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Abstract

In the thesis, we study ergodicity of adaptive Markov Chain Monte Carlo methods

(MCMC) based on two conditions (Diminishing Adaptation and Containment which

together imply ergodicity), explain the advantages of adaptive MCMC, and apply the

theoretical result for some applications.

First we show several facts: 1. Diminishing Adaptation alone may not guarantee

ergodicity; 2. Containment is not necessary for ergodicity; 3. under some additional

condition, Containment is necessary for ergodicity. Since Diminishing Adaptation is

relatively easy to check and Containment is abstract, we focus on the sufficient con-

ditions of Containment. In order to study Containment, we consider the quantitative

bounds of the distance between samplers and targets in total variation norm. From

early results, the quantitative bounds are connected with nested drift conditions for

polynomial rates of convergence. For ergodicity of adaptive MCMC, assuming that

all samplers simultaneously satisfy nested polynomial drift conditions, we find that

either when the number of nested drift conditions is greater than or equal to two,

or when the number of drift conditions with some specific form is one, the adaptive

MCMC algorithm is ergodic. For adaptive MCMC algorithm with Markovian adapta-

tion, the algorithm satisfying simultaneous polynomial ergodicity is ergodic without

those restrictions. We also discuss some recent results related to this topic.

Second we consider ergodicity of certain adaptive Markov Chain Monte Carlo algo-

rithms for multidimensional target distributions, in particular, adaptive Metropolis

and adaptive Metropolis-within-Gibbs algorithms. We derive various sufficient condi-

tions to ensure Containment, and connect the convergence rates of algorithms with the
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tail properties of the corresponding target distributions. We also present a Summable

Adaptive Condition which, when satisfied, proves ergodicity more easily.

Finally, we propose a simple adaptive Metropolis-within-Gibbs algorithm attempt-

ing to study directions on which the Metropolis algorithm can be run flexibly. The

algorithm avoids the wasting moves in wrong directions by proposals from the full

dimensional adaptive Metropolis algorithm. We also prove its ergodicity, and test

it on a Gaussian Needle example and a real-life Case-Cohort study with competing

risks. For the Cohort study, we describe an extensive version of Competing Risks

Regression model, define censor variables for competing risks, and then apply the

algorithm to estimate coefficients based on the posterior distribution.
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Chapter 1

Introduction

The Markov Chain Monte Carlo (MCMC) methods are a class of simulation al-

gorithms utilizing Markov Chain techniques to do complicated statistical computa-

tion, especially in high dimensional space. In the past half century, MCMC methods

have become more and more mature and popular in the fields of statistical physics,

statistics, computer science, mathematical finance, computational biology and others.

More dramatically, MCMC techniques attract many practitioners who are interested

in Bayesian inference, and sampling the posterior distribution of some complicated

statistical models. Recently, some appealing non-ordinary MCMC algorithms called

adaptive MCMC appear, which can also achieve the same goal as MCMC, sometimes

even better than MCMC. In this section, we will give a brief description about these

simulation methods, from MCMC methods to adaptive MCMC techniques.

This chapter consists of two parts. The first part attempts to give a brief introduc-

tion to the motivation and history of Monte Carlo methods (Section 1.1), Bayesian

computation (Section 1.2), and some important MCMC algorithms (Section 1.3). The

second part gives a description of adaptive MCMC (Section 1.4), their importance

(Section 1.5), and the problems addressed in the thesis and the thesis organization

(Section 1.6).
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2 1.1. HISTORY

1.1 History

MCMC methods originated from Monte Carlo methods born in Los Alamos, New

Mexico during World War II. At that time, many scientists were impressed by the

speed and versatility of the electromechanical computers, because much tediousness

and length of computation can be transformed to the burden of the electromechani-

cal computers. With the development of the electromechanical computers, statistical

computing techniques - especially Monte Carlo methods - were born.

The Metropolis algorithm published by Metropolis et al. (1953), was the first

MCMC algorithm, proposed by the same group of scientists who invented Monte

Carlo methods, namely the researchers of Los Alamos, mostly physicists working on

mathematical physics. The specific case of the Boltzmann distribution was studied

in their paper. There are N particles in a square. The potential energy of the system

is

E =
1

2

∑
i 6=j

V (dij),

where V is the potential between molecules, and dij is the minimum distance between

particle i and j. Their primary focus is to calculate the equilibrium value of any

quantity of interest f(·, ·),

I =

∫
f(p, q) exp{−E(p, q)/kT}dpdq∫

exp{−E(p, q)/kT}dpdq
.

Since p and q are 2N -dimensional vectors, numerical integration is impossible.

Standard Monte Carlo methods fails to correctly approximate I, because the

exp{−E(p, q)/kT} is tiny for most realizations of the random configurations of the

particle system. In order to improve the efficiency of Monte Carlo methods, Metropo-

lis et al. (1953) propose a random walk modification of the N particles. For each

particle i, values x′i = xi + aξ1i and y′i = yi + aξ2i are proposed where ξji for j = 1, 2

are Unif(−1, 1). The energy difference ∆E of between the new configuration and

previous configuration is then computed. The new configuration is accepted with the

probability

1 ∧ exp(−∆E/kT ),
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and otherwise the previous configuration is replicated. Later Hastings (1970) gener-

alized the Metropolis algorithm.

In the early 1970s, Hammersley, Clifford and Besag were working on the specifica-

tion of joint distributions from conditional distributions, on necessary and sufficient

conditions for the conditional distributions to be compatible with a joint distribu-

tion. An algorithm for extracting the marginal distributions from the full conditional

distributions was studied by Geman and Geman (1984) and is known as the Gibbs

sampler. The earlier articles by Metropolis et al. (1953) and Hastings (1970) devel-

oped essentially the same idea and suggested its potential for numerical problems

arising in statistics. Gelfand and Smith (1990) inspired new interests in Bayesian

methods, statistical computing, and stochastic processes through the use of com-

puting algorithms such as Gibbs sampler and Metropolis-Hastings algorithm. Data

argumentation algorithm was described by Tanner and Wong (1987) which has essen-

tially the same impact as Gelfand and Smith (1990), namely the fact that simulating

from conditional distributions is sufficient to simulate from the joint.

1.2 Bayesian Computation

The statistical techniques that we will be mostly concerned with are maximum

likelihood and Bayesian methods. Their implementation are associated with much

computation. For maximum likelihood methods, the problem is to find an estimate

at which the likelihood function is maximized. For Bayesian methods, the problem

is to compute posterior expectations.

In the Bayesian paradigm, the data X1, · · · , Xn are realizations of the density

function p(x | θ). The likelihood function L(θ | x1, · · · , xn) for θ ∈ Θ is the jointed

density of (X1, · · · , Xn) (it is viewed as a function of θ),

L(θ | x1, · · · , xn) =
n∏
i=1

p(xi | θ).

Given some prior information specified by the prior distribution µ(·), the distribu-

tion π(θ | x1, · · · , xn) is called the posterior distribution. The joint distribution of
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(X1, · · · , Xn, θ) is

L(θ | x1, · · · , xn)µ(θ).

Thus,

π(θ | x1, · · · , xn) =
L(θ | x1, · · · , xn)µ(θ)∫

Θ
L(θ′ | x1, · · · , xn)µ(θ′)dθ′

.

In general, the Bayes estimate under the loss function R(θ, δ) and the prior µ is

the solution of the minimization program

min
δ

∫
Θ

R(θ, δ)µ(θ)L(θ | x1, · · · , xn)dθ.

When the loss function is the quadratic form, the Bayes estimate will be a posterior

expectation. So, we need to estimate expectation of some function h : Θ −→ R with

respect to π(· | x1, · · · , xn), i.e. we want to estimate

Eπ[h(Y )] =

∫
Θ

h(θ)
L(θ | x1, · · · , xn)µ(θ)∫

Θ
L(θ′ | x1, · · · , xn)µ(θ′)dθ′

dθ.

L(θ | x1, · · · , xn) could be of a complicated form. Then the direct computation of

the above integration will be infeasible. The classical Monte Carlo simulation to the

problem is to simulate i.i.d. random variables Z1, Z2, · · · , ZN ∼ π(·), and then use

the
∑N

i=1 h(Zi)/N to estimate π(h) :=
∫

Θ
h(θ)π(dθ).

1.3 Some important MCMC algorithms

A severe drawback of Monte Carlo methods is that complete determination of the

functional form of the posterior density is needed for their implementation. Situa-

tions in which the posterior distribution is indirectly specified cannot be handled.

One example is a Bayesian hierarchical model where the joint distribution of a ran-

dom vector is only specified by a group of conditional distributions.

In the field of MCMC methods, many critical questions related to probability the-
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ory on Markov chains 1 emerge from the appearance of more complex algorithms.

However, the underlying idea is very simple. Suppose that we want to generate a

sample from a distribution π(·) (also called target distribution) on the state space

X ⊂ Rd but cannot do it directly. Assume that a Markov chain can be constructed

on the space X with the stationary distribution π(·). Then we can run the chain for

a long time. The simulated values from the chain can be viewed as a basis for explor-

ing the feature of π(·). So, we simply need to design algorithms for constructing a

Markov chain with a specified stationary distribution. The simple procedure involves

the probability theory of Markov chains on the general state space, and hence some

basic understanding of Markov chains is required. See some basic Markov Chain con-

cepts and theories in Appendix A.

Many MCMC methods are related to reversible Markov Chain (i.e. for any sets

A and B,
∫
B

∫
A
π(dx)P (x, dy) =

∫
A

∫
B
π(dy)P (y, dx)2), which means that given a

stationary ergodic irreducible (see their definitions in Appendix A) Markov Chain

· · · , Xn−2, Xn−1, Xn, · · · , the reverse process is the same Markov chain. It is easy to

show the following property.

Proposition 1.3.1. If the Markov chain X is reversible with respect to the measure

π then π is stationary for the chain.

Proof: ∫
X
π(dx)P (x, dy) =

∫
X
π(dy)P (y, dx) = π(dy).

1.3.1 Metropolis-Hastings Algorithm

In this section, we study a very general MCMC method - Metropolis-Hastings

algorithm, the discovery of which has led to very considerable progress in simulation-

based inference, particular in Bayesian Analysis.

Let the state space X be an open set in Rd and a target distribution π(·) with the

density t : X → (0,∞) ≥ 0 with
∫
t(x)µ(dx) <∞ where µ is d-dimensional Lebesgue

1The future evolution of the chain is only dependent on the current state, and independent of
the past states.

2P (x, dy) is the transition kernel of a Markov chain, see the definition in Appendix A.
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measure.

Metropolis-Hastings algorithm: generate a Markov chain X = {Xn : n ≥ 0} based

on the target density function t(·) and a proposal distribution Q(x, dy) with the

density q(x, y). At each time n + 1, given Xn the proposal value Yn+1 is obtained

from the proposal distribution Q(Xn, dy). Xn+1 is assigned Yn+1 with the probability

α(Xn, Yn+1) where

α(x, y) := min

(
1,
t(y)q(y, x)

t(x)q(x, y)

)
, (1.1)

otherwise Xn+1 is assigned Xn. For the special case q(x, y) = q(y, x) implying

α(x, y) = min
(

1, t(y)
t(x)

)
, call it Metropolis algorithm. Further when q(x, y) = q(y, x) =

q(x− y), call it symmetric random-walk-based Metropolis algorithm. From the above

description, for running Metropolis-Hastings algorithm, we just need to run the pro-

posal distribution and then accept or reject the proposal value. Thus, the procedure is

quite feasible. In addition, the acceptance ratio weakens the requirement around the

target distribution. The normalization factor of target distribution is not necessary.

Proposition 1.3.2. The Metropolis-Hastings algorithm produces a reversible Markov

chain X with respect to π(·).

Proof: First the Metropolis-Hastings transition kernel is

P (x, dy) = α(x, y)q(x, y)µ(dy) + δx(dy)

∫
X

(1− α(x, z))q(x, z)µ(dz).

For any measurable function f(x, y) : X × X → R, any sets A,B ∈ X ,∫
A×B

f(x, y)π(dx)δx(dy) =

∫
A∩B

f(x, x)π(dx) =

∫
A×B

f(y, x)δy(dx)π(dy).
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So,

π(dx)P (x, dy)

=π(dx)α(x, y)q(x, y)µ(dy) + π(dx)δx(dy)

∫
X

(1− α(x, z))q(x, z)µ(dz)

=(t(x)q(x, y)) ∧ (t(y)q(y, x))µ(dx)µ(dy)+(
π(dx)δx(dy)

∫
X

(1− α(x, z))q(x, z)µ(dz)+

π(dy)δy(dx)

∫
X

(1− α(y, z))q(y, z)µ(dz)

)
/2

=π(dy)P (y, dx),

because of the symmetry.

1.3.2 Gibbs Sampler

The Gibbs sampler is a technique especially suitable for generating an irreducible

aperiodic Markov chain that has the target distribution as its stationary distribution

in a high dimensional space. It generates a sequence of values from the joint dis-

tribution of multiple random variables. The purpose of the sequence is to simulate

the joint distribution. The Gibbs sampling generates an instance from the distribu-

tion of each variable in turn, conditional on the current values of other variables. So

Gibbs sampling is applicable when the joint distribution is not known exactly, and

the conditional distribution of each variable is known. The point is that it is simpler

to sample from a conditional distribution than to sample from the joint distribution.

Consider the target density function t(x1, · · · , xd) in the state space X ∈ Rd. Gibbs

sampler consists of d components, the ith of which is the full conditional distribution

conditioned on all the other components. Formally, let the set

Si,a,b(x) := {y ∈ X : yj = xj for j 6= i and yi ∈ [a, b]}. (1.2)

Then the transition kernel is defined

Pi(x,Si,a,b(x)) =

∫ b
a
t(x1, · · · , xi−1, u, xi+1, · · · , xd)du∫
t(x1, · · · , xi−1, u, xi+1, · · · , xd)du

. (1.3)
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So, respectively define deterministic-scan Gibbs sampler as PDS := P1 · · ·Pd, and

random-scan Gibbs sampler as PRS := 1
d

∑d
i=1 Pi

3.

Here we check the invariant property of the Gibbs samplers with respect to π. For

the deterministic-scan Gibbs sampler,

π(dx) =

∫
R
π(dxd | x1, · · · , xd−1)π(dx1, · · · , dxd−1, dyd)

=

∫
Rd

d∏
j=1

π(dxj | x1, · · · , xj−1, yj+1, · · · , yd)π(dy1, · · · , dyd)

=

∫
Rd
PDS(y, dx)π(dy).

The following result will be used to show that π is invariant to PRS.

Proposition 1.3.3. Let ν be any distribution on unit hypersurface Sd−1 = {u ∈ Rd :

|u| = 1}. Define the specific transition kernel Pθ(x, ·) passing through x ∈ Rd along

the direction θ ∈ Sd as

Pθ(x,A) =

∫∞
−∞ IA(x+ rθ)t(x+ rθ)dr∫∞

−∞ t(x+ λθ)dλ
.4 (1.4)

Then, π(·) is invariant for Pν(x, ·) where Pν(x,B) =
∫
Sd
Pθ(x,B)ν(dθ).

Proof: For any θ ∈ Sd, by Fubini’s theorem and change of variable y = x + rθ and

u = λ− r,∫
A

Pθ(x,B)π(dx) =

∫
Rd

∫ ∞
−∞

IA(x)IB(x+ rθ)
t(x+ rθ)t(x)∫∞
−∞ t(x+ λθ)dλ

drµ(dx)

=

∫ ∞
−∞

∫
Rd

IA(y − rθ)IB(y)
t(y)t(y − rθ)∫∞
−∞ t(y + uθ)du

drµ(dy)

=

∫
B

Pθ(y, A)π(dy).

Integrating both sides of the above equation, we have that for any distribution ν on

Sd, Pν(x, ·) is reversible with respect to π. So, the result holds.

3PDS may not be reversible, and PRS is reversible.
4It is a general form of Equation (1.3)
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We can define ν is uniform on {e1, · · · , ed} where ei = (0, · · · , 0︸ ︷︷ ︸
i−1

, 1, 0, · · · , 0︸ ︷︷ ︸
d−i

). So, by

Proposition 1.3.3, π is invariant to PRS.

1.3.3 Metropolis-within-Gibbs Sampler

The Metropolis-within-Gibbs Sampler is a kind of hybrid sampler combining

Metropolis algorithm and Gibbs sampler. The Gibbs sampling framework is adopted,

but on each coordinate the conditional distribution is substituted by running a

Metropolis algorithm. For deterministic scan Metropolis-within-Gibbs algorithm, se-

quentially select the coordinate 1, · · · , d, and then run Metropolis algorithm on each

coordinate. But for random scan Metropolis-within-Gibbs, uniformly select one of the

coordinates 1, · · · , d.

Roberts and Rosenthal (2006) studied the conditions under which the Metropolis-

within-Gibbs algorithm (MwG) is Harris recurrent or not. Fort et al. (2003) presented

some conditions under which the symmetric random-walk-based Metropolis-within-

Gibbs algorithm is geometrically ergodic. Roberts and Rosenthal (2009) studied a

certain adaptive Metropolis-within-Gibbs algorithm for hierarchical models.

For 1 ≤ i ≤ d, let qi : X ×R −→ [0,∞) be jointly measurable with
∫∞
−∞ qi(x, z)dz =

1 for all x ∈ X where dz is one dimensional Lebesgue measure. Let Qi(x, ·) be the

Markov kernel on Rd which replaces the ith coordinate by a draw from the density

qi(x, ·), but leaves the other coordinates unchanged. That is

Qi(x,Si,a,b(x)) =

∫ b

a

qi(x, z)dz,

where Si,a,b is defined in Equation (1.2). Say Qi(x, ·) is symmetric if

qi((x1, · · · , xd), z) = qi((x1, · · · , xi−1, z, xi+1, · · · , xd), xi).

For x, y ∈ Rd and 1 ≤ i ≤ d, let

αi(x, y) := I (t(x)qi(x, yi) 6= 0) min

[
1,
t(y)qi(y, xi)

t(x)qi(x, yi)

]
.
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Let Pi be the kernel which proceeds as follows. Given Xn, it generates the proposal

Yn+1 ∼ Qi(Xn, ·). Then Xn+1 is assigned Yn+1 with the probability αi(Xn, Yn+1), and

is assigned Xn with the probability 1− αi(Xn, Yn+1).

Let In be a random variable on {1, · · · , d}. Two most common schemes are

deterministic-scan Metropolis-within-Gibbs sampler PDS = PIn where In = n mod d,

and random-scan Metropolis-within-Gibbs sampler PRS = PIn where In is uniform on

{1, · · · , d}. Then for n = 0, 1, 2, · · · given Xn the state Xn+1 ∼ PIn(Xn, ·). It is

straightforward to verify that the chain has stationary distribution π(·).

1.4 Adaptive MCMC

MCMC methods are widely used for approximately sampling from complicated

probability distributions. However, it is often necessary to tune the scaling and other

parameters before the algorithm will converge efficiently. Given some extremely com-

plicated target distribution, it is even difficult to know how to tune the corresponding

parameters. Adaptive MCMC methods modify the transitions on the fly, in an effort

to automatically tune the parameters and improve convergence. The automatic tun-

ing for sampler is mainly based on the historical information.

Non-adaptive MCMC algorithms are usually constructed through a fixed comput-

ing framework (a time-homogenous Markov Chain kernel). However, adaptive MCMC

algorithms are generated through a collection of computing frameworks indexed by Y .

At each time n, the state Xn is chosen through some adaptation strategy automati-

cally designed according to historical information. During the adaptation procedure,

one computing framework will be selected. From the framework of two kinds of algo-

rithms, it is clear that adaptive MCMC is more general and flexible.

Since non-adaptive MCMC algorithms have unaltered framework at each iteration,

under some situations their performance may not be good, and even the convergence

properties are destroyed. For instance, suppose that there is a target distribution

with single unknown sized mode. We run Metropolis algorithm to sample from the

target distribution. If the variance of the proposal distribution is too small, the con-

structed chain will be jumping very slowly although the acceptance rate is high. If

the proposal variance is too big, the chain is very active but rejected at most of the
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running time. Haario et al. (2001) give an adaptive Metropolis algorithm which at

each iteration, studies from the obtained data, estimates the variance of the target

distribution, and employs the empirical covariance estimate as the proposal variance.

They provide theoretical justification for the adaptation of the covariance matrix used

in the Metropolis algorithm. The method smartly and automatically adapts the pro-

posal variance.

Another case can better explain why ordinary MCMC cannot be always used.

Consider a target distribution with a high mode and a lower mode, these two modes

are not very close to each other. The target has variable “local properties” (two

different modes). One interesting idea is to classify the obtained sample data by

some boundary on the two sides of which two modes locate, use the empirical co-

variance matrix generated from each side of the boundary as the local proposal vari-

ances, see details in Craiu et al. (2008). They prove ergodicity of their adaptive

MCMC algorithm. We use their method to analyze the mixed uniform distribution

1/5Unif(−11,−9) + 4/5Unif(9.99, 10.01), and compare it with Metropolis algorithm

using Unif(x− 23, x+ 23) as the proposal distribution through the estimate of total

variation norm 5, see Figure 1.1. From the plots, it is obvious the the convergence of

adaptive MCMC algorithm is more stable than Metropolis algorithm.

