'l :—(}HS)OAS;

a, =10,a,=1,C=0.1,y =0.1

a, =10,a,=1,C=0.1,y =0.1

with fixed bandwidth

with fixed bandwidth

o, =10,0, =1,E'=0.Ly = 0.1 iy fixed bandwidth

» =100, =L,C=0Ly =01 i Gecreasing

@, =10,0, =1,E'=0.Ly = 0.1 iy fixed bandwidth

X[>2* width

K(x)=1—1* hegith, width <| x|< 2* width

height,| x |< width

C =1,y =2,height = 0.5, width = 0.5, with fixed

C=10,y =2,height = 0.5, width =0.5, with fixed

C=0.1y =2, height = 0.5, width =05, . o



bandwidth 2 =1
2.2.3.4 case 106 "~ ﬁ ¢'=0.1y =10, height = 0.5, width = 0.5, ) g,0q
bandwidth 2 =1
2235 case 107 T = ﬁ C=0.1,y =0.1,height = 0.5, width = 0.5, with fixed
bandwidth 2 =1
2236 case 108 '~ ﬁ ¢'=0.1y =2,height =1, width =0.5, . fyeq
bandwidth 2 =1
2237 case 109 7 ﬁ ¢'=0.1y =2,height =5, width =0.5, i, feq
bandwidth 2 =1
2238 case 110 '~ ﬁ ¢'=0.1y =2,height = 0.1, width =0.5, | fived
bandwidth 2 =1
2239 case 111 = ﬁ C'=Ly=0.Lheight =1, width =1, (4, g0
bandwidth 2 =1
2.2.3.10 case 112 'n~ ﬁ ¢'=0.Ly =0.Lheight =1, width =3, geq
bandwidth 2 =1
2.2.3.11 case 113 » = ﬁ ¢'=0.1y =0.Lheight =1, width =0.1, \u, geq
bandwidth 2 =1
2.2.3.12 case 114 v~ ﬁ ¢'=0.1y =0.Lheight =1, width =0.1, iy, geq



b,=10

bandwidth ~~
1 . .
292313 case 115 17” = —(”+5)0A5 , C= 01,]/ = 01, helght = l,Wldth = 015 with fixed
bandwidth 2» =01
1 . .
92314 case 116 = —(/1+ SO C=0.1,y =0.1,height =1, width = 0.1, with
5= 1
decreasing bandwidth “» ~ 02
1 . .
92315 case 117 = —(”+5)0_8 , C=0.1,y =0.1,height =1, width =0.1, with
5= 1
decreasing bandwidth “» ~ 02
Kix) = 0,| x|=22*width or |x|<width
2.2 .4 kernel function () = 1, width <| x|< 2 * width
- C=1,y =2,width =0.5 b =1
2241 case 118 1n = Tgpose © T LT = S WITE T with fixed bandwidth 7

1

22492 case 119 T’” = —(”+5)05 , C: 0.1,}/ = 2, Wldth = 0.59

with fixed bandwidth

b, =1

n

1

2243 case 120 = (5 C=10,y =2, width = 0.5,

with fixed bandwidth

b, =1

n

1

2244 case 121 "~ (55 ¢'=0.1y =10, width = 0.5,

with fixed bandwidth

b, =1

n

1

2245 case 122 'l :W’ C¢'=0.1,y =0.1,width = 0.5,

with fixed bandwidth



1

22456 case 123 "7 (5% C'=0.1,y =0.1,width =1,

with fixed bandwidth

b, =1

n

1

2247 case 124 '1» = W C'=0.1y =0.1,width = 2,

with fixed bandwidth

b, =1

n

1

2248 case 125 n,= —(”+5)0_5 , C= 01,}/ = 01, width = 59

with fixed bandwidth

b, =1

n

1

2.2.4.9 case 126 'l Nk C=0.1,y =0.1,width =0.2,

with fixed bandwidth

b, =1

n

1

2.2.4.10 case 127 'I» Nk C=0.1,y =0.1,width = 0.2,

with fixed bandwidth

b, =10

n

1

22.4.11 case 128 1"~ (5% ¢'=0.Ly =0.1,width = 0.2

> with fixed bandwidth

b, =0.1

1

22412 case 127 'Ix Nk C=0.1,y =0.1,width = 0.2,

with decreasing

1

bandwidth 27 = 72

1 .
o5 ¢=0.1,y =0.1,width = 0.2

2.2.4.13 case 128 17 (7+5)" > with fixed bandwidth

b, =1

n

2.25constant o(x)=C

2.2.6 varfact comparison
2.2.7 variance comparison



2.2.8 comparison of average squared jump distance
1
2.3 Example 3: mixture of three normal distributions in z

A

2.3.1 kernel function £ =¢

1

2.3.1.1 case 129 n”:(”_i_s)os’ o, :1,062 =1,C=1

Y =2 \ith fixed bandwidth

1

2312 case 130 1+ = (745" a, =10,a, =1,C=1y =2

with fixed bandwidth

1

2.3.1.3 case 131 n”:(”+5)o_5' o, =0.1a,=1LC=1y=2

with fixed bandwidth

1

2.3.1.4 Case 132 T]” = (”+5)05; al =17a2 =1’ C:l,}/ =O.5

with fixed bandwidth

1

2315 case 131 77” = (”+5)0A5; al =10,O£2 ZI,C:L}/ :OS

with fixed bandwidth

1

2.3.1.6 case 132 77;7 = (”+5)0_5; al =0.1,a2 =1,C:1,}/ =05

with fixed bandwidth

1

2.3.1.7 Case 133 T]” = (”+5)05; al =19a2 =1) Czlo,y =O.5

with fixed bandwidth

1

2318 case 134 nn = (”+5)0A5; al =O.1,a2 =1,C=10,}/ =O.5

with fixed bandwidth



1
2.3.19 case 135 1» = 15

b, =1

n

1
23110 case 136 ’7”:—(“5)0‘5;

bandwidth 2 = 10

1
23111 case 137 ’7”:—(%5)05;

bandwidth 2 = 0-1

1
2.3.1.12 case 138 ’7”:—(“5)0‘5;

1
b,=—7
bandwidth 7
1
2.3.1.13 case 139 'l» T )™ a
b =1
1

o,=0lLa,=1,C=0.1y =05

=0.1,a, =1,C=1,y=0.5

with fixed bandwidth

o,=0lLa,=1,C=0.1y=0.5 with  fixed

o,=0lLa,=1,C=0.1y =05 with  fixed

a,=0.1a,=1,C=1,y=0.5 with decreasing

with fixed bandwidth

2.3.2 kernel function ()= 1+a, |7

1
2.3.2.1case 140 1+ = 5

1
2322 case 141 ’7”:—(%5)0‘5;

b, =1

n

1
2.3.2.3 case 142 ’7”:—(%5)0.5;