The above two cases explain that the performance of simulation methods is rele-

vant to the locations of target modes, and target’s local properties. We find that the

relevance is also dependent on the configuration of target support’s region. A simple

example is a high dimensional target that is distributed on a slim needle, and at

least two dimensions of the space are highly correlated. If ordinary MCMC is applied

to approximately simulate from the specified target, many wasting moves in wrong

directions by proposals will be generated so that their performances are not good.

See details in Chapter 5.

Adaptive MCMC methods are extremely significant under some situations. For

example, classical MCMC methods may not efficiently simulate a target distribu-

tion supported on a weird region. However, through long term running some useful

information can be obtained. Based on the knowledge, adaptively choosing the transi-

tion scheme will be effective. In addition, Adaptive MCMC can automatically study

5We simply calculate the percentages of sample points falling into two intervals, A1 := (−11,−9)
and A2 := (9.99, 10.01), and then define |PA1 − 0.2| (|PA2 − 0.8|) as the estimate.
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Figure 1.1: The estimates of total variation norm by Metropolis algorithm and adap-
tive MCMC algorithm.

statistical model parameters. If the adaptation scheme is well designed, adaptive

algorithms may be better than non-adaptive algorithms. Especially for high dimen-

sional correlated target distributions, some adaptive algorithms may perform better

than non-adaptive algorithms.

Although the optimality of Metropolis algorithm was studied to some extent, there

are many complicated cases where it is difficult to find the optimal MCMC algorithm.

So, adaptive MCMC methods may provide an alternative approach.

Some adaptive MCMC methods use regeneration times and other somewhat compli-

cated constructions, see Gilks et al. (1998); Brockwell and Kadane (2005). However,

Haario et al. (2001) proposed an adaptive Metropolis algorithm attempting to opti-

mise the proposal distribution, and proved that a particular version of this algorithm

correctly converges strongly to the target distribution. The algorithm can be viewed

as a version of the Robbins-Monro stochastic control algorithm, see Robbins and

Monro (1951); Andrieu and Robert (2001). The results were then generalized through

proving convergence of more general adaptive MCMC algorithms, see Atchadé and

Rosenthal (2005); Andrieu and Moulines (2006). Following that, many general re-



1 Introduction 13

sults were developed, see Roberts and Rosenthal (2007); Yang (2008a,b); Saksman

and Vihola (2008); Bai et al. (2008); Atchadé and Fort (2008); Craiu et al. (2008);

Bai (2009a,b).

1.5 Some notations for adaptive MCMC

Consider the collection {Pγ : γ ∈ Y} of Markov Chain transition kernels on the

state space X and the adaptive parameter space Y where each Markovian transition

kernel Pγ is time-homogeneous, ϕγ-irreducible and aperiodic with stationary measure

π(·).
Given the X -value random sequence X0, · · · , Xn, and the Y-value random sequence

Γ0, · · · ,Γn, at the time n, Xn+1 is generated by the transition kernel PΓn(Xn, ·),
and then the transition kernel PΓn+1 is chosen according to some adaptation scheme.

Actually the adaptation scheme is to decide the selection of Γn+1.

Denote the filtration by Fn = σ(Xk,Γk : 0 ≤ k ≤ n). Formally, the adaptive

MCMC process {Xn : n ≥ 0} is a chain which at each time n+1 satisfies the property:

P(Xn+1 ∈ A | Fn) = P(Xn+1 ∈ A | Xn,Γn) = PΓn(Xn+1 ∈ A | Xn), (1.5)

and the random kernel index Γn+1 is selected through the history information with the

property, i.e. Γn+1 is some function of Fn and Xn+1. Obviously the joint distribution

of Xn+1 and Γn+1 conditional on Fn is

P (Xn+1 ∈ dx,Γn+1 ∈ dγ | Fn) = PΓn(Xn+1 ∈ dx | Xn)P(Γn+1 ∈ dγ | Xn+1 = x,Fn).

Furthermore, if Γn+1 is simply a function of Xn and Γn, then the adaptive MCMC

algorithm is called Markovian Adaptation, i.e. the joint process {(Xn,Γn) : n ≥ 0} is

a time-inhomogeneous Markov Chain.

Write P (Xn ∈ · | X0 = x0,Γ0 = γ0) := P(x0,γ0) (Xn ∈ ·). Denote the corresponding

expectation by E(x0,γ0) [f(Xn)] for some measurable function f : X → R.

Say the adaptive algorithm {Xn : n ≥ 0} with the adaptive scheme {Γn : n ≥ 0} is
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ergodic if for any initial point (x0, γ0) ∈ X × Y ,

lim
n→∞

∥∥P(x0,γ0)(Xn ∈ ·)− π(·)
∥∥

TV
= 0, (1.6)

where ‖·‖TV is total variation norm, see Equation (A.5) in Appendix A.

From Theorem A.3.1, irreducibility is a natural property for studying convergence

of a Markov chain, under which the chain is either transient or recurrent. However,

for adaptive MCMC chains, irreducibility may not be preserved even if each kernel in

Y is irreducible, see Example 2 in Roberts and Rosenthal (2007). Another important

issue is that stationarity may not hold even if each kernel Pγ for γ ∈ Y does. From

these two points, the coupling method in Appendix A cannot be implemented directly.

1.6 The problems addressed in the thesis

Roberts and Rosenthal (2007) use a coupling method to show that ergodicity of

adaptive MCMC algorithm is implied by Containment and Diminishing Adaptation.

Definition 1.6.1 (Diminishing Adaptation). limn→∞Dn = 0 in probability, where

Dn := sup
x∈X

∥∥PΓn+1(x, ·)− PΓn(x, ·)
∥∥

TV
, (1.7)

is Fn+1-measurable random variable.

The condition means that the change of adaptive kernel converges to zero. It is

relatively easy to check, because the adaptive scheme is artificially designed.

Definition 1.6.2 (Containment). The stochastic process {Mε(Xn,Γn) : n ≥ 0} is

bounded in probability given any starting point (x0, γ0) ∈ X × Y where

Mε(x, γ) := inf
n

{
n ∈ N+ :

∥∥P n
γ (x, ·)− π(·)

∥∥
TV

< ε
}

: X × Y → N+, (1.8)

where N+ = {1, 2, 3, · · · }, i.e. given any (x0, γ0) ∈ X × Y, ∀ε > 0, ∀δ > 0, ∃K > 0,

such that P(x0,γ0)(Mε(Xn,Γn) > K) < δ for all n.

Indeed, Containment means that the sequence {Mε(Xn,Γn) : n ≥ 0} is tight.
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However, since Mε(x, γ) is integer-valued, so the tightness is equivalent to “bounded

in probability”. From intuition, the condition means that the time that transition

kernels get close to the target within ε is bounded. Say that the adaptive parameter

process Γn is bounded in probability if ∀ε > 0, ∃N > 0, ∃ some compact set B ⊂
Y , such that for n > N,P(Γn ∈ Bc) < ε.

Theorem 1.6.1 (Roberts and Rosenthal 2007). Consider an adaptive MCMC al-

gorithm on a state space X , with adaptation index Y, so π(·) is stationary for each

kernel Pγ for γ ∈ Y. Assuming Containment and Diminishing Adaption, the adaptive

algorithm is ergodic.

Adaptation schemes can be artificially designed so that Diminishing Adaptation

is not hard to check “relatively”. Containment is considerably abstract and hard to

check.

In the thesis, we will mainly study the importance of Containment and the suffi-

cient conditions for Containment. Moreover, we find some easy-to-check conditions

for adaptive Metropolis and adaptive Metropolis-within-Gibbs algorithms.

In Chapter 2, we introduce some examples which explain some relationships among

Containment and Diminishing Adaptation and ergodicity, and the advantage of adap-

tive MCMC respectively.

In Chapter 3 we show that Simultaneously Polynomially Ergodic condition (S.P.E)

implies Containment for most cases. That is either when the number of drift condi-

tions is greater than or equal to two, or when the number of drift conditions having

some specific form is one, the adaptive MCMC algorithm is ergodic.

In Chapter 4 we study Simultaneously Geometrically Ergodic condition (S.G.E.).

We connect the tail properties of target densities with S.G.E., and show that when

a target density is exponentially tailed, adaptive Metropolis and adaptive random-

scan Metropolis-within-Gibbs algorithms are ergodic under some mild conditions. A

summable adaptive condition is also given which can alone imply ergodicity.

In Chapter 5 we develop a simple adaptive directional Metropolis-within-Gibbs

algorithm which avoids wasting moves in wrong directions by proposals from

Metropolis-within-Gibbs sampler. We also prove its ergodicity, and test it on a Gaus-

sian Needle example and a real-life Case-Cohort study with competing risks.

In Chapter 6 we give some conclusions and future works about the topic.
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In Appendix A, we introduce some basic concepts, theorems and methodologies on

Markov Chains.



Chapter 2

Some Adaptive MCMC Examples

In this chapter, we give some examples which explain some relationships among

Containment and Diminishing Adaptation and ergodicity, and the advantages of

adaptive MCMC.

The example in Section 2.1 is used to explain that 1. Diminishing Adaptation

alone is not sufficient for ergodicity; 2. An adaptive algorithm is ergodic but both

Containment and Diminishing Adaptation do not hold.

A half-Cauchy counter example is given in Section 2.2 to also show that Dimin-

ishing Adaptation alone is not sufficient for ergodicity. The example is interesting in

that only two transition kernels are adaptively chosen.

In Section 2.3 an adaptive Metropolis algorithm is used to analyze a mixture model,

and some simulation results are given. This algorithm is a slight variant version of

Haario’s algorithm.

2.1 A state-independent adaptive example

Example 2.1.1. Let the state space X = {1, 2} and the transition kernel

Pθ =

[
1− θ θ

θ 1− θ

]
.

17
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Obviously, for each θ ∈ (0, 1), the stationary distribution is uniform on X .

Proposition 2.1.1. For the target distribution and the family of transition kernels in

Example 2.1.1, consider a state-independent adaptation: at each time n ≥ 1 choose

the transition kernel index θn−1 = 1
(n+1)r

for some fixed r > 0 (Pθ0 is the initial

kernel). Show that

(i) For r > 0, Diminishing Adaptation holds but Containment does not;

(ii) For r > 1, µ0Pθ0Pθ1 · · ·Pθn → µ where µ0 = (1, 0)> and µ = (1+α
2
, 1−α

2
)> for some

α ∈ (0, 1);

(iii) For 0 < r ≤ 1 and a probability measure µ0 on X , µ0Pθ0Pθ1 · · ·Pθn → Unif(X ).

Remark 2.1.1. The chain in Proposition 2.1.1 is a time inhomogeneous Markov

chain. It can be suited into the framework of adaptive MCMC. Although very simple,

it reflects the complexity of adaptive MCMC to some degree.

1. For r > 1, the limiting distribution of the chain is not uniform. So it shows that

Diminishing Adaptation alone cannot ensure ergodicity.

2. For 0 < r ≤ 1, the algorithm is ergodic to an uniform distribution. So, it implies

that Containment is not necessary for ergodicity.

Proof: Since the adaptation is state-independent, the stationarity is preserved. So,

the adaptive MCMC Xn ∼ δPθ0Pθ1Pθ2 · · ·Pθn−1(·) for n ≥ 0 where δ := (δ(1), δ(2)) is

the initial distribution.

The part (i). Consider
∥∥Pθn+1(x, ·)− Pθn(x, ·)

∥∥
TV

. For any x ∈ X ,∥∥Pθn+1(x, ·)− Pθn(x, ·)
∥∥

TV
= |θn+1 − θn| → 0.

Thus, for r > 0 Diminishing Adaptation holds.

By some algebra,

‖P n
θ (x, ·)− π(·)‖TV =

1

2
|1− 2θ|n . (2.1)

Hence, for any ε > 0,

Mε(Xn, θn) ≥ log(ε)− log(1/2)

log |1− 2θn|
→ +∞ as n→∞. (2.2)

Therefore, the stochastic process {Mε(Xn, θn) : n ≥ 0} is not bounded in probability.
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The parts (ii) and (iii). Let µn :=
(
µ

(1)
n , µ

(2)
n

)
:= δPθ0 · · ·Pθn . So,

µ
(1)
n+1 = µ(1)

n − θn+1

(
µ(1)
n − µ(2)

n

)
and µ

(2)
n+1 = µ(2)

n + θn+1

(
µ(1)
n − µ(2)

n

)
.

Hence,

µ
(1)
n+1 − µ

(2)
n+1 =

(
δ(1) − δ(2)

) n+1∏
k=0

(1− 2θk).

For r > 1,
∏n+1

k=0(1 − 2θk) converges to some α ∈ (0, 1) as n goes to infinity. µ
(1)
n+1 −

µ
(2)
n+1 →

(
δ(1) − δ(2)

)
α. For 0 < r ≤ 1, µ

(1)
n+1 − µ

(2)
n+1 → 0. Therefore, for r > 1

ergodicity to Uniform distribution does not hold, and for 0 < r ≤ 1 ergodicity

holds.

Proposition 2.1.2. For the target distribution and the family of transition kernels

in Example 2.1.1, consider an independent adaptation: for k = 1, 2, · · · , at each

time n = 2k − 1 choose the transition kernel index θn−1 = 1/2, and at each time

n = 2k choose the transition kernel index θn−1 = 1/n. Diminishing Adaptation and

Containment do not hold. The chain converges to the target distribution Unif(X ).

Proof: From Equation (2.1), for ε > 0, Mε(X2k−1, θ2k−1) ≥ log(ε)−log(1/2)
log|1−1/k| → ∞ as

k →∞. So, Containment does not hold.∥∥Pθ2k(x, ·)− Pθ2k−1
(x, ·)

∥∥
TV

=
∣∣1

2
− 1

2k

∣∣ → 1
2

as k → ∞. So Diminishing Adaptation

does not hold.

Let δ := (δ(1), δ(2)) be the initial distribution and µn := (µ
(1)
n , µ

(2)
n ) = δPθ0 · · ·Pθn .

µ
(1)
n − µ(2)

n = (δ(1) − δ(2))2−[n/2]−1
[(n+1)/2]∏
k=1

(
1− 1

2k

)
→ 0 as n goes to infinity. So ergod-

icity holds.

2.2 A Half-Cauchy Counter Example

Example 2.2.1. Let the state space X = (0,∞), and the kernel index set Y =

{−1, 1}. The target density π(x) ∝ I(x>0)
1+x2 is a half-Cauchy distribution on the positive

part of R. At each time n, run the Metropolis-Hastings algorithm where the proposal



20 2.2. A HALF-CAUCHY COUNTER EXAMPLE

Figure 2.1: The solid line is the estimated density by adaptive Metropolis-Hastings
algorithm. The dashed line is the estimated density by the sample from the target
distribution.

value Yn is generated by

Y Γn−1
n = X

Γn−1

n−1 + Zn (2.3)

with i.i.d standard normal distribution {Zn}, i.e. if Γn−1 = 1 then Yn = Xn−1 + Zn,

while if Γn−1 = −1 then Yn = 1
(1/Xn−1)+Zn

. The adaptation is defined as

Γn = −Γn−1I(XΓn−1
n <

1

n
) + Γn−1I(XΓn−1

n ≥ 1

n
), (2.4)

i.e. we change Γ from 1 to −1 when X < 1/n, and change Γ from −1 to 1 when

X > n, otherwise we do not change Γ.

Remark 2.2.1. From Equation (2.4), we have two implications: [Γn 6= Γn−1] =

[XΓn−1
n < 1/n] and P[XΓn

n ≥ 1/n] = 1 for n ≥ 1.

First we use R package function rcauchy() to generate 10, 000 values, and then

take the absolute values of them as the initial points. Second run the algorithm in

Example 2.2.1 for 100, 000 iterations. The 10, 000 values at the 100, 000th iteration

are used to analyze. Withdraw the subsample from the 10, 000 values, which fall in
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the interval (0, 1]. We plot the histogram and the estimated density of the subsample,

and also plot the estimated density of the sample generated directly by the absolute

value of R package function rcauchy(), see Figure 2.11. Apparently, the estimated

density of the sample generated by the algorithm in Example 2.2.1 stays over that

generated directly from the target distribution π when x > 0.1.

Proposition 2.2.1. The adaptive chain {Xn : n ≥ 0} defined in Example 2.2.1 does

not converge weakly to π(·). Containment does not hold.

First we show that Diminishing Adaptation holds.

Lemma 2.2.1. For the adaptive chain {Xn : n ≥ 0} defined in Example 2.2.1, the

adaptation is diminishing.

Proof: For γ = 1, obviously the proposal density is qγ(x, y) = ϕ(y − x) where ϕ(·)
is the density function of standard normal distribution. For γ = −1, the random

variable 1/x + Zn has the density ϕ(y − 1/x) so the random variable 1/(1/x + Zn)

has the density qγ(x, y) = ϕ(1/y − 1/x)/y2.

The proposal density

qγ(x, y) =

{
ϕ(y − x) γ = 1

ϕ(1/y − 1/x)/y2 γ = −1

For γ = 1, the acceptance rate is min
(

1, π(y)qγ(y,x)

π(x)qγ(x,y)

)
I(y ∈ X ) = 1+x2

1+y2 I(y >

0). For γ = −1, the acceptance rate is min
(

1, π(y)qγ(y,x)

π(x)qγ(x,y)

)
I(y ∈ X ) =

min

(
1,

1
1+y2 ϕ(1/x−1/y)/x2

1
1+x2 ϕ(1/y−1/x)/y2

)
I(y > 0) = min

(
1, 1+x−2

1+y−2

)
I(y > 0).

So for γ ∈ Y , the acceptance rate is

αγ(x, y) := min

(
1,
π(y)qγ(y, x)

π(x)qγ(x, y)

)
I(y ∈ X ) = min

(
1,

1 + x2γ

1 + y2γ

)
I(y ∈ X ). (2.5)

From Equation (2.4), [Γn 6= Γn−1] = [XΓn−1
n < 1/n]. Obviously the joint process

1The density estimate is plotted by R density function where kernel density function may generate
some negative density. In this plot, the negative part is erased artificially.
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{(Xn,Γn) : n ≥ 0} is a time inhomogeneous Markov chain. So

P(Γn 6= Γn−1)

=

∫
X×Y

P(XΓn−1
n < 1/n | Xn−1 = x,Γn−1 = γ)P(Xn−1 ∈ dx,Γn−1 ∈ dγ)

=

∫
X×Y

Pγ(x, [t > 0 : tγ < 1/n])P(Xn−1 ∈ dx,Γn−1 ∈ dγ)

=

∫
[xγ≥1/(n−1)]

Pγ(x, [t > 0 : tγ < 1/n])P(Xn−1 ∈ dx,Γn−1 ∈ dγ)

where the second equality is from Equation (1.5), and the last equality is from

P(XΓn
n ≥ 1/n) = 1 implied by Equation (2.4).

So for any (x, γ) ∈ [(t, s) ∈ X × Y : ts ≥ 1/(n− 1)],

Pγ(x, [t > 0 : tγ < 1/n]) =

∫ ∞
0

I(yγ < 1/n)qγ(x, y)dy =

∫ −xγ+1/n

−xγ
ϕ(z)dz.

Since −xγ + 1/n < 0,

1

n
ϕ(−xγ) ≤ Pγ(x, [t > 0 : tγ < 1/n]) ≤ ϕ(0)

n
. (2.6)

We have that

P(Γn 6= Γn−1) ≤ 1√
2πn

. (2.7)

Therefore, for any ε > 0,

P

(
sup
x∈X

∥∥PΓn(x, ·)− PΓn−1(x, ·)
∥∥

TV
> ε

)
≤ P(Γn 6= Γn−1)→ 0.

From Equation (2.5), at the nth iteration, the acceptance rate is αΓn−1(Xn−1, Yn) =

min

(
1,

1+X
2Γn−1
n−1

1+Y
2Γn−1
n

)
I(Yn > 0). Let us denote Ỹn := Y Γn−1

n and X̃n := XΓn
n . The

acceptance rate is equal to min
(

1,
1+X̃2

n−1

1+Ỹ 2
n

)
I(Ỹn > 0). From Equation (2.4), XΓn

n =
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X−Γn−1
n I(XΓn−1

n < 1/n) +XΓn−1
n I(XΓn−1

n ≥ 1/n).

[Y Γn−1
n < 1/n] = [Ỹn < 1/n] and Y Γn

n = Ỹ −1
n I(Ỹn < 1/n) + ỸnI(Ỹn ≥ 1/n).

When Yn is accepted, i.e. Xn = Yn,

[XΓn−1
n < 1/n] = [Ỹn < 1/n] and XΓn

n = Ỹ −1
n I(Ỹn < 1/n) + ỸnI(Ỹn ≥ 1/n).

On the other hand, from Equation (2.3), the conditional distribution Ỹn | X̃n−1 is

N(X̃n−1, 1).

From the above discussion, the chain {X̃n : n ≥ 0} can be constructed according

to the following procedure. Define the independent random variables Zn
iid∼ N(0, 1),

Un
iid∼ Bernoulli(0.5), and Tn

iid∼ Unif(0, 1).

Let X̃0 = XΓ0
0 . At each time n ≥ 1, define the variable

Ỹn := X̃n−1 − Un |Zn|+ (1− Un) |Zn| . (2.8)

Clearly, −Un |Zn|+ (1− Un) |Zn|
d
= N(0, 1) (

d
= means equal in distribution).