o,=la,=1,C=1y=2

o,

o,

with fixed bandwidth 2 =1

=10,0, =LC=Ly =2 ) fixed bandwidth

=0.La, =L, C=Ly=2 L fived bandwidth



1

2.3.2.4 case 143 77”:(”+5)o.5’ a,=la,=1,C=0.1,y =2

with fixed bandwidth

1

2325 case 144 ’7”:—(%5)0‘5; a,=La,=1,C=10,y =2

with fixed bandwidth

1

2326 case 145 1+~ (145 o,=la,=1,C=Ly=0.5

with fixed bandwidth

1

2327 case 146 1+~ (n+5)> , o, =10,a,=1,C=1Ly=0.5

with fixed bandwidth

1

2.3.2.8 case 147 T’n = (”+5)0A5 y al = 01, a2 = 1, C: l,y = 05

with fixed bandwidth

1

239209 case 148 = (”+—5)0A5 , a,=10,a,=1,C=10,y =0.5

with fixed bandwidth

1

23210 case 149 77;1 = (”+5)05 » al =10,a2 =1,C= 0.1,y =0.5

with fixed bandwidth

b, =1

n

1

23211 case 150 T’n = (”+5)0A5; al zlo,az =1,C=10,}/ =O.1

with fixed bandwidth

b, =1

n

1

2.3.2.12 case 151 ’7”:—(%5)0‘5; a,=10,a, =1,C=10,y =1

with fixed bandwidth



1

23213 case 152 T’n = (”+5)05 » al =10,a2 =1,C=10,}/ =O.5

with fixed bandwidth

b,=10

n

1

23214 case 153 T’n = (”+5)05 s al =10,a2 =1,C=10,}/ =O.5

with fixed bandwidth

b,=0.1

n

1

2.3.2.15 case 154 n”:(n+5)0~5' 051=10>OC2=1»C=10,7’=0-5

withdecreasing

bandwidth 7

1

2.3.2.16 case 155 T’n = (”+5)0A8 y al =10,062 =1,C=10,y =05

fixed bandwidth

b, =1

n

0,| x|> 2* width
K(x)=1—1* hegith, width <| x|< 2* width
1 * height,| x |< width

2.3.3 kernel function

1 ) .
2.3.3.1 case 156 n,= (”+ 5)05 ’ helght = 059 width = 059 C= 19}/ =2

with fixed
bandwidth 2 =1
2332 case 157 '~ ﬁ height =0.5,width =0.5,C=10,y =2 ) fiyeq
bandwidth 2 =1
2333 case 158 '/~ ﬁ height =0.5,width =0.5,C'=0.Ly =2\, fiveq
bandwidth 2 =1
2334 case 159 v~ ﬁ height =2, width =0.5,'=0.Ly =2 4, fieq

bandwidth 2 =1



height = 0.5, width =2, C=0.1,y =2

1
2335 case 160 11T (, 55" with fixed

bandwidth 2 =1

height = 0.5, width =0.5,C=1,y =0.5

1
2336 case 161 = (505 with fixed

bandwidth 2 =1

height = 0.5, width = 0.5, =10,y =0.5

1
2337 case 162 1" (505" with fixed

bandwidth 2 =1

1 ) )
2338 case 163 = —(n+ 5)0_5 , height =0.5,width =0.5,C=0.1,y =0.5 with fixed

bandwidth 2 =1

height =2, width =0.5,C=0.1,y =0.5

1
2339 case 164 117 (505" with fixed

bandwidth 2 =1

height =5,width =0.5,C=0.1,y =0.5

1
2.3.310 case 165 1" (505" with fixed

bandwidth 2 =1

1 ) )
23311 case 166 T = —(”+ 5)05 , height =10, width =0.5,C=0.1,y =0.5 with fixed

bandwidth 2 =1

1 . .
o7 height =0.1,width =0.5,C=0.1,y =0.5

23312 case 167 "~ (5 with fixed

bandwidth 2 =1

height =0.1,width =2,C'=0.1,y =0.5

1
2.3.3.13 case 168 1"~ ([ 505" with fixed

bandwidth 2 =1



1 . .
—, height =0.1, width =8,C=0.1,y = 0.5

2.3.3.14 case 169 "7~ (175 with fixed

bandwidth 2 =1

1 ) .
—, height =0.1, width =15,C=0.1,y =0.5

2.3.3.15 case 170 1"~ (15 with fixed

bandwidth 2 =1

1 ) )
o7, height =0.1,width =0.1,C'=0.1,y =0.5

2.3.3.16 case 1711 = (750 with fixed

bandwidth 2 =1

1 . .
—, height =0.1,width =2,C=0.1,y =0.1

23317 case 172 117 (5 with fixed

bandwidth 2 =1

1 . .
—, height =0.1, width =2,C=0.1,y =0.5

23318 case 173 "7 (175 with fixed

bandwidth 2 =10

1 . .
—, height =0.1, width =2,C=0.1,y =0.5

23319 case 174 "7 (175 with fixed

bandwidth 2 = 0-1

height =0.1,width =2,C=0.1,y =0.5

23320 case 175 7T, 505 with
1
b,=—7
decreasing bandwidth 7
1 . .
23321 case 176 " = —(”+5)0_8 , height =0.1,width =2,C=0.1,y =0.5 with fixed

bandwidth 2 =1

Kix) = 0,| x|=22*width or |x|<width
2.3.4 kernel function () = 1, width <| x|< 2 * width