If Tn < min
(

1,
1+X̃2

n−1

1+Ỹ 2
n

)
I(Ỹn > 0) then

X̃n = I(Ỹn < 1/n)Ỹ −1
n + I(Ỹn ≥ 1/n)Ỹn; (2.9)

otherwise X̃n = X̃n−1.

Note that:

1. The process X̃ is a time inhomogeneous Markov chain.

2. P(X̃n ≥ 1/n) = 1 for n ≥ 1.

3. At the time n, Un indicates the proposal direction (Un = 0: try to jump towards

infinity; Un = 1: try to jump towards zero). |Zn| specifies the step size if the proposal

value Yn is accepted. Tn is used to check whether the proposal value Yn is accepted

or not. When Un = 1 and Ỹn > 0, Equation (2.9) is always run.

For two integers 0 ≤ s ≤ t and a process X and a set A ⊂ X , denote [Xs:t ∈ A] :=

[Xs ∈ A;Xs+1 ∈ A; · · · ;Xt ∈ A] and s : t := {s, s + 1, · · · , t}. For a value x ∈ R,

denote the largest integer less than x by [x].

In the following proofs for the example, we use the notation in the procedure of
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constructing the process X̃.

Lemma 2.2.2. Let a =
(

1
2
− 7

√
2

12
√
π

)−2

. Given 0 < r < 1, for [x] > 12
1

1−r

P
(
∃i ∈ (k + 1) : (k + [x]1+r), X̃i < x/2 | X̃k = x

)
≤ [x]1+r(

[x]
2
− 7

√
2[x]r√
π

)2 ≤
a

[x]1−r
.

Proof: The process {X̃j : j ≥ 0} is generated through the underlying processes

{(Ỹj, Zj, Uj, Tj) : j ≥ 1} defined in Equation (2.8) - Equation (2.9). Conditional

on [X̃k = x], we can construct an auxiliary chain {Bj : j ≥ k} that behaves like an

asymmetric random walk until X̃ reaches below x/2, and B is always dominated from

above by X̃.

It is defined as that Bk = X̃k; For j > k, if X̃j−1 < x/2 then Bj := X̃j, otherwise

1. If proposing towards zero (Uj = 1) then B also jumps in the same direction with

the step size |Zj| (in this case, the acceptance rate min
(

1,
1+X̃2

j−1

1+Ỹ 2
j

)
is equal to 1);

2. If proposing towards infinity (Uj = 0), then Bj is assigned the value Bj−1 + |Zj|
(the jumping direction of B at the time j is same as X̃) with the acceptance rate

1+(x/2)2

1+(x/2+|Zj |)2 (independent of X̃j−1), i.e. for j > k,

B j := I(X̃j−1 < x/2)X̃j + I(X̃j−1 ≥ x/2) (Bj−1 − Ij(x)) (2.10)

where

I j(x) := Uj |Zj| − (1− Uj) |Zj| I
(
Tj <

1 + (x/2)2

1 + (x/2 + |Zj|)2

)
. (2.11)

Note that

1. {Zj, Uj, Tj : j > k} are independent so {Ij(x) : j > k} are independent.

2. When X̃j−1 > x/2 and Uj = 0 (proposing towards infinity), the acceptance rate

1 >
1+X̃2

j−1

1+Ỹ 2
j

≥ 1+(x/2)2

1+(x/2+|Zj |)2 , so that
[
Tj <

1+(x/2)2

1+(x/2+|Zj |)2

]
⊂
[
Tj <

1+X̃2
j−1

1+Ỹ 2
j

]
which is

equivalent to [Bj − Bj−1 = |Zj|] ⊂ [X̃j − X̃j−1 = |Zj|]. Therefore, B is always

dominated from above by X̃.

Conditional on [X̃k = x],

[∃i ∈ (k + 1) : (k + [x]1+r), X̃i < x/2] ⊂ [∃i ∈ (k + 1) : (k + [x]1+r), Bi < x/2]
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and for i ∈ (k + 1) : (k + [x]1+r),

[Bk:(i−1) ≥ x/2;Bi < x/2]

⊂[Bk ≥ x/2;Bk −
t−1∑
l=k+1

Il(x) ≥ x/2 for all t ∈ (k + 1) : i;Bk −
i∑

l=k+1

Il(x) < x/2].

So,

P
(
∃i ∈ (k + 1) : (k + [x]1+r), X̃i < x/2 | X̃k = x

)
≤P

(
∃i ∈ (k + 1) : (k + [x]1+r), Bk −

i∑
j=k+1

Ij(x) < x/2 | Bk = x

)
≤P( max

l∈1:[x]1+r
S̃l > x/2)

=P(max
l∈1:q

S̃l > q1/(1+r)/2)

where S̃0 = 0 and S̃l =
∑l

j=1 Ik+j(x) and q = [x]1+r. {Ij(x) : k < j ≤ k + l} and Bk

are independent so that the right hand side of the above equation is independent of

k.

By some algebra,

0 ≤ E[Ii(x)] =
1

2
E

[
|Zi|2 (x+ |Zi|)

1 + (x/2 + |Zi|)2

]
≤ 2

x
E
[
|Zi|2 (1 + |Zi|)

]
<

7
√

2√
πx
,

Var[Ii(x)] =
1

2
+

1

2
E

[
|Zi|2

1 + (x/2)2

1 + (x/2 + |Zi|)2

]
− 1

4

(
E

[
|Zi|2 (x+ |Zi|)

1 + (x/2 + |Zi|)2

])2

∈ [0, 1] .

Let µl = E[S̃l] and Sl = S̃l − µl and note that µl is increasing as l increases, and

µq ∈ [0, 7
√

2q√
π

]. So {Si : i = 1, · · · , q} is a Martingale. By Kolmogorov Maximal
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Inequality,

P(max
l∈1:q

S̃l > q1/(1+r)/2) ≤P(max
l∈1:q

Sl > q1/(1+r)/2− µq)

≤ qVar[Ik(x)]

(q1/(1+r)/2− µq)2

≤ [x]1+r(
[x]
2
− 7

√
2[x]r√
π

)2 <
a

[x]1−r
.

The last second inequality is from [x] > 12
1

1−r >
(

14
√

2√
π

) 1
1−r

implying [x]
2
> 7

√
2[x]r√
π

.

Proof of Proposition 2.2.1: Assume that Xn converges weakly to π(·). Take

some c > 1 such that for the set D = (1/c, c), π(D) = 9/10. Taking a r ∈ (0, 1),

there exists N > 2c∨ 12
1

1−r ∨ a
0.5

1
1−r ∨ 21/r exp( 1

0.8ϕ(−c)r ) (a is defined in Lemma 2.2.2)

such that for any n > N + 1, P(Xn ∈ D) > 0.8. Since [Xn ∈ D] = [XΓn
n ∈ D] and

XΓ d
= X̃, P(X̃n ∈ D) > 0.8. So, P(X̃n >

n
2
) < 0.2 for n > N .

Let m = exp( 1
0.8ϕ(−c))(n + 1) − 1 that implies m > n, m − n < n1+r (because

n > 21/r exp( 1
0.8ϕ(−c)r )), and log(m+1

n+1
) = 1

0.8ϕ(−c) . Then

0.2 > P(X̃m >
n

2
) ≥

m−1∑
j=n

P(X̃j ∈ D; Ỹj+1 <
1

j + 1
; X̃(j+1):m >

n

2
). (2.12)

From Equation (2.8) and Equation (2.9), [Ỹi+1 <
1
i+1

] = [X̃i+1 = 1
Ỹi+1

> i + 1] for

any i > 1. Consider j ∈ n : (m− 1). Since X̃ is a time inhomogeneous Markov chain,

P

(
X̃j ∈ D; Ỹj+1 <

1

j + 1
; X̃(j+1):m > n/2

)
= P(X̃j ∈ D)P

(
X̃j+1 = Ỹj+1 <

1

j + 1
| X̃j ∈ D

)
P

(
X̃(j+2):m >

n

2
| X̃j+1 =

1

Ỹj+1

> j + 1

)

= P(X̃j ∈ D)P

(
X̃j+1 =

1

Ỹj+1

> j + 1 | X̃j ∈ D

)
(

1−P

(
X̃t ≤ n/2 for some t ∈ (j + 1) : m | X̃j+1 =

1

Ỹj+1

> j + 1

))
.
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From Equation (2.6), for any x ∈ D,

P(Ỹj+1 <
1

j + 1
| X̃j = x) = P1(x, {t ∈ X : t < 1/(j + 1)}) ∈

[
ϕ(−c)
j + 1

,
ϕ(0)

j + 1

]
.

So,

P(Ỹj+1 <
1

j + 1
| X̃j ∈ D) ≥ ϕ(−c)

j + 1
.

Hence, for x > j + 1,

P
(
X̃t ≤ n/2 for some t ∈ (j + 1) : m | X̃j+1 = x

)
≤P

(
X̃t ≤ x/2 for some t ∈ (j + 1) : m | X̃j+1 = x

)
≤P

(
X̃t ≤ x/2 for some t ∈ (j + 1) : (j + [x]1+r) | X̃j+1 = x

)
≤ a

[x]1−r
≤ a

n1−r ,

because of x/2 > n/2, m− n < n1+r, and Lemma 2.2.2. Thus,

P

(
X̃t ≤ n/2 for some t ∈ (j + 1) : m | X̃j+1 =

1

Ỹj+1

> j + 1

)
≤ a

n1−r .

Therefore,

P(X̃m >
n

2
) ≥0.8ϕ(−c)(1− a

n1−r )
m−1∑
j=n

1

j + 1

≥0.8ϕ(−c)(1− a

n1−r ) log((m+ 1)/(n+ 1)) = (1− a

n1−r ) > 0.5.

Contradiction! By Lemma 2.2.1, Containment does not hold.

2.3 An Adaptive Metropolis Algorithm

For an adaptive MCMC algorithm, say that it is an adaptive Metropolis algorithm

if at each iteration, one Metropolis sampler is chosen to do sampling. Many works had
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been developed to analyze ergodicity of the adaptive Metropolis algorithm introduced

by Haario et al. (2001). In the section, we use the adaptation in Haario’s algorithm

for a mixture target distribution.

First let us to define the proposal distribution at each iteration. Given the chain

X0, · · · , Xn ∈ Rd, the matrix

Σn =
1

n

(
n∑
i=0

XiX
>
i − (n+ 1)XnX

>
n

)
, (2.13)

where Xn = 1
n+1

∑n
i=0Xi is the current modified empirical estimate of the covariance

structure of the target distribution based on the run so far. Then if n ≤ 2d then the

proposal distribution Qn(x, ·) = N(x, (0.1)2Id/d); For n > 2d, if Σn is positive definite

then Qn(x, ·) is mixed by two multivariate normal distributions N(x, (2.38)2Σn/d) and

N(x, (0.1)2Id/d) respectively with weights 1− θ and θ, i.e.

Qn(x, ·) = (1− θ)N(x, (2.38)2Σn/d) + θN(x, (0.1)2Id/d), (2.14)

otherwise Qn(x, ·) = N(x, (0.1)2Id/d). The scaling parameter (2.38)2/d is adopted

from Gelman et al. (1996), where it was shown that in a certain sense this choice

optimizes the mixing properties of the Metropolis search in the case of Gaussian

targets and Gaussian proposals, and further optimal results were proved by Roberts

et al. (1997); Roberts and Rosenthal (2001).

Consider a mixture of two normal distributions as the target distribution on R2

with the density function

t(x) =
1

2
√
|2πΣ1|

exp(−(x− µ1)′Σ−1
1 (x− µ1))+

1

2
√
|2πΣ2|

exp(−(x− µ2)′Σ−1
2 (x− µ2)),

(2.15)

where µ1 = (0, 0)′, µ2 = (5, 5)′, Σ1 = diag(1, 1), Σ2 = diag(0.01, 0.01).

The t(x) has two modes respectively at µ1 and µ2. The mode at µ2 is much taller

than that at µ1, see Figure 2.2.

Run the adaptive Metropolis algorithm with a little adjustment: after the first 2d
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Figure 2.2: The marginal target density function on x1 = x2.

steps, the proposal distribution is

Qn(x, ·) = (1− θ)N(x, (2.38)2Σn/d) + θN(x, 4Id/d) (2.16)

where the parameter θ can be arbitrary in (0, 1). For our implementation, θ = 1/3.

The variance of the fixed distribution (the second term of the right hand side in Equa-

tion (2.14)) in the mixture proposal is changed to 4Id. The reason is that at each

proposal, there are some possibility to detect relatively large region where some modes

may be hidden. After 1, 000, 000 iterations, we got the sample data concentrating on

two balls, see the left plot in Figure 2.3. See the estimated marginal density function

on x1 = x2, the right plot in Figure 2.3. The average acceptance rate over every 50

steps is not stable, disturbing between 0.00 and 0.45, see the left plot in Figure 2.4.

In the right plot in Figure 2.4, if the sample state is located in the vicinity of the high

mode then 1 is evaluated; if one sample sate is located in the vicinity of the low mode

then 0 is evaluated. From the plot, we can see the sample chain frequently jumps in

the two modes.
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When target distributions are defined in the high dimensional space, the adap-

Figure 2.3: Left: The sample data over 1, 000, 000 iterations; Right: the estimate
marginal density on X1 = X2.

Figure 2.4: Left: the average acceptance rate over every 50 iterations; Right: The
frequency of switching regions.

tation part (the first term of the right hand side in Equation (2.14)) of the mixture

proposal will play a significant role. This part can learn the true variance of target

distributions. Relatively, artificially adjusting parameters of the proposal distribution

used in non-adaptive MCMC algorithms will be awkward.



Chapter 3

Simultaneous Polynomial

Ergodicity

In the section will study Simultaneous Polynomial Ergodicity. We assume that

under some regular conditions about target distributions, all the transition kernels in

{Pγ : γ ∈ Y} simultaneously satisfy a group of drift conditions, and have the uniform

small set C in the sense of the m-step transition.

Suppose that Diminishing Adaptation and simultaneous polynomial ergodicity

hold. We find that when either the number of drift conditions is greater than or

equal to two, or the number of drift conditions having certain specific form is one, the

adaptive MCMC algorithm is ergodic. For adaptive MCMC algorithms with Marko-

vian Adaptation (the joint process {(Xn,Γn) : n ≥ 0} is Markovian), the algorithm

satisfying Diminishing Adaptation and simultaneous polynomial ergodicity is ergodic

without those restrictions, thanks to the results in Atchadé and Fort (2008). We

also discuss some recent results related to this topic, and show that under certain

additional condition, Containment is necessary for ergodicity of adaptive MCMC al-

gorithms.

Yang (2008b) and Atchadé and Fort (2008) (AF) respectively tackle the Open prob-

lem 21 in Roberts and Rosenthal (2007). Yang assumes that all the transition kernels

simultaneously satisfy the drift condition PγV − V ≤ −1 + bIC , and the adaptive

parameter space is compact under certain metric, and connects it with the regener-

31
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ation decomposition to find the uniform bound of the distance
∥∥P n

γ (x, ·)− π(·)
∥∥

TV

for all γ. Once this condition given, the distance
∥∥P n

γ (x, ·)− π(·)
∥∥

TV
can be uni-

formly bounded by the test function. The boundedness of the test function sequence

{V (Xn) : n ≥ 0} can ensure Containment.

Under some situations, to directly check Containment may be quite hard. AF

use the similar coupling method as that in Roberts and Rosenthal (2007) to prove

an attractive result when an adaptive MCMC algorithm is restricted to Markovian

Adaptation. They also assume that uniformly strongly aperiodicity, simultaneously

drift condition in the weakest form PγV − V ≤ −1 + bIC , and uniform convergence

on any sublevel set of the test function V (·). The idea is that after the chain comes

into some “big” sublevel set of the test function V (x), apply the coupling method for

ergodicity.

In Section 3.1 we discuss Yang’s, and AF’s conditions (respectively (Y1)-(Y4) and

(M1)-(M3)) and results. In Section 3.2 we provide a necessary condition of ergodicity

conditional on an additional condition. In Section 3.3 we show our main result.

3.1 Simultaneous Drift Conditions

Roberts and Rosenthal (2007) gave one condition: the Simultaneously Strongly

Aperiodically Geometrically Ergodic condition which can ensure Containment. In the

definition, the simultaneous drift conditions have the form: PγV (x) ≤ λV (x)+bIC(x)

for all γ ∈ Y . However, if {Γn : n ≥ 0} is bounded in probability, Containment can

be implied by that in each compact subset B of Y , the drift conditions have the same

form: PγVB(x) ≤ λBVB(x)+bBIC(x). More generally, we give the the following result

(a corollary of (Roberts and Rosenthal, 2007, Theorem 13)).

Corollary 3.1.1. Suppose that the parameter space Y is a metric space, and the

adaptive parameter {Γn : n ≥ 0} is bounded in probability; for any compact set K ⊂ Y,

for any ε > 0, the local ε-convergence time{
M̃ε(Xn) := inf

m
{m ∈ N+ : sup

γ∈K

∥∥Pm
γ (Xn, ·)− π(·)

∥∥
TV

< ε} : n ≥ 0

}
is bounded in probability. Diminishing Adaptation implies ergodicity of the adaptive
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MCMC algorithm {Xn : n ≥ 0}.

The proof is trivial and omitted.

Roberts and Rosenthal (2007) propose one open problem in Roberts and Rosenthal

(2007). Yang (2008b) gives the following conditions to tackle the problem:

Y1: There exist a constant δ > 0, and a set C ∈ F , and a probability measure νγ(·)
for γ ∈ Y , such that Pγ(x, ·) ≥ δIC(x)νγ(·) for γ ∈ Y ;

Y2: all kernels simultaneously satisfy the weakest drift condition: PγV ≤ V −1+bIC ,
where V : X → [1,∞) and π(V ) <∞;

Y3: Y is compact under the metric d(γ1, γ2) = sup
x∈X
‖Pγ1(x, ·)− Pγ2(x, ·)‖TV ;

Y4: the stochastic process {V (Xn) : n ≥ 0} is bounded in probability.

Theorem 3.1.1 (Yang (2008b)). Suppose Diminishing Adaptation holds. The con-

ditions (Y1)-(Y4) ensure ergodicity of adaptive MCMC algorithms.

Remark 3.1.1.

1. In Yang’s proof, both (Y1) and (Y2) can ensure that each transition kernel is

ergodic to π. Both (Y3) and (Y4) imply that the total variation distance between Pγ

and π converges to zero uniformly on Y.

2. The condition π(V ) < ∞ is a relatively strong condition. For each Pγ, suppose

that the chain {X(γ)
n : n ≥ 0} is a time homogeneous Markov chain with the transition

kernel Pγ. For any recurrent set A ⊂ X with π(A) > 0, by Meyn and Tweedie (1993)

(MT) Proposition 10.4.9, π(V ) =
∫
A
π(dy)Eγ

[∑τA−1
i=0 V (X

(γ)
i )|X(γ)

0 = y
]
. Assuming

that there exists a small set C1 ⊂ X with supx∈C1
Eγ

[∑τC1
−1

i=0 V (X
(γ)
i )|X(γ)

0 = x
]
<

∞, denote Uγ(x) = Eγ

[∑σC1
i=0 V (X

(γ)
i )|X(γ)

0 = x
]
. Hence, by MT Theorem 11.3.5,

PγUγ −Uγ ≤ −V (x) + b1IC1 where b1 = supx∈C1
Eγ

[∑τC1
−1

i=0 V (X
(γ)
i )|X(γ)

0 = x
]
. Sup-

pose that there is a test function V1 satisfying PγV1−V1 ≤ −V+bIC1 and V1(x)IC1(x) ≥
V (x). By MT Proposition 11.3.2, Uγ(x) ≤ V1(x). So, PγUγ − Uγ ≤ −1 + bIC1. We

will study the simultaneous drift condition with the form PγV1 − V1 ≤ −V0 + bIC in-

stead where the test functions V0(x) and V1(x) are uniform for every Pγ. Under this

situation, the condition (Y3) are unnecessary, and the condition (Y4) is implied (See

Theorem 3.3.2, Remark 3.3.2).
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AF also give the following conditions to study the ergodicity of adaptive MCMC

with Markovian Adaptation:

M1: there exists a probability measure ν(·), a constant δ > 0, and set C ∈ F such

that Pγ(x, ·) ≥ δIC(x)ν(·) for γ ∈ Y ;

M2: there exists a measurable function V : X → [1,∞) and a positive constant b > 0

such that for any γ ∈ Y , (PγV )(x)− V (x) ≤ −1 + bIC(x);

M3: for any sublevel set Dl = {x ∈ X : V (x) ≤ l} of V ,

lim
n→∞

sup
Dl×Y

∥∥P n
γ (x, ·)− π(·)

∥∥
TV

= 0.

Theorem 3.1.2 (Atchadé and Fort (2008)). Suppose Diminishing Adaptation holds.

The conditions (M1)-(M3) imply ergodicity of adaptive MCMC algorithms with

Markovian Adaptation.

Remark 3.1.2.

1. Since ∣∣P(x0,γ0)(V (Xn) > M)− π(Dc
M)
∣∣ ≤ ∥∥P(x0,γ0)(Xn ∈ ·)− π(·)

∥∥
TV

,

M can be taken extremely large such that π(Dc
M) < ε. (M1-M3) and Diminish-

ing Adaptation imply that R.H.S. of the above equation converges to zero. So,

{V (Xn) : n ≥ 0} is bounded in probability.

2. In Section 3.2 we show that under certain condition, Containment is a necessary

condition of ergodicity of adaptive MCMC provided that (M3) holds. From another

view, AF’s proof does apply the coupling method to check Containment by using Di-

minishing Adaptation and simultaneous drift conditions.

3.2 The necessary condition for ergodicity

In this section, we study the necessary condition for ergodicity of adaptive algo-

rithms. The half-Cauchy example shows that Diminishing Adaptation alone can not
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ensure ergodicity. In that example, Containment is not satisfied. Example 2.1.1

shows that Containment is also not necessary. In the following theorem, we prove

that under certain additional condition similar to (M3), Containment is necessary for

ergodicity of adaptive algorithms.

Theorem 3.2.1 (The necessity of Containment). Suppose that there exists an in-

creasing sequence of sets Dk ↑ X on the state space X , such that for any k > 0,

lim
n→∞

sup
Dk×Y

∥∥P n
γ (x, ·)− π(·)

∥∥
TV

= 0. (3.1)

If the adaptive MCMC algorithm is ergodic then Containment holds.

Proof: Fix ε > 0. For any δ > 0, take K > 0 such that π(DcK) < δ/2. For the set

DK , there exists M such that

sup
DK×Y

∥∥PM
γ (x, ·)− π(·)

∥∥
TV

< ε.

Hence, for any (x0, γ0) ∈ X × Y , by the ergodicity of the adaptive MCMC

{Xn : n ≥ 0}, there exists some N > 0 such that n > N ,∣∣P(x0,γ0)(Xn ∈ DcK)− π(DcK)
∣∣ < δ/2.

So, for (Xn,Γn) ∈ (DK ,Y),

[Xn ∈ DK ] = [(Xn,Γn) ∈ DK × Y ] ⊂ [Mε(Xn,Γn) ≤M ] .

Hence,

P(x0,γ0) (Mε(Xn,Γn) > M)

≤ P(x0,γ0) ((Xn,Γn) ∈ (DK × Y)c)

= P(x0,γ0) (Xn ∈ DcK)

≤
∣∣P(x0,γ0) (Xn ∈ DcK)− π(DcK)

∣∣+ π(DcK) < δ.

Therefore, Containment holds.
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Corollary 3.2.1. Suppose that the parameter space Y is a metric space, and the

adaptive scheme {Γn : n ≥ 0} is bounded in probability. Suppose that there exists an

increasing sequence of sets (Dk,Yk) ↑ X × Y such that any k > 0,

lim
n→∞

sup
Dk×Yk

∥∥P n
γ (x, ·)− π(·)

∥∥
TV

= 0.

If the adaptive MCMC algorithm is ergodic then Containment holds.

Proof: Using the same technique in Theorem 3.2.1, for large enough M > 0,

P(x0,γ0) (Mε(Xn,Γn) > M)

≤ P(x0,γ0) ((Xn,Γn) ∈ (Dk × Yk)c)
≤ P(x0,γ0) (Xn ∈ Dc

k) + P(x0,γ0) (Γn ∈ Yck)
≤

∣∣P(x0,γ0) (Xn ∈ DcK)− π(DcK)
∣∣+ π(DcK) + P(x0,γ0) (Γn ∈ Yck) .

Since {Γn : n ≥ 0} is bounded in probability, the result holds.

Example 2.1.1 is a counter example to explain that Containment is not necessary.

It is easy to check that the additional conditions in Theorem 3.2.1 and Corollary 3.2.1

are not satisfied.

3.3 Simultaneous Polynomial Ergodicity

Although ergodicity of adaptive MCMC algorithms, to some degree, is solved in

Yang (2008b) and Atchadé and Fort (2008), there are still some properties unknown

about simultaneous polynomial ergodicity. In the section, we find that the conditions

(Y4) and (M3) are implied for the adaptive MCMC with simultaneous polynomial

ergodicity. Before studying it, let us recall the result about a quantitative bound

for a time-homogeneous Markov chain with polynomial convergence rate by Fort and

Moulines (2000b) (FM).

Theorem 3.3.1 (Fort and Moulines (2000b)). Suppose that the time-homogeneous

transition kernel P satisfies the following conditions:
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• P is π-irreducible for an invariant probability measure π;

• There exist some sets C ∈ B(X ) and D ∈ B(X ), C ⊂ D, π(C) > 0 and an

integer m ≥ 1, such that for any (x, x′) ∈ 4 := C ×D ∪D × C, A ∈ B(X ),

Pm(x,A) ∧ Pm(x′, A) ≥ ρx,x′(A) (3.2)

where ρx,x′ is some measure on X for (x, x′) ∈ 4, and ε− := inf(x,x′)∈4 ρx,x′(X ) >

0.

• Let q ≥ 1. There exist some measurable functions 0 < V0 ≤ V1 ≤ · · · ≤ Vq :

X → R+\ {0} , and for k ∈ {0, 1, . . . , q − 1}, for some constants 0 < ak < 1,

bk <∞, and ck > 0 such that

PVk+1(x) ≤ Vk+1(x)− Vk(x) + bkIC(x), inf
x∈X

Vk(x) ≥ ck > 0,

Vk(x)− bk ≥ akVk(x), x ∈ Dc, (3.3)

sup
D
Vq <∞.

• π(V β
q ) <∞ for some β ∈ (0, 1].

Then, for any x ∈ X , n ≥ m,

‖P n(x, ·)− π(·)‖TV ≤ min
1≤l≤q

B
(β)
l (x, n), (3.4)

with

B
(β)
l (x, n) =

ε+
〈

(I − A(β)
m )−1δx ⊗ π(W β), el

〉
S(l, n+ 1−m)β +

∑
j≥n+1−m(1− ε+)j−(n−m)(S(l, j + 1)β − S(l, j)β)

,

where < ·, · > denotes the inner product in Rq+1, {el}, 0 ≤ l ≤ q is the canonical

basis on Rq+1, I is the identity matrix;

δx ⊗ π(W β) :=

∫
δx(dy)π(dy′)W β(y, y′)
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where W β(x, x′) :=
(
W β

0 (x, x′), · · · ,W β
q (x, x′)

)T
with W0(x, x′) := 1 and

Wl(x, x
′) = I4(x, x′) + I4c(x, x′)

(
l−1∏
k=0

ak

)−1

(m(V0))−1 (Vl(x) + Vl(x
′)) for 1 ≤ l ≤ q

where m(V0) := inf(x,x′)∈4c {V0(x) + V0(x′)};

S(0, k) := 1 and S(i, k) :=
k∑
j=1

S(i− 1, j), i ≥ 1;

A(β)
m :=


A

(β)
m (0) 0 · · · 0 0

A
(β)
m (1) A

(β)
m (0) · · · 0 0

...
...

. . .
...

...

A
(β)
m (q − 1) A

(β)
m (q − 2) · · · A

(β)
m (0) 0

A
(β)
m (q) A

(β)
m (q − 1) · · · A

(β)
m (1) A

(β)
m (0)

 ,

where A
(β)
m (l) := sup(x,x′)∈4

∑l
i=0 S(i,m)β (1− ρx,x′(X ))

∫
Rx,x′(x, dy)Rx,x′(x

′, dy′)W β
l−i(y, y

′),

where the residual kernel

Rx,x′(u, dy) := (1− ρx,x′(X ))−1 (Pm
γ (u, dy)− ρx,x′(dy)

)
;

and ε+ := sup(x,x′)∈4 ρx,x′(X ).

Remark 3.3.1. In the B
(β)
l (x, n), ε+ depends on the set 4 and the measure ρx,x′; the

matrix (I − A(β)
m )−1 depends on the set 4, the transition kernel P , ρx,x′ and the test

functions Vk; δx ⊗ π(W β) depends on the set 4 and the test functions Vk.

Consider the special case of the theorem: ρx,x′(dy) = δν(dy) where ν is a probability

measure with ν(C) > 0, and 4 := C × C.

1. ε+ = ε− = δ.

2. I−A(β)
m is a lower triangle matrix so (I−A(β)

m )−1 =
(
b

(β)
ij

)
i,j=1,...,q+1

is also a lower

triangle matrix, and fixing k ≥ 0 all b
(β)
i,i−k are equal. b

(β)
ii = 1

1−A(β)
m (0)

. For i > j, b
(β)
ij

is the polynomial combination of A
(β)
m (0), · · · , A(β)

m (i+1) divided by (1−A(β)
m (0))i. By

some algebra, we can obtain that b
(β)
21 = A

(β)
m (1)

(1−A(β)
m (0))2

. So, by calculating B
(β)
1 (x, n), we

can get the quantitative bound with a simple form. B
(β)
1 (x, n) only involves two test
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functions V0(x) and V1(x).

Remark 3.3.2. From Equation (3.3), V0(x) ≥ b0/(1− α0) > b0 because 0 < α0 < 1.

Consider the drift condition: PV1 − V1 ≤ −V0 + b0IC. Since πP = π, π(V0) ≤
b0π(C) ≤ b0. Hence, the V0 in the theorem cannot be constant.

Remark 3.3.3. Without the condition π(V β
q ) < ∞, the bound in Equation (3.4)

can also be obtained. However, the bound is possibly infinity. The subscript l of

B
(β)
l (x, n) and β can explain the polynomial rate (S(l, n + 1 − m)β = O((n + 1 −

m)lβ)). It can be observed that B
(β)
l (x, n) involves test functions V0(x), · · · , Vl(x),

and lim supn n
βlB

(β)
l (x, n) <∞. Given x ∈ X , the decaying rate of B

(β)
l (x, n) is less

than O(n−qβ).

3.3.1 Conditions

The following conditions are derived from Theorem 3.3.1, and some changes are

added to apply for adaptive MCMC algorithms. Say that the family {Pγ : γ ∈ Y} is

simultaneously polynomially ergodic (S.P.E.) if the conditions (A1)-(A4) are satisfied.

A1: each Pγ is ψγ-irreducible with stationary distribution π(·);

A2: there is a set C ⊂ X , some integer m ∈ N, some constant δ > 0, and some

probability measure νγ(·) on X such that:

π(C) > 0, and Pm
γ (x, ·) ≥ δIC(x)νγ(·) for γ ∈ Y ; (3.5)

A3: there is q ∈ N and measurable functions: V0, V1, . . . , Vq : X → (0,∞) where

V0 ≤ V1 ≤ · · · ≤ Vq, such that for k = 0, 1, . . . , q − 1, there are 0 < αk < 1,

bk <∞, and ck > 0 such that:

PγVk+1(x) ≤ Vk+1(x)−Vk(x)+bkIC(x), Vk(x) ≥ ck for x ∈ X and γ ∈ Y ; (3.6)

Vk(x)− bk ≥ αkVk(x) for x ∈ Cc; (3.7)

sup
x∈C

Vq(x) <∞. (3.8)
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A4: π(V β
q ) <∞ for some β ∈ (0, 1].

Remark 3.3.4. From MT Proposition 10.1.2, if Pγ is ϕ-irreducible, then Pγ is π-

irreducible and the invariant measure π is a maximal irreducibility measure.

Remark 3.3.5. In Theorem 3.3.1, there is one condition (Equation (3.2)) ensuring

the splitting technique. Here we consider the special case of that condition: ρx,x′(dy) =

δνγ(dy) and 4 = C × C. Thus, by Remark 3.3.1, the bound of
∥∥P n

γ (x, ·)− π(·)
∥∥

TV

depends on C, m, the minorization constant δ, π(·), νγ, and test functions Vl(x) so

we assume that C, m and δ are uniform for all the transition kernels.

Remark 3.3.6. For x ∈ C, νγ(Vl) ≤ 1
δ
Pm
γ Vl(x) ≤ 1

δ
supx∈C Vl(x) + mbl−1

δ
.

3.3.2 Main Result

Before showing the main result, we give one lemma used in the proof of the main

result.

Lemma 3.3.1. Suppose that the family {Pγ : γ ∈ Y} is S.P.E.. If the stochastic

process {Vl(Xn) : n ≥ 0} is bounded in probability for some l ∈ {1, . . . , q}, then

Containment is satisfied.

The proof is in Section 3.3.3.

Theorem 3.3.2. Suppose an adaptive MCMC algorithm satisfies Diminishing Adap-

tation. Then, the algorithm is ergodic under any of the following cases:

(i) S.P.E., and the number q of simultaneous drift conditions is strictly greater than

two;

(ii) S.P.E., and when the number q of simultaneous drift conditions is greater than

or equal to two, there exists an increasing function f : R+ → R+ such that

V1(x) ≤ f(V0(x));

(iii) Under the conditions (A1) and (A2), there exist some positive constants c > 0,

b′ > b > 0, α ∈ (0, 1), and a measurable function V (x) : X → R+ with V (x) ≥ 1 and

sup
x∈C

V (x) <∞ such that

PγV (x)− V (x) ≤ −cV α(x) + bIC(x) for γ ∈ Y , (3.9)
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cV α(x)ICc(x) ≥ b′;

(iv) Under the condition (A1), (A2), and (A4), there exist some constant b′ > b > 0,

two measurable functions V0 : X → R+ and V1 : X → R+ with 1 ≤ V0(x) ≤ V1(x)

and sup
x∈C

V1(x) <∞ such that

P γV1(x)− V1(x) ≤ −V0(x) + bIC(x) for γ ∈ Y , (3.10)

V0(x)ICc(x) ≥ b′, and the process {V1(Xn) : n ≥ 0} is bounded in probability.

Remark 3.3.7. For the part (iii), (A4) is implied by MT Theorem 14.3.7 with β = α.

The theorem consists of Theorem 3.3.3, Theorem 3.3.4, Theorem 3.3.5, and

Lemma 3.3.1. Theorem 3.3.5 shows that {V (Xn) : n ≥ 0} in the case (iii) is bounded

in probability. The case (iii) is a special case of S.P.E. with q = 1 so that the uniform

quantitative bound of
∥∥P n

γ (x, ·)− π(·)
∥∥

TV
for γ ∈ Y exists.

3.3.3 Proof of Theorem 3.3.2

Proof of Lemma 3.3.1: We use the notation in Theorem 3.3.1.

From S.P.E., for γ ∈ Y , let ρx,x′(dy) = δνγ(dy) (so ρx,x′(X ) = δ) and 4 := C × C.

So, ε+ = ε− = δ.

Note that the matrix I − A(β)
m is a lower triangle matrix. Denote (I − A(β)

m )−1 :=

(b
(β)
ij )i,j=0,··· ,q.

By the definition of B
(β)
l (x, n),

B
(β)
l (x, n) =

ε+
∑l

k=0 b
(β)
lk

∫
π(dy)W β

k (x, y)

S(l, n+ 1−m)β +
∑

j≥n+1−m(1− ε+)j−(n−m)(S(l, j + 1)β − S(l, j)β)

≤ ε+

S(l, n+ 1−m)β

l∑
k=0

b
(β)
lk

∫
π(dy)W β

k (x, y).

By some algebra, for k = 1, · · · , q,

∫
π(dy)W β

k (x, y) ≤ 1 +

(
m(V0)

k−1∏
i=0

ai

)−β [
V β
k (x) + π(V β

k )
]

(3.11)
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because β ∈ (0, 1]. In addition, m(V0) ≥ c0 so the coefficient of the second term on

the right hand side is finite.

By induction, we obtain that b
(β)
10 = A

(β)
m (1)

(1−A(β)
m (0))2

, and b
(β)
11 = 1

1−A(β)
m (0)

. It is easy to

check that 0 < b
(β)
11 ≤ 1

δ
.

By some algebra,

A(β)
m (1) ≤mβ + sup

(x,x′)∈C×C

∫
Rx,x′(x, dy)Rx,x′(x

′, dy′)W β
1 (y, y′)

≤mβ + sup
(x,x′)∈C×C

[
1 + (a0m(V0))−β(Pm

γ V
β

1 (x) + Pm
γ V

β
1 (x′))

]
≤mβ + 1 + 2(a0m(V0))−β(sup

x∈C
V1(x) +mb0)

because Pm
γ V

β
1 (x) ≤ Pm

γ V1(x) ≤ V1(x) + mb0. Therefore, b
(β)
10 is bounded from the

above by some value independent of γ.

Thus,

B
(β)
1 (x, n) ≤ δ

S(1, n+ 1−m)β

(
b

(β)
10

∫
π(dy)W β

0 (x, y) + b
(β)
11

∫
π(dy)W β

1 (x, y)

)
≤ δ

(n+ 1−m)β

(
b

(β)
10 π(C) + b

(β)
11

[
1 + (a0m(V0))−β(V β

1 (x) + π(V β
1 ))
])
.

Therefore, the boundedness of the process {V1(Xk) : k ≥ 0} implies that the random

sequence B
(β)
1 (Xn, n) converges to zero in probability. Containment holds.

Let {Zj : j ≥ 0} be an adaptive sequence of positive random variables. For

each j, Zj will denote a fixed positive Borel measurable function of Xj. τn will

denote a stopping time starting from the time n of the process {Xi : i ≥ 0} i.e.

[τn = i] ⊂ σ(Xk : k = 1, · · · , n+ i) and P(τn <∞) = 1.

Lemma 3.3.2 (Dynkin’s Formula for adaptive MCMC). For m > 0, and n > 0,

E[Zτ̃m,n | Xm,Γm] = Zm + E[

τ̃m,n∑
i=1

(E[Zm+i | Fm+i−1]− Zm+i−1) | Xm,Γm]

where τ̃m,n := min(n, τm, inf(k ≥ 0 : Zm+k ≥ n)).
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Proof:

Zτ̃m,n = Zm +

τ̃m,n∑
i=1

(Zm+i − Zm+i−1) = Zm +
n∑
i=1

I(τ̃m,n ≥ i)(Zm+i − Zm+i−1)

Since τ̃m,n ≥ i is measurable to Fm+i−1,

E[Zτ̃m,n | Xm,Γm] =Zm + E[
n∑
i=1

E[Zm+i − Zm+i−1 | Fm+i−1]I(τ̃m,n ≥ i) | Xm,Γm]

=Zm + E[

τ̃m,n∑
i=1

(E[Zm+i | Fm+i−1]− Zm+i−1) | Xm,Γm].

Lemma 3.3.3 (Comparison Lemma for adaptive MCMC). Suppose that there exist

two sequences of positive functions {sj, fj : j ≥ 0} on X such that

E[Zj+1 | Fj] ≤ Zj − fj(Xj) + sj(Xj). (3.12)

Then for a stopping time τn starting from the time n of the adaptive MCMC {Xi :

i ≥ 0},

E[
τn−1∑
j=0

fn+j(Xn+j) | Xn,Γn] ≤ Zn(Xn) + E[
τn−1∑
j=0

sn+j(Xn+j) | Xn,Γn].

Proof: From Lemma 3.3.2 and Equation (3.12), the result can be obtained.

The following proposition shows the relations between the moments of the hitting

time and the test function V -modulated moments for adaptive MCMC algorithms

with S.P.E., which is derived from the result for Markov chain in (Jarner and Roberts,

2002, Theorem 3.2). Define the first return time and the ith return time to the set C

from the time n respectively:

τn,C := τn,C(1) := min {k ≥ 1 : Xn+k ∈ C} (3.13)
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and

τn,C(i) := min {k > τn,C(i− 1) : Xn+k ∈ C} for n ≥ 0 and i > 1. (3.14)

Proposition 3.3.1. Consider an adaptive MCMC {Xi : i ≥ 0} with the adaptive

parameter {Γi : i ≥ 0}. If the family {Pγ : γ ∈ Y} is S.P.E., then there exist some

constants {di : i = 0, · · · , q − 1} such that at the time n, for k = 1, · · · , q,

cq−kE[τ kn,C | Xn,Γn]

k
≤E[

τn,C−1∑
i=0

(i+ 1)k−1Vq−k(Xn+i) | Xn,Γn]

≤dq−k(Vq(Xn) +
k∑
i=1

bq−iIC(Xn))

where the test functions {Vi(·) : i = 0, · · · , q}, the set C, {ci : i = 0, · · · , q − 1}, and

{bi : i = 0, · · · , q − 1} are defined in the S.P.E..

Proof:
τn,C−1∑
i=0

(i+ 1)k−1 ≥
∫ τn,C

0

xk−1dx = k−1τ kn,C .

Since Vq−k(x) ≥ cq−k on X ,

E[

τn,C−1∑
i=0

(i+ 1)k−1Vq−k(Xn+i) | Xn,Γn] ≥ cq−k
k

E[τ kn,C | Xn,Γn]. (3.15)

So, the first inequality holds.

Consider k = 1. By S.P.E. and Lemma 3.3.3,

E[

τn,C−1∑
i=0

Vq−1(Xn+i) | Xn,Γn] ≤ Vq(Xn) + bq−1IC(Xn). (3.16)

So, the case k = 1 of the second inequality of the result holds.
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For i ≥ 0, by S.P.E.,

E[(i+ 1)k−1Vq−k+1(Xn+i+1) | Xn+i,Γn+i]− ik−1Vq−k+1(Xn+i)

≤(i+ 1)k−1 (Vq−k+1(Xn+i)− Vq−k(Xn+i) + bq−kIC(Xn+i))− ik−1Vq−k+1(Xn+i)

≤− (i+ 1)k−1Vq−k(Xn+i) + d̃
(
ik−2Vq−k+1(Xn+i) + (i+ 1)k−1bq−kIC(Xn+i)

)
for some positive d̃ independent of i.