L Width=05,C=1,7=2

2.3.4.1case 177 :—(”+5) b =1

with fixed bandwidth ~~

b,=1

1 .
o5 width=0.5,=10,y =2 with fixed bandwidth

2.34.2case 178 '~ (15

width =0.5,C=0.1,y =2

1
2.3.4.3 case 179 n”:(”+5)0-5’ with fixed bandwidth

b, =1

n

1 .
2.3.4.4 case 180 7 = (745" width =2, =1y =2 it fixed bandwidth 2 =1

1 .
2.3.45case 181 T» = (745" width =0.1, =1y =2 i, fixed bandwidth 2 =1

width =0.5,C=1,y =0.5

1
2.3.4.6 case 182 n”:(”+5)0-5’ with fixed bandwidth

b, =1

n

width =0.5,C=10,y =0.5

1
2.3.4.7 case 183 '~ (n+5)"" with fixed bandwidth

b, =1

n

width =0.5,C=0.1,y =0.5

1
2.3.4.8 case 184 77 (n+5)"" with fixed bandwidth

b, =1

n

1 .
2.3.4.9 case 185 » = (745" width =2, =1y =05 it fixed banwidth 2» =

1 .
2.3.4.10 case 186 1+~ (745" width =8, =1,y =05 i fixed bandwidth 2» =

width =15,C=1,y =0.5

1
2.3.4.11 case 187 n”:(”+5)0~5’ with fixed bandwidth



width=0.1,C=1,y =0.5

1
2.3.4.12 case 189 11T 505 with fixed bandwidth

b,=1

n

width =0.5,C=1,y =0.5

1
2.34.13 case 190 "7 505" with fixed bandwidth

b,=10

n

width =0.5,C=1,y =0.5

1
2.3.4.14 case 191 "7 505 with fixed bandwidth

b,=0.1

n

width =0.5,C=1,y =0.5

1
2.3.4.15case 192 17 = (n+5)"" with decreasing bandwidth

width =0.5,C=1,y =0.5

1
2.3.4.16 case 193 117 505" with fixed bandwidth

b,=1

n

2.3.5constant o(x)=C

2.3.6 varfact comparison
2.3.7 variance comparison
2.3.8 comparison of average squared jump distance

2
2.4 Example 4: normal distribution in z
e
2.4.1 kernel function A(H)=¢ ™
e, -lCc=1y=2 b,=1
2411 case 194 1= (g5 G TR =L E =LY Syith fixed bandwidth 7

1

2412 case 195 .= (745 a,=05a,=1,C=1y =2

with fixed bandwidth



1

2.41.3 case 196 'l :—(}HS)OAS; a, =0.5a,=1,C=0.1,y =2

with fixed bandwidth

b =1

1

2414 case 197 n”:(”+5)0.5’ o, =2,0,=1,C=0.1,y =2

with fixed bandwidth

b =1

1
2.4.2 kernel function ()= 1+a, |7

1

2421case198 = (745" a,=lLo,=1,C=1y=2

with fixed bandwidth 2 =1

1

2422 case 199 n”:(”+5)0.5’ a,=Loa,=1,C=0.1,y =1

with fixed bandwidth

b, =1

n

1

2423 case 200 1= (745" a,=Lo,=1,C=0.1,y =2

with fixed bandwidth

b,=10

n

0,| x|> 2* width
K(x)=1—1* hegith, width <| x|< 2* width
1* height,| x |< width

2.4.3 kernel function

1 , .
o5 height =0.5,width =0.5,C=0.01,y =10

2431case 201 7 (150 with fixed

bandwidth 2 =1

Kix) = 0,| x|=22*width or |x|<width
2.4.4 kernel function ()= 1, width <| x|< 2 * width

width =5,C=0.01,y =2 b =1

1
2.4.4.1case202 7= (n+5)*" with fixed bandwidth ~~

2.4.5 constant o(x)=C

2.4.6 varfact comparison



2.4.7 variance comparison
2.4.8 comparison of average squared jump distance