By Lemma 3.3.3,

E[

τn,C−1∑
i=0

(i+ 1)k−1Vq−k(Xn+i) | Xn,Γn] ≤

d̃E[

τn,C−1∑
i=0

i(k−1)−1Vq−(k−1)(Xn+i) | Xn,Γn] + bq−kIC(Xn).

(3.17)

From the above equation, by induction, the second inequality of the result holds.

Theorem 3.3.3. Suppose that the family {Pγ : γ ∈ Y} is S.P.E. for q > 2. Then,

Containment holds.

Proof: For k = 1, . . . , q, take large enough M > 0 such that C ⊂ {x : Vq−k(x) ≤M},

P(x0,γ0) (Vq−k(Xn) > M) =
n∑
i=0

P(x0,γ0) (Vq−k(Xn) > M, τi,C > n− i,Xi ∈ C) +

P(x0,γ0) (Vq−k(Xn) > M, τ0,C > n,X0 /∈ C) .
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By Proposition 3.3.1, for i = 0, · · · , n,

P(x0,γ0) (Vq−k(Xn) > M, τi,C > n− i | Xi ∈ C)

≤P(x0,γ0)

(
τi,C−1∑
j=0

(j + 1)k−1Vq−k(Xi+j) > (n− i)k−1M+

cq−k

n−i−1∑
j=0

(j + 1)k−1, τi,C > n− i | Xi ∈ C

)

≤P(x0,γ0)

(
τi,C−1∑
j=0

(j + 1)k−1Vq−k(Xi+j) > (n− i)k−1M+

cq−k

n−i−1∑
j=0

(j + 1)k−1 | Xi ∈ C

)

≤
supx∈C E(x0,γ0)

[
E(x0,γ0)

[∑τi,C−1
j=0 (j + 1)k−1Vq−k(Xi+j) | Xi,Γi

]
| Xi = x

]
(n− i)k−1M + cq−k

∑n−i−1
j=0 (j + 1)k−1

≤
dq−k

(
supx∈C Vq(x) +

∑k
j=1 bq−jIC(x)

)
(n− i)k−1M + cq−k

∑n−i−1
j=0 (j + 1)k−1

,

and

P(x0,γ0) (Vq−k(Xn) > M, τ0,C > n | X0 /∈ C) ≤
dq−k

(
Vq(x0) +

∑k
j=1 bq−jIC(x0)

)
nk−1M + cq−k

∑n−1
j=0 (j + 1)k−1

.

By simple algebra,

(n− i)k−1M + cq−k

n−i−1∑
j=0

(j + 1)k−1 = O
(
(n− i)k−1 (M + cq−k(n− i))

)
.
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Therefore,

P(x0,γ0) (Vq−k(Xn) > M)

≤ dq−k

(
sup

x∈C∪{x0}
Vq(x) +

k∑
j=1

bq−j

)
(

n∑
i=0

P(x0,γ0)(Xi ∈ C)

(n− i)k−1 (M + cq−k(n− i))
+

δCc(x0)

nk−1 (M + cq−kn)

)
.

(3.18)

Whenever q ≥ 2, k can be chosen as 2. While k ≥ 2, the summation of L.H.S. of

Equation (3.18) is finite given M . But if q = 2 then just the process {V0(Xn) : n ≥ 0}
is bounded probability so that q > 2 is required for the result. Hence, taking large

enough M > 0, the probability will be small enough. So, the sequence {Vq−2(Xn) :

n ≥ 0} is bounded in probability. By Lemma 3.3.1, Containment holds.

Remark 3.3.8. In the proof, only (A3) is used.

Remark 3.3.9. If V0(·) is a “nice” function (non-decreasing) of V1(·), then the se-

quence {V1(Xn) : n ≥ 0} is bounded in probability. In Theorem 3.3.5, we discuss this

situation for certain simultaneously single polynomial drift condition.

Theorem 3.3.4. Suppose that {Pγ : γ ∈ Y} is S.P.E. for q = 2. Suppose that there

exists a strictly increasing function f : R+ → R+ such that V1(x) ≤ f(V0(x)) for all

x ∈ X . Then, Containment is implied.

Proof: From Equation (3.18), we have that {V0(Xn) : n ≥ 0} is bounded in probabil-

ity. Since V1(x) ≤ f(V0(x)),

P(x0,γ0) (V1(Xn) > f(M)) ≤ P(x0,γ0) (f(V0(Xn)) > f(M)) = P(x0,γ0) (V0(Xn) > M) ,

because f(·) is strictly increasing. By the boundedness of V0(Xn), for any ε > 0, there

exists N > 0 and some M > 0 such that for n > N , P(x0,γ0) (V1(Xn) > f(M)) ≤ ε.

Therefore, {V1(Xn) : n ≥ 0} is bounded in probability. By Lemma 3.3.1, Containment

is satisfied.

Consider the single polynomial drift condition, see Jarner and Roberts (2002):

PγV (x) − V (x) ≤ −cV α(x) + bIC(x) where 0 ≤ α < 1. Because the moments of

the hitting time to the set C is (see details in Jarner and Roberts (2002)), for any
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1 ≤ ξ ≤ 1/(1− α),

Ex

[
τC−1∑
i=0

(i+ 1)ξ−1V (Xi)

]
< V (x) + bIC(x).

The polynomial rate function r(n) = nξ−1. If α = 0, then r(n) is a constant. Under

this situation, it is difficult to utilize the technique in Theorem 3.3.3 to prove {V (Xn) :

n ≥ 0} is bounded in probability. Thus, we assume α ∈ (0, 1).

Proposition 3.3.2. Consider an adaptive MCMC {Xn : n ≥ 0} with an adaptive

scheme {Γn : n ≥ 0}. Suppose that (A1) holds, and there exist some positive constants

c > 0, > b > 0, α ∈ (0, 1), and a measurable function V (x) : X → R+ with V (x) ≥ 1

and sup
x∈C

V (x) <∞ such that

PγV (x)− V (x) ≤ −cV α(x) + bIC(x) for γ ∈ Y . (3.19)

Then for 1 ≤ ξ ≤ 1/(1− α),

E(x0,γ0)

[
τn,C−1∑
i=0

(i+ 1)ξ−1V 1−ξ(1−α)(Xn+i) | Xn,Γn

]
≤ cξ(C)(V (Xn) + 1). (3.20)

Proof: The proof applies the techniques in Lemma 3.5 and Theorem 3.6 of Jarner

and Roberts (2002).

Theorem 3.3.5. Suppose that (A2) and the conditions in Proposition 3.3.2 are sat-

isfied, and there exists some constant b′ > b such that cV α(x)ICc > b′. Then, Con-

tainment is implied.

Proof: Using the same techniques in Theorem 3.3.3, we have that

P(x0,γ0)

(
V 1−ξ(1−α)(Xn) > M

)
≤ cξ

(
supx∈C∪{x0} V (x) + 1

) (∑n
i=0

P(x0,γ0)(Xi∈C)

(n−i)ξ−1(M+n−i) + δCc (x0)
nξ−1(M+n)

) . (3.21)

Therefore, for ξ ∈ [1, 1/(1− α)), the sequence
{
V 1−ξ(1−α)(Xn) : n ≥ 0

}
is bounded

in probability. Since 1 − ξ(1 − α) > 0, the process {V (Xn) : n ≥ 0} is bounded in

probability. By Lemma 3.3.1, Containment holds.



Chapter 4

Some Applicable Ergodicity

Conditions for Multidimensional

Targets

This chapter considers ergodicity properties of certain adaptive Markov chain

Monte Carlo (MCMC) algorithms for multidimensional target distributions, in par-

ticular adaptive Metropolis and adaptive Metropolis-within-Gibbs algorithms. We

derive various sufficient conditions to ensure Containment, and connect the conver-

gence rates of algorithms with the tail properties of the target distributions. We

also present a Summable Adaptive Condition which, when satisfied, proves ergodic-

ity more easily.

When designing adaptive algorithms, it is not difficult to ensure that Diminish-

ing Adaptation holds. However, Containment may be more challenging, which raises

the questions. How can Containment be verified in specific examples? Roberts and

Rosenthal (2007) prove that an adaptive MCMC satisfying Diminishing Adaptation

satisfies Containment if the family {Pγ : γ ∈ Y} is simultaneously strongly aperiodi-

cally geometrically ergodic. We study a weaker condition: Simultaneous Geometrical

Ergodicity which is also sufficient for ergodicity of adaptive MCMC, but this may be

difficult to check in practice. In this section, we give some simpler criteria related to

proposals to check Containment, more easily.

49
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First we discuss simultaneous geometric ergodicity in Section 4.1. Then we show

in Section 4.2 that a stronger version of the Diminishing Adaptation alone implies

ergodicity of adaptive algorithm. We then give some results which ensure ergodicity

for certain adaptive Metropolis algorithms in Section 4.3 and adaptive Metropolis-

within-Gibbs algorithms in Section 4.4.

4.1 Simultaneous Geometric Ergodicity

Following standard results about geometric ergodicity and polynomial ergodicity,

Roberts and Rosenthal (2007) also considered certain “simultaneous” ergodicity con-

ditions.

Definition 4.1.1 (simultaneously strongly aperiodically geometrically ergodic). Con-

sider the family {Pγ : γ ∈ Y}. Suppose that there is C ∈ F , a measurable function

V : X → [1,∞) , δ > 0, λ < 1, and b <∞, such that supC V = v <∞, and

(i) ∃ a probability measure ν(·) on C with Pγ(x, ·) ≥ δνγ(·) for x ∈ C; and

(ii) PγV ≤ λV + bIC.

We say that the family {Pγ : γ ∈ Y} is Simultaneously Strongly Aperiodically Geo-

metrically Ergodic (S.S.A.G.E.).

Theorem 4.1.1 (Roberts and Rosenthal (2007)). Consider an adaptive MCMC al-

gorithm with Diminishing Adaptation. Suppose that the family {Pγ}γ∈Y is simulta-

neously strongly aperiodically geometrically ergodic. Then the adaptive algorithm is

ergodic.

Before we study Simultaneous Geometric Ergodicity for adaptive MCMC algo-

rithms, let us review Rosenthal (1995, Theorem 5).

Proposition 4.1.1. Suppose a time homogeneous Markov chain P (x, dy) on the state

space X . Let {Xn : n ≥ 0} and {Yn : n ≥ 0} be two realizations of P (x, dy). There

are a set C ⊂ X , δ > 0, some integer m > 0, and a probability measure νm on X
such that

Pm(x, ·) ≥ δνm(·) for x ∈ C.

Suppose further that there exist 0 < λ < 1, b > 0, and a function h : X ×X → [1,∞)
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such that

E [h(X1, Y1) | X0 = x, Y0 = y] ≤ λh(x, y) + bIC×C((x, y)).

Let A := sup(x,y)∈C×C E[h(Xm, Ym) | X0 = x, Y0 = y], µ be the initial distribution,

and π be the stationary distribution. Then for any j > 0,

‖L(Xn)− π‖TV ≤ (1− δ)[j/m] + λn−jm+1Aj−1Eµ×π[h(X0, Y0)].

To make use of Proposition 4.1.1, we consider the Simultaneously Geometrically

Ergodic condition (S.G.E.) also studied by Roberts et al. (1998):

Definition 4.1.2 (S.G.E.). Suppose that there is C ∈ F , some integer m ≥ 1, a

function V : X → [1,∞) , δ > 0, λ < 1, and b < ∞, such that sup
x∈C

V (x) < ∞,

π(V ) <∞, and

(i) C is an uniform νm-small set, i.e., for each γ, ∃ a probability measure νγ(·) on C

with Pm
γ (x, ·) ≥ δνγ(·) for x ∈ C;

(ii) PγV ≤ λV + bIC.

We say that the family {Pγ : γ ∈ Y} is Simultaneously Geometrically Ergodic.

Note that the difference between S.G.E. and S.S.A.G.E. is that the uniform mi-

norization set C for all Pγ is assumed in S.S.A.G.E., however the uniform small set

C is assumed in S.G.E.. Obviously S.G.E. is a special case of S.P.E.. Here we use the

quantitative bound in Proposition 4.1.1 to show the following theorem.

Theorem 4.1.2. S.G.E. implies Containment.

Proof: Let {X(γ)
n : n ≥ 0} and {X(γ)

n : n ≥ 0} be two realizations of Pγ for γ ∈ Y .

Define h(x, y) := (V (x) + V (y))/2. From (ii) of S.G.E., E[h(X
(γ)
1 , Y

(γ)
1 ) | X(γ)

0 =

x, Y
(γ)

0 = y] ≤ λh(x, y) + bIC×C((x, y)). It is not difficult to get Pm
γ V (x) ≤ λmV (x) +

bm so A := sup(x,y)∈C×C E[h(X
(γ)
m , Y

(γ)
m ) | X(γ)

0 = x, Y
(γ)

0 = y] ≤ λm supC V +bm =: B.

Consider L(X
(γ)
0 ) = δx and j :=

√
n. By Proposition 4.1.1,∥∥P n

γ (x, ·)− π(·)
∥∥

TV
≤ (1− δ)[

√
n/m] + λn−

√
nm+1B

√
n−1(V (x) + π(V ))/2. (4.1)

Note that the quantitative bound is dependent of x, n, δ, m, C, V and π, and

independent of γ. Given x ∈ X and γ ∈ Y , the uniform quantitative bound of
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∥∥P n
γ (x, ·)− π(·)

∥∥
TV

tends to zero as n goes to infinity.

Let {Xn : n ≥ 0} be the adaptive MCMC satisfying S.G.E.. From (ii) of S.G.E.,

supn E[V (Xn) | X0 = x,Γ0 = γ0] <∞ so the process {V (Xn) : n ≥ 0} is bounded in

probability. Therefore, for any ε > 0, {Mε(Xn,Γn) : n ≥ 0} is bounded in probability

given any X0 = x0 and Γ0 = γ0.

Corollary 4.1.1. Consider the family {Pγ : γ ∈ Y} of Markov chains on X . Suppose

that for any compact set C ∈ F , there exist some integer m > 0, δ > 0 and a

probability measure νγ(·) on C for γ ∈ Y such that Pm
γ (x, ·) ≥ δνγ(·) for x ∈ C.

Suppose that there is a function V : X → (1,∞) such that sup
x∈C

V (x) <∞, π(V ) <∞,

and

lim sup
|x|→∞

sup
γ∈Y

PγV (x)

V (x)
< 1. (4.2)

Then for any adaptive strategy using only {Pγ : γ ∈ Y}, Containment holds.

Proof: From Equation (4.2), letting λ = lim sup|x|→∞ supγ∈Y
PγV (x)

V (x)
< 1, there exists

some positive constant K such that supγ∈Y
PγV (x)

V (x)
< λ+1

2
for |x| > K. By V > 1,

PγV (x) < λ+1
2
V (x) for |x| > K. PγV (x) ≤ λ+1

2
V (x) + bI{z∈X :|z|≤K}(x) where b =

supx∈{z∈X :|z|≤K} V (x).

4.2 Summable Adaptive Condition

In Chapter 2, we give two examples to explain that Diminishing Adaptation alone

is not sufficient for ergodicity. Yang (2008a) assumes a summable adaptive condi-

tion and Simultaneous Uniform Ergodicity1 that imply ergodicity. Here we present a

summable adaptive condition (Equation (4.3)) to show ergodicity of adaptive MCMC

without assuming simultaneous uniform ergodicity. We also will present a modifica-

tion of Example 2.2.1 which is ergodic.

Proposition 4.2.1. Consider an adaptive MCMC {Xn : n ≥ 0} on the state space

X with the kernel index space Y. Under the following conditions:

(i) Y is finite. For every γ ∈ Y, Pγ is ergodic with the stationary distribution π;

1Simultaneous Uniform Ergodicity: For all ε > 0, there is a N > 0 such that∥∥PNγ (x, ·)− π(·)
∥∥

TV
≤ ε for all x ∈ X and γ ∈ Y.
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(ii) At each time n, Γn is a deterministic measurable function of X0, · · · , Xn;

(iii) For every initial state x0 ∈ X and initial kernel index γ0 ∈ Y,

∞∑
n=1

P(Γn 6= Γn−1 | X0 = x0,Γ0 = γ0) <∞. (4.3)

Then the adaptive MCMC {Xn : n ≥ 0} is ergodic with the stationary distribution π.

Proof: Fix x0 ∈ X , γ0 ∈ Y . By the condition (iii) and the Borel-Cantelli Lemma,

∀ε > 0, ∃N0(x0, γ0, ε) > 0 such that ∀n > N0,

P (Γn = Γn+1 = · · · | X0 = x0,Γ0 = γ0) > 1− ε/2. (4.4)

Construct a new chain {X̃n : n ≥ 0} which satisfies that for n ≤ N0, X̃n = Xn, and

for n ≥ N0, X̃n ∼ P n−N0
ΓN0

(X̃N0 , ·). So, for any n > N0 and any set A ∈ F , by the

condition (ii),

P(Xn ∈ A,ΓN0 = ΓN0+1 = · · · = Γn−1 | X0 = x0,Γ0 = γ0)

=

∫
XN0∩[γN0

=···=γn−1]

Pγ0(x0, dx1) · · ·PγN0−1
(xN0−1, dxN0)P n−N0

γN0
(xN0 , A)

and
P(X̃n ∈ A | X0 = x0,Γ0 = γ0)

=

∫
XN0

Pγ0(x0, dx1) · · ·PγN0−1
(xN0−1, dxN0)P n−N0

γN0
(xN0 , A)

So,

|P (Xn ∈ A,ΓN0 = · · · = Γn−1 | X0 = x0,Γ0 = γ0)−
P(X̃n ∈ A | X0 = x0,Γ0 = γ0) |≤ ε/2.

Since the condition (i) holds, suppose that for some K > 0, Y = {y1, · · · , yK}.
Denote µi(·) = P(X̃N0 ∈ · | X0 = x0,Γ0 = γ0,ΓN0 = yi) for i = 1, · · · , K. Because of
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the condition (ii), for n > N0,

P(X̃n ∈ A | X0 = x0,Γ0 = γ0)

=
K∑
i=1

P(X̃n ∈ A,ΓN0 = yi | X0 = x0,Γ0 = γ0)

=
K∑
i=1

∫
XN0∩[γN0

=yi]

Pγ0(x0, dx1) · · ·PγN0−1
(xN0−1, dxN0)P n−N0

yi
(xN0 , A)

=
K∑
i=1

P(ΓN0 = yi | X0 = x0,Γ0 = γ0)µiP
n−N0
yi

(A).

By the condition (i), there exists N1(x0, γ0, ε, N0) > 0 such that for n > N1,

sup
i∈{1,··· ,K}

∥∥µiP n
yi

(·)− π(·)
∥∥

TV
< ε/2.

So, for any n > N0 +N1, any A ∈ F ,

|P(Xn ∈ A | X0 = x0,Γ0 = γ0)− π(A)|

≤
∣∣∣P(Xn ∈ A | X0 = x0,Γ0 = γ0)−P(X̃n ∈ A | X0 = x0,Γ0 = γ0)

∣∣∣+∣∣∣P(X̃n ∈ A | X0 = x0,Γ0 = γ0)− π(A)
∣∣∣

≤(ε/2 + ε/2) + ε/2 = 3ε/2.

Therefore, the adaptive MCMC {Xn : n ≥ 0} is ergodic with the target distribution

π.

Example 4.2.1. Consider again the Metropolis-Hastings algorithm of Example 2.2.1,

with X = (0,∞) and Y = {−1, 1}, and π(x) ∝ I(x≥0)
1+x2 , and is Y Γn−1

n = X
Γn−1

n−1 + Zn

where {Zn} are i.i.d. standard normal. Assume now that the adaptive parameters

{Γn} are updated according to Γn = −Γn−1I(XΓn−1
n < 1

n1+r ) + Γn−1I(XΓn−1
n ≥ 1

n1+r )

for some r ≥ 0, so the case r = 0 corresponds to Example 2.2.1 (which was shown to

be non-ergodic), while the case r > 0 is new.

Proposition 4.2.2. If r > 0, then the adaptive algorithm of Example 4.2.1 is ergodic,

i.e. Xn converges to π.
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Proof: From the calculation in Example 2.2.1, we have that

P (Γn 6= Γn−1 | Xn−1 = x,Γn−1 = γ) =

∫ 1
n1+r−xγ

−xγ

1√
2π

exp(−z
2

2
)dz ≤ O(

1

n1+r
).

Therefore,
∑∞

n=1 P (Γn 6= Γn−1) < ∞. Hence, from Proposition 4.2.1, the adaptive

algorithm is ergodic to π.

4.3 Adaptive Metropolis Algorithms

The target density π(·) is defined on the state space X ⊂ Rd. In what follows,

we shall write 〈·, ·〉 for the usual scalar product on Rd, |·| for the Euclidean and

the operator norm, n(z) := z/ |z|, ∇ for the usual differential (gradient) operator,

m(x) := ∇π(x)/ |∇π(x)|, Bd(x, r) := {y ∈ Rd : |y − x| < r} for the hyperball in Rd

with the center x and the radius r and its closure B̄d(x, r), and Vol(A) for the volume

of the set A ⊂ Rd.

Say an adaptive MCMC is an Adaptive Metropolis-Hastings algorithm if each kernel

Pγ is from a Metropolis-Hastings algorithm

Pγ(x, dy) = αγ(x, y)Qγ(x, dy) +

[
1−

∫
X
αγ(x, z)Qγ(x, dz)

]
δx(dy) (4.5)

where Qγ(x, dy) is the proposal distribution, αγ(x, y) :=
(
π(y)qγ(y,x)

π(x)qγ(x,y)
∧ 1
)

I(y ∈ X ),

and µd is Lebesgue measure. Say an adaptive Metropolis-Hastings algorithm is a

random-walk-based Adaptive Metropolis algorithm if each qγ(x, y) is symmetric for all

γ ∈ Y , i.e. qγ(x, y) = qγ(x− y) = qγ(y − x).

Jarner and Hansen (2000) give conditions which imply geometric ergodicity of

symmetric random-walk-based Metropolis algorithm on Rd for target distribution

with lighter-than-exponential tails, (see other related results Mengersen and Tweedie,

1996; Roberts and Tweedie, 1996). Here, we extend their result a little to target

distribution with exponential tails.

Definition 4.3.1 (Lighter-than-exponential tail). The density π(·) on Rd is lighter-
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than-exponentially tailed if it is positive and has continuous first derivatives such that

lim sup
|x|7→∞

〈n(x),∇ log π(x)〉 = −∞. (4.6)

Remark 4.3.1. 1. The definition implies that for any r > 0, there exists R > 0 such

that
π(x+ αn(x))− π(x)

π(x)
≤ −αr, for |x| ≥ R,α > 0.

It means that π(x) is exponentially decaying along any ray, but with the rate r tending

to infinity as x goes to infinity.

2. While a target distribution has finite modes and |x| is sufficiently large, the normed

gradient m(x) will point towards the origin. The direction n(x) points away from

the origin. For Definition 4.3.1, 〈n(x),∇ log π(x)〉 = |∇π(x)|
π(x)

〈n(x),m(x)〉. Even

lim sup
|x|7→∞

〈n(x),m(x)〉 < 0, Equation (4.6) might not be true. E.g. π(x) ∝ 1
1+x2 , x ∈

R. m(x) = −n(x) so that 〈n(x),m(x)〉 = −1. 〈n(x),∇ log π(x)〉 = − 2|x|
1+x2 so

lim
|x|7→∞

〈n(x),∇ log π(x)〉 = 0.

Definition 4.3.2 (Exponential tail). The density function π(·) on Rd is exponentially

tailed if it is a positive, continuously differentiable function on Rd, and

η2 := − lim sup
|x|→∞

〈n(x),∇ log π(x)〉 > 0. (4.7)

Remark 4.3.2. There exists β > 0 such that for x sufficiently large,

〈n(x),∇ log π(x)〉 = 〈n(x),m(x)〉 |∇ log π(x)| ≤ −β.

Further, if 0 < −〈n(x),m(x)〉 ≤ 1, then |∇ log π(x)| ≥ β.

Define the symmetric proposal density family C := {q : q(x, y) = q(x − y) =

q(y− x), x, y ∈ Rd}. Our ergodic results for adaptive Metropolis algorithm are based

on the following assumptions.

Assumption 4.3.1. The target distribution is absolutely continuous w.r.t. Lebesgue

measure µd with a density π bounded away from zero and infinity on compact sets,

and sup
x∈X

π(x) <∞.
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Assumption 4.3.2 (Strongly decreasing). The target density π has continuous first

derivatives and satisfies

η1 := −lim sup
|x|7→∞

〈n(x),m(x)〉 > 0. (4.8)

Assumption 4.3.3 (Uniform Local Positivity). Assume that {qγ : γ ∈ Y} ⊂ C.

There exists ζ > 0 such that

ι := inf
γ∈Y

inf
|z|≤ζ

qγ(z) > 0. (4.9)

Given 0 < p < q < ∞, for u ∈ Sd−1 (Sd−1 is the unit hypersphere in Rd.) and

θ > 0, define

Cp,q(u, θ) :=
{
z = aξ | p ≤ a ≤ q, ξ ∈ Sd−1, |ξ − u| < θ/3

}
. (4.10)

Assumption 4.3.4. Suppose the target density π is exponentially tailed. Under

Assumptions 4.3.2, assume that there are ε ∈ (0, η1), β ∈ (0, η2), δ, and ∆ with

0 < 3
βε
≤ δ < ∆ ≤ ∞ such that

inf
(u,γ)∈Sd−1×Y

∫
Cδ,∆(u,ε)

|z| qγ(z)µd(dz) >
3(e+ 1)

βε(e− 1)
. (4.11)

Remark 4.3.3. Under Assumption 4.3.3, let P̃ (x, dy) be the transition ker-

nel of Metropolis-Hastings algorithm with the proposal distribution Q̃(x, ·) ∼
Unif(B̄d(x, ζ/2)). For any γ ∈ Y, Pγ(x, dy) ≥ ιVol(B̄d(0, ζ/2))P̃ (x, dy). By Assump-

tions 4.3.1 and Roberts and Tweedie (1996, Theorem 2.2), any compact set is a small

set for P̃ so that any compact set is an uniform small set for all Pγ.

Remark 4.3.4. 1. Assumption 4.3.4 means that the proposal family has uniform

lower bound of the first moment on some local cone around the origin. It shows that

the tails of all proposal distributions can not be too light, and the quantity of the lower

bound is given and dependent on the decaying rate η1 of and strongly decreasing rate

η2 of the target distribution.

2. If every proposal distribution in {qγ : γ ∈ Y} ⊂ C is a mixture distribution with
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one fixed part, then Assumption 4.3.4 is relatively easy to check, because the integral

in Equation (4.11) can be estimated by the fixed part distribution. Especially for the

lighter-than-exponentially tailed target, Assumption 4.3.4 can be reduced. We will give

a sufficient condition for Assumption 4.3.4, see Lemma 4.3.1.

Now, we consider a particular class of target densities with tails which are heavier

than exponential tails. It was previously shown by Fort and Moulines (2000a) that

the Metropolis algorithm converges at any polynomial rate when the proposal distri-

bution is compact supported and the log density decreases hyperbolically at infinity,

log π(x) ∼ − |x|s, for 0 < s < 1, as |x| → ∞.

Definition 4.3.3 (Hyperbolic tail). The density function π(·) is twice continuously

differentiable, and there exist 0 < m < 1 and some finite positive constants di, Di,

i = 1, 2 such that for large enough |x|,
0 < d0 |x|m ≤ − log π(x) ≤ D0 |x|m;

0 < d1 |x|m−1 ≤ |∇ log π(x)| ≤ D1 |x|m−1;

0 < d2 |x|m−2 ≤ |∇2 log π(x)| ≤ D2 |x|m−2.

Assumption 4.3.5 (Proposal’s Uniform Compact Support). Under Assumption 4.3.3,

there exists some M > ζ such that all qγ(·) with γ ∈ Y are uniformly supported on

B̄d(0,M).

Theorem 4.3.1. Adaptive Metropolis algorithm with Diminishing Adaptation is er-

godic, under either condition of the following:

(i). Target density π is lighter-than-exponentially tailed, and Assumptions 4.3.1 -

4.3.3;

(ii). Target density π is exponentially tailed, and Assumptions 4.3.1 - 4.3.4;

(iii). Target density π is hyperbolically tailed, and Assumptions 4.3.1 - 4.3.3 and

4.3.5.

4.3.1 Applications

Here we discuss two examples. The first one (Example 4.3.1) is from Roberts and

Rosenthal (2009) where the proposal density is a fixed distribution of two multivariate

normal distributions, one with a fixed small variance, another using the estimate

of empirical covariance matrix from historical information as its variance. It is a
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slight variant of the famous adaptive Metropolis algorithm of Haario et al. (2001).

In the example, the target density has lighter-than-exponential tails. The second

(Example 4.3.2) concerns with target densities with truly exponential tails.

Proposition 4.3.1. If the target density π on Rd is normal (i.e. N(µ,Σ), Σ is

positive definite), then π is strongly decreasing and lighter-than-exponentially tailed.

Proof: Without loss of generality assume that µ = 0.

Since π(x) =
(

1√
2π

)d
1

|Σ|1/2
exp(−x>Σ−1x/2),

〈n(x),m(x)〉 =

〈
x

|x|
,
−Σ−1x

|Σ−1x|

〉
= − x>Σ−1x

|x| |Σ−1x|
.

Since Σ is a real symmetric and positive definite matrix, suppose that Σ = A>DA

where A is orthogonal, and D is diagonal with positive diagonal elements. Hence,

x>Σ−1x

|x| |Σ−1x|
=

yD−1y

|y| |D−1y|
=

∑d
i=1 y

2
i d
−1
i√∑d

i=1 y
2
i

∑d
i=1 d

−2
i y2

i

≥
min

(
d−1
i

)
max

(
d−1
i

) .
where y = Ax.

〈n(x),∇ log π(x)〉 =
|∇π(x)|
π(x)

〈
x

|x|
,
−Σ−1x

|Σ−1x|

〉
= −xΣ−1x

|x|
→
|x|→∞

−∞.

So, the result holds.

Example 4.3.1. Consider a d-dimensional target distribution π(·) satisfying Assump-

tions 4.3.1 - 4.3.2. We perform a Metropolis algorithm with proposal distribution given

at the nth iteration by Qn(x, ·) = N(x, (0.1)2Id/d) for n ≤ 2d; For n > 2d,

Qn(x, ·) =

{
(1− θ)N(x, (2.38)2Σn/d) + θN(x, (0.1)2Id/d), Σn is positive definite,

N(x, (0.1)2Id/d), Σn is not positive definite,

(4.12)

for some fixed θ ∈ (0, 1), Id is d × d identity matrix, and the empirical covariance

matrix

Σn =
1

n

(
n∑
i=0

XiX
>
i − (n+ 1)XnX

>
n

)
, (4.13)
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where Xn = 1
n+1

∑n
i=0Xi, is the current modified empirical estimate of the covariance

structure of the target distribution based on the run so far.

Remark 4.3.5. The proposal N(x, (2.38)2Σ/d) is optimal in a particular large-

dimensional context, (see Roberts et al., 1997; Roberts and Rosenthal, 2001). Thus

the proposal N(x, (2.38)2Σn/d) is an effort to approximate this.

Remark 4.3.6. Commonly, the iterative form of Equation (4.13) is more useful,

Σn =
n− 1

n
Σn−1 +

1

n+ 1

(
Xn − X̄n−1

) (
Xn − X̄n−1

)>
. (4.14)

Proposition 4.3.2. Suppose that the target density π is exponentially tailed. Un-

der Assumptions 4.3.1-4.3.4,
∣∣Xn −Xn−1

∣∣ and ‖Σn − Σn−1‖M converge to zero in

probability where where ‖·‖M is matrix norm.

Proof: Note that in the proof of Theorem 4.3.1, some test function V (x) = cπ−s(x)

for some s ∈ (0, 1) and some c > 0 is found such that S.G.E. holds.

By some algebras,

Σn − Σn−1

=
1

n+ 1
XnX

>
n −

1

n− 1

(
1

n

n−1∑
i=0

XiX
>
i

)
+

2n

n2 − 1
Xn−1X

>
n−1−

1

n+ 1

(
XnX

>
n−1 +Xn−1X

>
n

)
.

Hence,

‖Σn − Σn−1‖M
≤ 1

n+1

∥∥XnX
>
n

∥∥
M

+ 1
n−1

∥∥ 1
n

∑n−1
i=0 XiX

>
i

∥∥
M

+ 2
n

∥∥∥Xn−1X
>
n−1

∥∥∥
M

+

1
n+1

∥∥∥XnX
>
n−1 +Xn−1X

>
n

∥∥∥
M
.

(4.15)

To prove Σn − Σn−1 converges to zero in probability, it is sufficient to check

that
∥∥XnX

>
n

∥∥
M

,
∥∥ 1
n

∑n−1
i=0 XiX

>
i

∥∥
M

,
∥∥∥Xn−1X

>
n−1

∥∥∥
M

and
∥∥∥XnX

>
n−1 +Xn−1X

>
n

∥∥∥
M

are

bounded in probability.

Since lim sup
|x|→∞

〈n(x),∇ log π(x)〉 < 0, there exist some K > 0 and some β > 0 such
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that

sup
|x|≥K

〈n(x),∇ log π(x)〉 ≤ −β.

For |x| ≥ K, log π(y)−log π(x)
(r−1)|x| ≤ −β where r > 1 and y = rx, i.e.

(
π(y)
π(x)

)−s
≥ esβ

r−1
r
|y|.

Taking x0 ∈ Rd with |x0| = K, V (x) = cπ−s(x0)
(
π(x)
π(x0)

)−s
≥ caesβ

r−1
r
|x| for x = rx0,

r > 1, and a := inf
|y|≤K

π−s(y) > 0, because of Assumption 4.3.1. If r ≥ 2 then r−1
r
≥ 0.5.

Therefore, as |x| is extremely large, V (x) ≥ |x|2. We know that supn E[V (Xn)] <∞
(See Theorem 18 in Roberts and Rosenthal (2007)).

Since
∥∥XnX

>
n

∥∥
M

:= sup
|u|=1

u>XnX
>
n u ≤ sup

|u|=1

|u|2 |Xn|2 ≤ |Xn|2,
∥∥XnX

>
n

∥∥
M

is

bounded in probability.

Obviously, ∥∥∥∥∥ 1

n

n−1∑
i=0

XiX
>
i

∥∥∥∥∥
M

≤ 1

n

n−1∑
i=0

∥∥XiX
>
i

∥∥
M
.

Then, for K > 0,

P

(
1

n

n−1∑
i=0

∥∥XiX
>
i

∥∥
M
> K

)
≤ 1

K

1

n

n−1∑
i=0

E
[∥∥XiX

>
i

∥∥
M

]
≤ 1

K

1

n

n−1∑
i=0

E
[
|Xi|2

]
≤ 1

K
sup
n

E[V (Xn)].

Hence,
∥∥ 1
n

∑n−1
i=0 XiX

>
i

∥∥
M

is bounded in probability.∣∣Xn

∣∣ ≤ 1
n+1

∑n
i=0 |Xi|. So,

P(
∣∣Xn

∣∣ > K) ≤ 1

K

1

n+ 1

n∑
i=0

E[|Xi|] ≤
1

K
sup
n

E[V (Xn)].

∣∣Xn

∣∣ is bounded in probability. Hence,
∥∥∥Xn−1X

>
n−1

∥∥∥
M

is bounded in probability.

Finally, ∥∥∥XnX
>
n−1 +Xn−1X

>
n

∥∥∥
M
≤ 2 |Xn|

∣∣Xn−1

∣∣ .
Therefore,

∥∥∥XnX
>
n−1 +Xn−1X

>
n

∥∥∥
M

is bounded in probability.

Theorem 4.3.2. Suppose that the target density π in Example 4.3.1 is lighter-than-
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exponentially tailed. The algorithm in Example 4.3.1 is ergodic.

Proof: Obviously, the proposal densities have uniformly lower bound function. By

Theorem 4.3.1 and Proposition 4.3.2, the adaptive Metropolis algorithm is ergodic.

The following lemma is used to check Assumption 4.3.4.

Lemma 4.3.1. Suppose that the target density π is exponentially tailed and the pro-

posal density family {qγ : γ ∈ Y} ⊂ C. Suppose further that there is a function

q−(z) := g(|z|), q− : Rd → R+ and g : R+ → R+, some constants M ≥ 0, ε ∈ (0, η1),

β ∈ (0, η2) and 3
βε
∨ M < δ < ∆ such that for |z| ≥ M with the property that

qγ(z) ≥ q−(z) for γ ∈ Y and

(d− 1)π
d−1

2

2Γ(d+1
2

)
Ber2

(
d− 1

2
,
1

2

)∫ ∆

δ

g(t)tddt >
3(e+ 1)

βε(e− 1)
, (4.16)

where η1 is defined in Equation (4.7), η2 is defined in Equation (4.8), r := ε
18

√
36− ε2,

and the incomplete beta function Bex(t1, t2) :=
∫ x

0
tt1−1(1 − t)t2−1dt, then Assump-

tion 4.3.4 holds.

Proof: For u ∈ Sd−1,∫
Cδ,∆(u,ε)

|z| g(|z|)µd(dz) =

∫ ∆

δ

g(t)tddt

∫
{ξ∈Sd−1 : |ξ−u|<ε/3}

ω(dξ).

where ω(·) denotes the surface measure on Sd−1.

By the symmetry of u ∈ Sd−1, let u = ed := (0, · · · , 0︸ ︷︷ ︸
d−1

, 1). So, the projection from

the piece
{
ξ ∈ Sd−1 : |ξ − u| < ε/3

}
of the hypersphere Sd−1 to the subspace Rd−1

generated by the first d− 1 coordinates is d− 1 hyperball Bd−1(0, r) with the center

0 and the radius r = ε
18

√
36− ε2. Define f(z) =

√
1− (z2

1 + · · ·+ z2
d−1).

ω
({
ξ ∈ Sd−1 : |ξ − u| < ε/3

})
=

∫
Bd−1(0,r)

√
1 + |∇f |2dz1 · · · dzd−1

=
(d− 1)π

d−1
2

Γ(d+1
2

)

∫ r

0

ρd−2√
1− ρ2

dρ =
(d− 1)π

d−1
2

2Γ(d+1
2

)
Ber2

(
d− 1

2
,
1

2

)
.
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Hence,∫
Cδ,∆(u,ε)

|z| g(|z|)µd(dz) =
(d− 1)π

d−1
2

2Γ(d+1
2

)
Ber2

(
d− 1

2
,
1

2

)∫ ∆

δ

g(t)tddt. (4.17)

Therefore, the result holds.

Example 4.3.2. Consider the standard multivariate exponential distribution π(x) =

c exp(−λ |x|) on Rd where λ > 0. We perform a Metropolis algorithm with proposal

distribution in the family {Qγ(·) : γ ∈ Y} at the nth iteration where

Qn(x, ·) =

{
Unif

(
Bd(x,∆)

)
, n ≤ 2d, or Σn is nonsingular,

(1− θ)N(x, (2.38)2Σn/d) + θUnif
(
Bd(x,∆)

)
, n > 2d, and Σn is singular,

(4.18)

for a predetermined parameter θ ∈ (0, 1), Unif
(
Bd(x,∆)

)
is an uniform distribution

on the hyperball Bd(x,∆) with the center x and the radius ∆, and Σn is as defined in

Equation (4.13). The problem is: how to choose ∆ such that the adaptive Metropolis

algorithm is ergodic?

Proposition 4.3.3. There exists a large enough ∆ > 0 such that the adaptive

Metropolis algorithm of Example 4.3.2 is ergodic.

Proof: We compute that ∇π(x) = −λn(x)π(x). So, 〈n(x),∇ log π(x)〉 = −λ and

〈n(x),m(x)〉 = −1. So, the target density is exponentially tailed, and Assump-

tions 4.3.1 and 4.3.2 hold. Obviously, each proposal density is locally positive. Now,

let us check Assumption 4.3.4 by using Lemma 4.3.1. Let M = 0. Because

Vol(Bd(x,∆)) =
∆dπ

d
2

dΓ(d
2

+ 1)
,

the function g(t) defined in Lemma 4.3.1 is equal to θI(|t|≤∆)
Vol(Bd(x,∆))

. η2 defined in Equa-

tion (4.7) and η1 defined in Equation (4.8) are respectively λ and 1. Now, fix any
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ε ∈ (0, 1) and any δ ∈ ( 3
λ
,∞). The left hand side of Equation (4.16) is

(d− 1)π
d−1

2

2Γ(d+1
2

)
Ber2

(
d− 1

2
,
1

2

)∫ ∆

δ

g(t)tddt

=
d(d− 1)

2(d+ 1)Be(d+1
2
, 1/2)

· Ber2

(
d− 1

2
,
1

2

)
·∆
(

1− δd+1

∆d+1

)
,

where Be(x, y) and Ber(x, y) are beta function and incomplete beta function, r is a

function of ε defined in Lemma 4.3.1.

Once ε and δ are fixed, the first two terms in the right hand side of the above equa-

tion is fixed. Then, as ∆ goes to infinity, the whole equation tends to infinity. So,

there exists a large enough ∆ > 0 such that Equation (4.16) holds. By Lemma 4.3.1,

Assumption 4.3.4 holds. Then, by Proposition 4.3.4, Containment holds. By Proposi-

tion 4.3.2, Diminishing Adaptation holds. By Theorem 1.6.1, the adaptive Metropolis

algorithm is ergodic.

4.3.2 Some Technical Arguments

Before we show that Theorem 4.3.1, we state (Jarner and Hansen, 2000, Lemma

4.2).

Lemma 4.3.2. Let x and z be two distinct points in Rd, and let ξ = n(x − z).

If 〈ξ,m(y)〉 6= 0 for all y on the line from x to z, then z does not belong to{
y ∈ Rd : π(y) = π(x)

}
.

Consider the test function V (x) = cπ−s(x) for some c > 0 and s ∈ (0, 1) such that

V (x) ≥ 1. Note that it is not difficult to check that for s ∈ (0, 1), π(V ) < ∞ by

utilizing Definition 4.3.2.

By some algebra,

PγV (x)/V (x) =

∫
A(x)−x

(
πs(x)

πs(x+ z)

)
qγ(z)µd(dz)+∫

R(x)−x

(
1− π(x+ z)

π(x)
+
π1−s(x+ z)

π1−s(x)

)
qγ(z)µd(dz),



4 Some Applicable Ergodicity Conditions for Multidimensional Targets 65

where the acceptance region A(x) := {y ∈ X |π(y) ≥ π(x)}, and the potential rejection

region R(x) := {y ∈ X |π(y) < π(x)}. From (Roberts and Rosenthal, 1998, Proposi-

tion 3), we have PγV (x)/V (x) ≤ r(s)V (x) where r(s) := 1 + s(1− s)−1+1/s.

Proposition 4.3.4 (Exponential tail). Suppose that the target density π is exponen-

tially tailed. Under Assumptions 4.3.1-4.3.4, Containment holds.

Proof: Consider s ∈ [0, 1/2). Under Assumption 4.3.4, let

h(α, s) = r′(s) +
1

(1− s)2
−

α

1− s
inf

(u,γ)∈Sd−1×Y

∫
Cδ,∆(u,ε)

|z|
[
e−αs|z| − e−α(1−s)|z|] qγ(z)µd(dz) and

H(α, s) = 1 +

∫ s

0

h(α, t)dt

where ε, β, δ,∆, and Cδ,∆(·, ·) are defined in Assumption 4.3.4. So, H(βε/3, 0) = 1

and

∂H(βε/3, 0)

∂s
= h(βε/3, 0) ≤ e−1+1−βε(1− e

−1)

3
inf

(u,γ)∈Sd−1×Y

∫
Cδ,∆(u,ε)

|z| qγ(z)µd(dz) < 0.

Therefore, there exists s0 ∈ (0, 1/2) such that H(βε/3, s0) < 1.

Denote C(x) := x − Cδ,∆(n(x), ε) and C>(x) := x + Cδ,∆(n(x), ε). For |x| ≥ 2∆

and y ∈ C(x) ∪ C>(x), |y| ≥ |x| −∆ ≥ ∆ so |n(y)− n(x)| < ε/3.

Since the target density π(·) is exponentially tailed and Assumption 4.3.2, for

sufficiently large |x| > K1 with some K1 > 2∆, 〈n(x),∇ log π(x)〉 ≤ −β and

〈n(x),m(x)〉 ≤ −ε. Then there exists some K2 > K1 such that for |x| ≥ K2,

〈n(y),m(y)〉 ≤ −ε for y ∈ C(x) ∪ C>(x). Thus, |∇ log π(y)| = 〈n(y),∇ log π(y)〉
〈n(y),m(y)〉 ≥ β.

Moreover, y = x± aξ for some δ ≤ a ≤ ∆ and ξ ∈ Sd−1. So,

〈ξ,m(y)〉 = 〈ξ − n(x),m(y)〉+ 〈n(x)− n(y),m(y)〉+ 〈n(y),m(y)〉 < −ε/3. (4.19)

Hence, by Lemma 4.3.2, for |x| > K2,

C(x) ∩
{
y ∈ Rd : π(y) = π(x)

}
= ∅ and C>(x) ∩

{
y ∈ Rd : π(y) = π(x)

}
= ∅.
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For y = x+ aξ ∈ C>(x),

π(y)− π(x)

=

∫ a

0

〈ξ,∇π(x+ tξ)〉 dt

=

∫ a

0

〈n(x+ tξ) + ξ − n(x) + n(x)− n(x+ tξ), n(∇π(x+ tξ))〉 |∇π(x+ tξ)| dt

<(−ε+ ε/3 + ε/3)

∫ a

0

|∇π(x+ tξ)| dt ≤ 0

so that C>(x) ⊂ R(x). Similarly, C(x) ⊂ A(x).

Consider the test function V (x) = cπ−s0(x) for some c > 0 such that V (x) > 1. By

Assumption 4.3.1, for any compact set C ⊂ Rd, sup
x∈C

V (x) <∞.

For any sequence {xn : n ≥ 0} with |xn| → ∞, there exists some N > 0 such that

n > N , |xn| > K2. We have

PγV (xn)/V (xn) =

∫
{C(xn)−xn}∪{C>(xn)−xn}

Ixn,s0(z)qγ(z)µd(dz)+∫
{C(xn)−xn}c∩{C>(xn)−xn}c

Ixn,s0(z)qγ(z)µd(dz),

where

Ixn,s0(z) =

{
πs0 (xn)
πs0 (xn+z)

, z ∈ A(xn)− xn,
1− π(xn+z)

π(xn)
+ π1−s0 (xn+z)

π1−s0 (xn)
, z ∈ R(xn)− xn.

For z = aξ ∈ C>(xn)− xn and t ∈ (0, |z|), by Equation (4.19)

〈ξ,∇ log π(xn + tξ)〉 = 〈ξ,m(xn + tξ)〉 |∇ log π(xn + tξ)| < −εβ/3.

So, by Assumption 4.3.4,

π(xn + z)

π(xn)
= elog π(xn+z)−log π(xn) = e

∫ |z|
0 〈ξ,∇ log π(xn+tξ)〉dt ≤ e−βε|z|/3 ≤ e−βεδ/3 ≤ e−1.
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Similarly, for z = −aξ ∈ C(xn)− xn,

π(xn)

π(xn + z)
≤ e−βε|z|/3 ≤ e−1.

t1−s0 − t ≤ 1
1−s0 t

1−s0 − t. Since t→ 1
1−s0 t

1−s0 − t is an increasing function on [0, 1],∫
{C(xn)−xn}∪{C>(xn)−xn}

Ixn,s0(z)qγ(z)µd(dz)

≤
∫
C(xn)−xn

1

1− s0

e−s0βε|z|/3qγ(z)µd(dz)+∫
C>(xn)−xn

(
1− e−βε|z|/3 +

1

1− s0

e−(1−s0)βε|z|/3
)
qγ(z)µd(dz).

On the other hand,∫
{C(xn)−xn}c∩{C>(xn)−xn}c

Ixn,s0(z)qγ(z)µd(dz)

≤r(s0)Qγ

(
{C(xn)− xn}c ∩

{
C>(xn)− xn

}c)
.

Define Kx,γ(t) :=
∫
C(x)−x e

−t|z|qγ(z)µd(dz) =
∫
C>(x)−x e

−t|z|qγ(z)µd(dz), and

Hx,γ(θ, t) :=
Kx,γ(tθ)

1− t
+Kx,γ(0)−Kx,γ(θ) +

Kx,γ((1− t)θ)
1− t

+ r(t)(1− 2Kx,γ(0)).

So,

PγV (xn)/V (xn) ≤ Hxn,γ(βε/3, s0).
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For 0 ≤ t < 1/2,

∂Hx,γ(θ, t)

∂t

=r′(t)(1− 2Kx,γ(0)) +
Kx,γ(θt) +Kx,γ(θ(1− t))

(1− t)2
+

θ

1− t

(
K
′

x,γ(θt)−K
′

x,γ(θ(1− t))
)

≤r′(t) +
1

(1− t)2
− θ

1− t

∫
C(x)−x

(
e−θt|z| − e−θ(1−t)|z|

)
|z| qγ(z)µd(dz)

≤h(θ, t).

Since Hx,γ(θ, 0) = 1, Hx,γ(θ, t) ≤ H(θ, t) for 0 ≤ t < 1/2. Thus, Hxn,γ(βε/3, s0) ≤
H(βε/3, s0) < 1 so lim sup

|x|→∞
sup
γ∈Y

PγV (x)

V (x)
< 1. By Corollary 4.1.1, Containment holds.

Proof of Theorem 4.3.1: For (ii), by Proposition 4.3.4, Containment holds.

Then ergodicity is implied by Containment and Diminishing Adaptation.

For (i), From Assumption 4.3.3, for any ε ∈ (0, η1) and any u ∈ Sd−1,∫
Cζ/2,ζ(u,ε)

|z| qγ(z)µd(dz) ≥
ιζVol(Cζ/2,ζ(u, ε))

2

where ι is defined in Equation (4.9), ζ is defined in Assumption 4.3.3, Ca,b(·, ·) is

defined in Equation (4.10). The right hand side of the above equation is positive

and independent of γ and u. Since target density is lighter-than-exponentially tailed,

η2 = +∞ such that there is some sufficiently large β such that Equation (4.11) holds.

So, Assumption 4.3.4 is satisfied.

For (iii), adopting the proof of Fort and Moulines (2000a, Theorem 5), we will

show that the simultaneous drift condition Equation (3.9) holds. Denote R(g, x, y) :=

g(y)− g(x)− 〈∇g(x), y − x〉.

sup
|z|≤M

|R(g, x, x+ z)| |z|−2 ≤ sup
t∈B̄d(x,M)

∣∣∇2g(t)
∣∣ /2.

Consider the test function V (x) := 1 + f s(x) where f(x) := − log π(x) for 2
m
− 1 <

s < min( 2
m
, 3
m
− 2). By Assumption 4.3.5 and Fort and Moulines (2000a, Lemma
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B.2),

PγV (x)− V (x) = Pγf
s(x)− f s(x) =

4∑
j=0

Ij,

where

I0 :=− sf s−1(x) |∇f(x)|2
∫
R(x)−x∩{|z|≤M}

〈m(x), n(z)〉2 |z|2 qγ(z)µd(dz),

I1 :=

∫
{|z|≤M}

R(f s, x, x+ z)qγ(z)µd(dz) ≤M2 sup
t∈B̄d(x,M)

∣∣∇2f s(t)
∣∣ /2

I2 :=

∫
R(x)−x∩{|z|≤M}

R(f s, x, x+ z)R(π, x, x+ z)
qγ(z)

π(x)
µd(dz)

I3 :=

∫
R(x)−x∩{|z|≤M}

R(f s, x, x+ z) 〈∇f(x), z〉 qγ(z)µd(dz)

I4 :=

∫
R(x)−x∩{|z|≤M}

R(π, x, x+ z) 〈∇f s(x), z〉 qγ(z)

π(x)
µd(dz).

By some algebra, ∇2π(x) =
(
∇f(x)∇f(x)> −∇2f(x)

)
π(x). By Definition 4.3.3

and Assumption 4.3.1,

sup
t∈B̄d(x,M)

∣∣∇2f s(t)
∣∣ = O(|x|ms−2) and sup

t∈B̄d(x,M)

∣∣∇2π(t)
∣∣ ≤ O(|x|2(m−1)).

Hence,

|I1| ≤ O(|x|ms−2), |I2| ≤ O(|x|m(s+2)−4), |I3| ≤ O(|x|m(s+1)−3), |I4| ≤ O(|x|m(s+2)−3).

Since 2
m
− 1 < s < min( 2

m
, 3
m
− 2), |I1|, |I2|, |I3| and |I4| converge to zero as

|x| → ∞. By Assumption 4.3.2, for any ε ∈ (0, η1) (η1 is defined in Equa-

tion (4.8)), 〈n(x),m(x)〉 < −ε as |x| is sufficiently large. By Assumption 4.3.3, for

any z ∈ C0,ζ(n(x), ε) (ζ is defined in Assumption 4.3.3, ι is defined in Equation (4.9),

and C·,·(·, ·) is defined in Equation (4.10)), −1 ≤ 〈m(x), n(z)〉 = 〈m(x), n(x)〉 +
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〈m(x), n(z)− n(x)〉 ≤ −ε+ ε/3.

I0 ≤−
4ε2ιsf s−1(x) |∇f(x)|2

9

∫
C0,ζ(n(x),ε)

|z|2 µd(dz)

=− c1f
s−1(x) |∇f(x)|2 ≤ c2f

s−(2−m)/m(x),

for some c1 > 0 (independent of x) where C0,ζ(n(x), ε) = C0,ζ(u, ε) for any u ∈ Sd−1.

So, there exist some K > 0 and some c3 > 0 such that V (x) > 1.1 and PγV (x) −
V (x) ≤ −c3V

α(x) for |x| > K, some α ∈ (0, 1). Let Ṽ (x) := V (x)I(|x| > K)+I(|x| ≤
K). So,

PγṼ (x)− Ṽ (x) ≤ −c3Ṽ
α(x) + c3I(|x| ≤ K).

By the part (iii) of Theorem 3.3.2, Containment holds.

4.4 Adaptive Metropolis-within-Gibbs Algorithms

In the section, we study adaptive random-scan Metropolis-within-Gibbs algorithms

on the state space X = Rd. Consider a family {PRS,γ : γ ∈ Y} of random-scan

Metropolis-within-Gibbs algorithms, i.e. each PRS,γ is a random-scan Metropolis-

within-Gibbs sampler.

Define the symmetric proposal density family on some direction e ∈ Sd−1, C(e) :=

{q : q(x, x + ze) = q(x, x − ze) = q(z) for x ∈ Rd, z ∈ R}. Suppose that Pi,γ is the

transition kernel generated by a symmetric random-walk-based Metropolis algorithm

with the proposal qi,γ ∈ C(ei). Then

PRS,γ =
1

d

d∑
i=1

Pi,γ. (4.20)
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For a Borel set A = A1 × · · · × Ad on Rd and x := (x1, · · · , xd) ∈ Rd and z ∈ R,

Pi,γ(x,A) :=
∏
k 6=i

δxk(Ak)

∫
Ai−xi

α(x, x+ zei)qi,γ(z)µ(dz)+

δx(A)

∫
(1− α(x, x+ zei)) qi,γ(z)µ(dz),

(4.21)

where Ai − x = {y ∈ R : xi + y ∈ Ai}. Say A(x, i) := {z ∈ R : π(x + zei) ≥ π(x)}
and R(x, i) := {z ∈ R : π(x + zei) < π(x)} are the acceptance region and potential

rejection region in the ith direction respectively.

Assumption 4.4.1 (Target Regularity). Same as Assumption 4.3.1.

Assumption 4.4.2 (Uniform Local Positivity). Assume that {qi,γ : γ ∈ Y} ⊂ C(ei)

for i = 1, · · · , d. There exists ζ > 0 such that

inf
i=1,··· ,d

inf
γ∈Y

inf
|z|≤ζ

qi,γ(z) > 0. (4.22)

Assumption 4.4.3 (Exponential tails on the coordinates {e1, · · · , ed}). There exist

β > 0, δ > 0, and ∆ > 0 with 1/β ≤ δ < ∆ ≤ ∞ such that for any sequence

{xn : n ≥ 0} with limn |xn| =∞, we may extract a subsequence {x̃n : n ≥ 0} with the

property that for some i ∈ {1, · · · , d} and z ∈ [δ,∆],

lim
n

π(x̃n)

π(x̃n − sign(< x̃n, ei >)zei)
≤ exp(−βz) and

lim
n

π(x̃n + sign(< x̃n, ei >)zei)

π(x̃n)
≤ exp(−βz);

(4.23)

Assumption 4.4.4 (Moment Condition). Under Assumption 4.4.3,

inf
γ∈Y

inf
i∈{1,...,d}

∫ ∆

δ

zqi,γ(z)µ(dz) >
d+ e

β(e− 1)
. (4.24)

Consider the test function Vs(x) = cπ−s(x) for some c > 0 and s ∈ (0, 1) such

that Vs(x) ≥ 1. For i = 1, · · · , d and γ ∈ Y , Pi,γVs(x) =
∫
I(z, x, i, s)qi,γ(z)µ(dz) ≤
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r(s)Vs(x) where r(s) = 1 + s(1− s)−1+1/s and

I(z, x, i, s) :=


(

π(x)
π(x+z ei)

)s
, z ∈ A(x, i),

1− π(x+z ei)
π(x)

+
(
π(x+z ei)
π(x̃)

)1−s
, z ∈ R(x, i).

(4.25)

For adaptive Metropolis-within-Gibbs algorithms, we mainly adopt the method of

Fort et al. (2003).

Theorem 4.4.1. Under Assumptions 4.4.1-4.4.4, adaptive random-scan Metropolis-

within-Gibbs algorithms with Diminishing Adaptation are ergodic.

Proof: Under Assumption 4.4.4, for t ∈ [0, 1/2), let

h(α, t) =r′(t) +
1

d(1− t)2
− α

d(1− t)
inf
γ∈Y

inf
i=1,··· ,d

∫ ∆

δ

z(e−αtz − e−α(1−t)z)qi,γ(z)dz and

H(α, t) =1 +

∫ t

0

h(α, u)du.

So, H(β, 0) = 1 and

∂H(β, 0)

∂t
= h(β, 0) ≤ e−1 +

1

d
− β(1− e−1)

d
inf
γ∈Y

inf
i∈{1,...,d}

∫ ∆

δ

zqi,γ(z)µ(dz) < 0.

So there exists s0 ∈ (0, 1/2) such that H(βε/3, s0) < 1.

Assume that lim sup
|x|→∞

sup
γ∈Y

PRS,γVs0(x)/Vs0(x) ≥ 1. So there exists a sequence

{(xn, γn) : n ≥ 0} with limn |xn| =∞ such that lim
n
PRS,γnVs0(xn)/Vs0(xn) ≥ 1.

Under Assumption 4.4.3, there exists a subsequence {(x̃n, γ̃n) : n ≥ 0} such that

Equation (4.23) holds with the corresponding parameters β, δ, ∆, and ei.

PRS,γ̃nVs0(x̃n)/Vs0(x̃n) =
1

d
Pi,γ̃nVs0(x̃n)/Vs0(x̃n) +

1

d

∑
j 6=i

Pj,γ̃nVs0(x̃n)/Vs0(x̃n)

≤1

d
Pi,γ̃nVs0(x̃n)/Vs0(x̃n) +

d− 1

d
r(s0)

Without loss of generality, assume sign(< x̃n, ei >) = 1. Let J(δ,∆) = [−∆,−δ]∪
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[δ,∆]. It is easy to prove that

lim
n
R(x̃n, i) ∩ J(δ,∆) = [δ,∆] and lim

n
A(x̃n, i) ∩ J(δ,∆) = [−∆,−δ].

So,

Pi,γ̃nVs0(x̃n)/Vs0(x̃n) =

∫
J(δ,∆)

I(z, x̃n, i, s0)qi,γ̃n(z)dz +

∫
J(δ,∆)c

I(z, x̃n, i, s0)qi,γ̃n(z)dz

≤
∫
J(δ,∆)

I(z, x̃n, i, s0)qi,γ̃n(z)dz + r(s0)

∫
J(δ,∆)c

qi,γ̃n(z)dz.

t1−s0 − t ≤ 1
1−s0 t

1−s0 − t. Since t→ 1
1−s0 t

1−s0 − t is an increasing function on (0, 1),

Pi,γ̃nVs0(x̃n)/Vs0(x̃n) ≤Ki,γ̃n(βs0)

1− s0

+Ki,γ̃n(0) +
Ki,γ̃n(β(1− s0))

1− s0

−Ki,γ̃n(β)+

r(s0)(1− 2Ki,γ̃n(0))

where

Ki,γ(t) =

∫ ∆

δ

e−tzqi,γ(z)µ(dz). (4.26)

Hence,

PRS,γ̃nVs0(x̃n)/Vs0(x̃n) ≤ Hi,γ̃n(β, s0)

where

Hi,γ(β, t) =
r(t)

d
(d− 2Ki,γ(0)) +

1

d

(
Ki,γ(βt)

1− t
+Ki,γ(0) +

Ki,γ(β(1− t))
1− t

−Ki,γ(β)

)
.

(4.27)

For 0 ≤ t < 1/2,

∂Hi,γ(β, t)

∂t

≤r′(t) +
1

d(1− t)2
+

β

d(1− t)
(
K ′i,γ(βt)−K ′i,γ(β(1− t))

)
≤h(β, t)

Since Hi,γ(β, 0) = 1, Hi,γ(β, t) ≤ H(β, t) for t ∈ [0, 1/2). Thus, Hi,γ̃n(β, s0) ≤
H(β, s0) < 1. Contradiction! By Corollary 4.1.1, Containment holds.
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Assumption 4.4.5 (Lighter-than-exponential tails on the coordinates {e1, · · · , ed}).
There exist 0 ≤ δ < ∆ ≤ ∞ such that for any sequence {xn : n ≥ 0} with limn |xn| =
∞, we may extract a subsequence {x̃n : n ≥ 0} with the property that

lim
n→∞

π(x̃n)

π(x̃n − sign(< x̃n, ei >)zei)
= 0 and lim

n→∞

π(x̃n + sign(< x̃n, ei >)zei)

π(x̃n)
= 0.

(4.28)

Theorem 4.4.2. Under Assumptions 4.4.1, 4.4.2, and 4.4.5, adaptive random-scan

Metropolis-within-Gibbs algorithms with Diminishing Adaptation are ergodic.

To prove it, adopt the technique in the proof of the part (i) of Theorem 4.3.1.

Example 4.4.1. Consider the mixed distribution on R2

π(x) = β exp(−(x2
1 + x2

2)) + (1− β)exp(−(x2
1 + x2

1x
2
2 + x2

2))

where β ∈ [0, 1]. The family {PRS,γ, γ ∈ Y} consists of transition kernels generated

by random-scan random-walk-based Metropolis-within-Gibbs algorithms with a set of

proposal density families {qi,γ(·) : γ ∈ Y} for i = 1, 2, see Equation (4.20) and

Equation (4.21). Assume that the proposal density family satisfies Assumption 4.4.2.

Proposition 4.4.1. For the target distribution and the sampler family in Exam-

ple 4.4.1, any adaptive MCMC algorithm with Diminishing Adaptation is ergodic.

Proof: We have that

∇1 log π(x)

−2x1

=
β exp(−(x2

1 + x2
2)) + (1 + x2

2)(1− β) exp(−(x2
1 + x2

1x
2
2 + x2

2))

π(x)

∈
[
1, 1 + x2

2

]
,

∇2 log π(x)

−2x2

=
β exp(−(x2

1 + x2
2)) + (1 + x2

1)(1− β) exp(−(x2
1 + x2

1x
2
2 + x2

2))

π(x)

∈
[
1, 1 + x2

1

]
.

Clearly, ∇i log π(x)/(−2xi) is positive bounded. So, Assumption 4.4.5 holds. Thus,

by Theorem 4.4.2, the algorithm is ergodic.

We consider the target density of Fort et al. (2003, Example 8), a mixture of two

exponential distributions.
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Example 4.4.2. For a > 1, the target density on R2 is

π(x) ∝ 0.5e−|x1|−a|x2| + 0.5e−a|x1|−|x2|, x = (x1, x2).

The family {PRS,γ : γ := (γ1, γ2) ∈ R+2} consists of transition kernels generated

by random-scan random-walk-based Metropolis-within-Gibbs algorithms with a set of

proposal density families {qi,γ(z) := (1 − θ)N(0, γi) + θUnif(−b, b) : γ ∈ R2} for

i = 1, 2 (see Equation (4.20) and Equation (4.21)) where θ ∈ (0, 1) and b > 0 are

predetermined parameters.

Proposition 4.4.2. For the target distribution and the sampler family in Exam-

ple 4.4.2, there exists a sufficiently large b > 0 such that any adaptive random-scan

Metropolis-within-Gibbs algorithm with Diminishing Adaptation is ergodic.

Proof: Assumption 4.4.3 holds and β = 1, see details in Fort et al. (2003, Example

8).

inf
γ∈Y

inf
i∈{1,2}

∫ b

1

zqi,γ(z)µ(dz) ≥ θ

∫ b

1

z
1

2b
dz =

θ(b2 − 1)

4b
.

Obviously, there exists a sufficiently large b such that θ(b2−1)
4b

≥ 2+e
e−1

. So, Assump-

tion 4.4.4 holds. Since proposal densities have the same fixed part (Uniform distri-

bution), Assumption 4.4.2 holds. By Theorem 4.4.1, the result holds.





Chapter 5

An Adaptive Directional

Metropolis-within-Gibbs algorithm

Classical Metropolis-within-Gibbs algorithms only propose values in the coordi-

nates directions, and then accept or reject the values. When target distributions

have strong correlations in some directions, the MCMC algorithm may not work

very well especially on a high dimensional space, because many waste jumps are

proposed. In this chapter we propose a simple adaptive Metropolis-within-Gibbs al-

gorithm (ADMG) attempting to study directions from historical data and jump in

these directions. The effective directions are extracted from the empirical covariance

matrix through singular value decomposition. Some sufficient conditions for ergodic-

ity are given. We also apply the adaptive algorithm on a Gaussian Needle example

and a real-life Case-Cohort study example with competing risks. For the Cohort

study, an extensive version of Competing Risks Regression model is proposed, and

then the algorithm is used to estimate coefficients based on the posterior distribu-

tion.

A toy example will be presented in Section 5.1 for explanations. In Section 5.2

we propose ADMG. The idea is similar to that of the Hit-and-Run algorithm. The

framework of Hit-and-Run is to uniformly draw a random direction in the unit hy-

persphere, and then sample a scalar from some proposal distribution in the chosen

direction, see the literature Bélisle et al. (1993); Chen and Schmeiser (1993); Gilks

77
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et al. (1994); Roberts and Gilks (1994); Chen and Schmeiser (1996); Kaufman and

Smith (1998); Lovász (1999); Lovász and Vempala (2003, 2006); Bèdard and Fraser

(2008). Metropolis with single particle moves, Gibbs sampler, Swendsen-Wang, data

augmentation, and slice sampling have the same basic structure, see Andersen and

Diaconis (2007). The ADMG algorithm tries to find directions and corresponding

jumping scalars through studying certain estimates of the empirical covariance ma-

trix of the sample chain. Then Metropolis-within-Gibbs sampler is run in the obtained

directions with the jumping scalars as variances. The method can suppress the pro-

portion of wasting moves by proposals from full dimensional Metropolis algorithm.

We also compare it with Metropolis-within-Gibbs sampler and adaptive Metropo-

lis algorithm through analysing the toy example on 10-dimensional Euclidean space.

Then we show its ergodicity.

In Section 5.3 we discuss a real-life Case-Cohort study for the application, where

the dataset was from the Princess Margaret Hospital, a leading cancer centre in North

America. Cohort study is commonly based on the survival model. In practice, the

likelihood function turns to be more and more complicated as the number of ob-

servations increases. The trade-off alternative, partial likelihood function is more

interesting. Given a prior distribution, we consider the posterior distribution, and

implement our algorithm to find the estimates of the coefficients of the interesting

covariates in the study.

5.1 A Toy Example

Let the target density

t(x) =
1

2πσ1σ2

exp

−x>([ cos η − sin η

sin η cos η

][
σ2

1 0

0 σ2
2

][
cos η sin η

− sin η cos η

])−1

x/2

 ,

(5.1)

where η = 45o, σ1 =
√

20 and σ2 = 0.01. The target distribution has ex-

tremely small variance 0.0001 and large variance 20 respectively in the two directions

(−
√

2/2,
√

2/2) and (
√

2/2,
√

2/2). So, the target is mainly supported on a very nar-

row region along the 45◦ degree direction between the x1-axis and the x2-axis. The
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length of the needle region is roughly 2 ∗ 4 ∗
√

20 = 35.78 (see the true sample data

in Figure 5.1) because P (|Z| < 4) ≈ 1 where Z is standard normal.

We run random-scan Metropolis-within-Gibbs sampler (MwG) defined in Sec-

tion 1.3 and Adaptive Metropolis algorithm (AM) defined in Example 4.3.1 to gen-

erate sample data. For Adaptive Metropolis, the weights of mixture proposal are

chosen as θ = 0.3. Here the state space is Rd with d = 2. We set their burn-in time

to be zero, and the initial points to be X0 ∼ N(
−→
0 , I2).

Given the sampled data {X0, X1, · · · } and the proposal values {Y1, Y2, · · · }, the

k-step average of acceptance rates is defined as

α
(k)
i :=

1

k

k(i+1)−1∑
t=ki

α(Xt, Yt+1), (5.2)

where i = 0, 1, · · · .
We perform the random-scan MwG sampler 300, 000 iterations using the normal

distribution with variance 0.1 as the proposal distribution, see the top two plots of

Figure 5.1. From the sample plot, the sample data has a needle shape with the length

around 4.95 (� 35.78) roughly between the two points, (−2.0,−2.0) and (1.5, 1.5).

The 100-step average {α(100)
n } of acceptance rates is roughly between 0.10 to 0.3. We

also tried normal proposals with another variance 0.0001 (same as the target’s) which

also gives worse results. For random-scan MwG sampler, at each step, the jumping

direction of the sample chain can be just in either the axis x1 or the axis x2 so the

jumping scale is strongly limited. Moreover, the 100-step average of acceptance rates

is very sensitive to the proposal variance. When the proposal variance is large, the

proposal values are easily rejected. When the proposal variance is small, the proposal

values are easily accepted but the chain is easily stuck.

We also perform 300, 000 iterations of AM. The algorithm attempts to find a better

transition kernel by learning the empirical covariance matrix Σ of the sample chain.

The sample points also span roughly the narrow stripe with the length around 4.95�
35.78 between the two points, (−1.5,−1.5) and (2, 2), see the third plot in Figure 5.1.

At the same time, the 100-step average of acceptance rates is quite small, see the

center right plot in Figure 5.1. So the sampling method for this example also does

not work well.
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Figure 5.1: The first top plot is the sample plot by running random-scan MwG
sampler. The right top plot is the 100-step average of acceptance rates by random-
scan MwG sampler. The left center plot is the sample plot by running AM. The
right center plot is the 100-step average of acceptance rates by AM algorithm. The
left bottom plot is the sample plot by running ADSSMG. The middle bottom plot is
the 100-step average of acceptance rates. The right bottom plot is the sample data
directly simulated from the target distribution.
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Let us observe the estimate of empirical covariance matrix Σn for n = 300, 000,

Σn =

[
1.449585 1.448932

1.448932 1.449020

]
.

By singular value decomposition, we have Σn = UDV where

U =

[
−0.7071758 −0.7070378

−0.7070378 0.7071758

]
,

D =

[
2.8982345593 0

0 0.0003700081

]
,

V = U>.

(5.3)

It is not difficult to find that the matrix U is approximately equal to the U matrix by

singular value decomposition on the true covariance matrix of the Gaussian density

t(·). The first diagonal element d1 ofD underestimates the variance 20 on the direction

(
√

2/2,
√

2/2), and the second element d2 overestimates the variance 0.0001 on the

direction (−
√

2/2,
√

2/2), see Equation (5.3).

The above fact discloses that AM hardly touches the pinpoint of the needle, actually

taking too much time to wander around the middle region of the needle. From the

bottom right plot in Figure 5.1, the point can be also observed. The 100-step average

{α(100)
n } of acceptance rates is very low, approximately below 0.10 that the adaptation

wastes too many proposals in “wrong” directions. Hence the inefficiency of AM is

mainly due to the jumping directions.

5.2 The Algorithm and Ergodicity

Drawing a proposal value in the high dimensional space involves the direction choice

and the jump scale in the direction. The direction choice can be viewed as taking

a unit vector on the unit sphere. The jump scale can be viewed as the variance

of the proposal marginal distribution in the chosen direction. The aim in ADMG

is to find the random directions in which the efficient movement can be ensured.

As illustrated in Section 5.1, the random direction can be drawn from the estimate
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of empirical covariance matrix. After singular value decomposition, the orthogonal

transformation can be obtained. Moreover, the diagonal matrix also approximately

estimates the target extents in those directions after the rotation. Based on the

orthogonal transformation and the extents in the new coordinates, the Metropolis-

within-Gibbs sampler can be run flexibly.

5.2.1 ADMG

In the section, we study ergodicity of adaptive directional random-scan Metropolis-

within-Gibbs algorithms (ADRSMwG) and adaptive directional deterministic-scan

Metropolis-within-Gibbs algorithms (ADDSMwG). The adaptation are defined in the

previous section.

The adaptive parameter set Y is the set of positive definite matrixes in Rd×d. So for

γ ∈ Y , there exist an unitary matrix Q and a diagonal matrix D := diag(k1, · · · , kd)
such that γ = Q>DQ.

For γ ∈ Y , the collection {qi,γ : i = 1, · · · , d} of the proposal densities is used to

sample data on the rotated directions (ẽ1, · · · , ẽd) =: ẽ = Q>e where e = (e1, · · · , ed).
On the direction ẽi, the proposal distribution

Qi,γ(x, ·) = x+ (θN(0, ki) + (1− θ)N(0, ε))ẽi (5.4)

where θ ∈ (0, 1) and ε > 0 are predetermined. The sample Pi,γ is the transition ker-

nel of the symmetric random walk Metropolis-Hastings algorithm with the proposal

distribution Qi,γ(x, ·). Denote PDRS,γ := 1
d

∑d
i=1 Pi,γ and PDDS,γ := P1,γ · · ·Pd,γ.

The adaptation is defined as that at each iteration n, the empirical covariance

matrix is

Σn =

{
λId, n ≤ d,

sd

(
1
n

(∑n
i=0XiX

>
i − (n+ 1)XnX

>
n

)
+ λId

)
, n > d,

(5.5)

where sd is some predetermined parameter, e.g. (2.38)2/d is used in Example 4.3.1,

λ > 0 is also a predetermined parameter. The matrix Σn is positive definite.
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Step 1. Given X0, · · · , Xn, we can compute the empirical covariance matrix Σn de-

fined in Equation (5.5).

Step 2. Do singular value decomposition: Σn = U (n)D(n)V (n) where D(n) :=

diag(d
(n)
1 , · · · , d(n)

d ), and U (n) and V (n) =
(
U (n)

)>
are orthonormal;

Step 3. Compute the random direction ẽ
(n)
i := U (n)ei where ei = (0, · · · , 0, 1, 0, · · · , 0)︸ ︷︷ ︸

ith

;

Step 4. According to the framework of ransom-scan Metropolis-within-Gibbs sam-

pler, perform Metropolis algorithm on the new coordinates
(
ẽ

(n)
1 , · · · , ẽ(n)

d

)
, i.e.

in the direction ẽ
(n)
i , the proposal distribution is Qi,Σn(Xn, ·) where the variance

of the adaptive part distribution in Equation (5.4) is d
(n)
i .

Step 5. n := n+ 1 and go to Step 1.

Remark 5.2.1. In step 2, it may takes much time to do singular value decomposition

when the state space is high dimensional. However, it is unnecessary to run the

computation for each step. The alternative is to do singular value decomposition each

m steps. Another method is to only count the accepted sample point to compute the

estimate of empirical covariance matrix.

Remark 5.2.2. In step 4, we give one scheme to scale the variance of proposal

distribution. The idea is that if the k-step average of acceptance rates is too large

which implies that the jump scalar is too small, the proposal variance is required to

be larger for the efficiency; if α
(k)
[n/k] is too small which implies that the jump scalar

is too large, the proposal variance is required to be smaller for the efficiency. Here,

we can increase the proposal variance if α
(k)
[n/k] > 0.3, and decrease it if α

(k)
[n/k] < 0.3.

Actually, the pair parameter (0.3, 0.3) can be tuned. E.g. define λn = I(α(k)
[n/k] >

0.5) exp(2d(α
(k)
[n/k]− 0.5)) + I(α(k)

[n/k] < 0.2) exp(2d(α
(k)
[n/k]− 0.2)) + I(0.2 ≤ α

(k)
[n/k] ≤ 0.5).

Considering again the example in Section 5.1, we run ADMG 300, 000 iterations,

and still set their burn-in time to be zero and the initial points to be X0 ∼ N(
−→
0 , I2),

see the left bottom and middle bottom plots in Figure 5.1. The simulated data span

roughly from (−15,−15) to (15, 15) which shows that ADMG detects the target faster

than MwG and AM. The 100-step average {α(100)
n } of acceptance rates is between

0.35 to 0.52. The right bottom plot in Figure 5.1 is a true sample data from t(·).
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Comparing the bottom left plot and the bottom right plot, ADMG exactly discovered

the target region.

Remark 5.2.3. From the discussion of the toy example, it is not difficult to find

that when a target distribution with high correlations is mainly supported on a long

narrow region, ADMG is much more efficient than the MwG sampler. In the high

dimensional space, the phenomenon is more explicit.

5.2.2 High dimensional Gaussian Needle

Here, we simulate a 10-dimensional Gaussian distribution on a long nee-

dle. Consider a 10-dimensional i.i.d. multivariate normal distribution t
′
(x) ∝

exp
(
−x>D−1x/2

)
where D = diag(20, 0.0001, · · · , 0.0001) and x ∈ R10. We se-

quentially rotate the marginal plans x1⊥x2, x2⊥x3, · · · , and x9⊥x10 45◦ degrees. The

corresponding transformations are Q1,2(45◦), · · · , Q9,10(45◦) where

Qi,j(η) = I10 +



0 · · · 0 0 0 · · · 0 0 0 · · · 0
...

. . .
...

...
...

. . .
...

...
. . .

...
0 · · · 0 0 0 · · · 0 0 0 · · · 0
0 · · · 0 cos η − 1 0 · · · 0 − sin η 0 · · · 0
0 · · · 0 0 0 · · · 0 0 0 · · · 0
...

. . .
...

...
...

. . .
...

...
...

. . .
...

0 · · · 0 0 0 · · · 0 0 0 · · · 0
0 · · · 0 sin η 0 · · · 0 cos η − 1 0 · · · 0
0 · · · 0 0 0 · · · 0 0 0 · · · 0
...

. . .
...

...
...

. . .
...

...
...

. . .
...

0 · · · 0 0 0 · · · 0 0 0 · · · 0


i j

.

Thus, the interesting target density is

t(x) ∝ exp
(
−x>

(
QDQ>

)−1
x/2
)
, (5.6)

where Q = Q9,10(45◦) · · ·Q2,3(45◦)Q1,2(45◦).

We perform MwG and AM algorithms 1, 000, 000 iterations where the initial point
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X0 ∼ N(
−→
0 , diag(1, · · · , 1)). Figure 5.2 displays the sample data on the plane x1⊥x2,

and 300-step average acceptances of both algorithms. Both do stick in the quite short

stripe. One is between (−1.5,−1) to (1.8, 1.3) with the length around 4.02, another is

between (1.0, 0.8) to (3.0, 2.2) with the length around 5. Their lengths of the needle

are far less than 35.78. Their estimates of autocorrelation functions (ACF) also show

that the sample data have strong correlations.

We performed ADSSMG 1, 000, 000 iterations where the initial point has the same

distribution as that of MwG and AM. Figure 5.2 shows the sample data on the plane

x1⊥x2, the 300-step average of acceptance rates and the ACFs of ADSSMG variables

x1 and x2 generated from ADSSMG. From these graphs, ADSSMG broadly detects

the target with the narrow stripe roughly between (−12,−10) to (14, 10) with the

length around 32.8. The average acceptance rate is roughly between 0.27 and 0.42.

The ACFs of x1 and x2 almost tends to zero.

5.2.3 Ergodicity

Assumption 5.2.1 (Target Regularity). Same as Assumption 4.3.1.

Assumption 5.2.2 (Exponential tails for ADRSMwG). There exist β > 0, 0 ≤ δ <

∆ with 1/β ≤ δ such that for any sequence {(xn, γn) : n ≥ 0} with limn |xn| = ∞
and γn ∈ Y (γn = Q>γnDγnQγn), we may extract a subsequence {(x̃n, γ̃n) : n ≥ 0}
with the property that for n ≥ 0, there exists in := i(γ̃n) ∈ {1, · · · , d}, and denote

ẽin := Q>γ̃nein. For z ∈ [δ,∆],

lim
n

π(x̃n)

π(x̃n − sign(< x̃n, ẽin >)zẽin)
≤ exp(−βz) and

lim
n

π(x̃n + sign(< x̃n, ẽin >)zẽin)

π(x̃n)
≤ exp(−βz);

(5.7)

Assumption 5.2.3. Under Assumption 5.2.2,

l(ε, θ, δ,∆) :=
εθ√
2π

(
e−δ

2/(2ε) − e−∆2/(2ε)
)
>

d+ e

β(e− 1)
, (5.8)

where ε and θ are predetermined in Equation (5.4).
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Figure 5.2: The top first plot is the sample plot by running MwG on the example of
Section 5.1. The top second plot is its 300-step average of acceptance rates. The top
last two plots are the ACFs of the MwG variables x1 and x2 with lag up to 100, 000.
The center first plot is the sample plot by running AM. The center second plot is
the 300-step average of acceptance rates. The center last two plots are the ACFs of
the AM variables x1 and x2 with lag up to 100, 000. The bottom first plot is the
sample plot by running ADSSMG. The bottom second plot is the 300-step average of
acceptance rates. The bottom right two plots are the ACFs of the ADSSMG variables
x1 and x2 with lag up to 100, 000.
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Theorem 5.2.1. Under Assumptions 5.2.1-5.2.3, ADRSMwG with Diminishing

Adaptation is ergodic.

Proof: Under Assumption 5.2.3, for t ∈ (0, 1/2), let

h(α, t) =r′(t) +
1

d(1− t)2
− α

d(1− t)
inf
γ∈Y

inf
i=1,··· ,d

∫ ∆

δ

(e−αtz − e−α(1−t)z)zqi,γ(z)dz and

H(α, t) =1 +

∫ t

0

h(α, u)du.

So, H(β, 0) = 1 and

∂H(β, 0)

∂t
= h(β, 0) ≤ e−1 +

1

d
− β(1− e−1)

d
l(ε, θ, δ,∆) < 0.

So there exists s0 ∈ (0, 1/2) such that H(β, s0) < 1.

Assume that lim sup
|x|→∞

sup
γ∈Y

PDRS,γVs0(x)/Vs0(x) ≥ 1. So there exists a sequence

{(xn, γn) : n ≥ 0} such that lim
n
PDRS,γnVs0(xn)/Vs0(xn) ≥ 1.

Under Assumption 5.2.2, there exist a subsequence {(x̃n, γ̃n) : n ≥ 0} and

{in ∈ {1, 2, · · · , d} : n ≥ 0}, and {ẽin : n ≥ 0} such that Equation (5.7) holds

with the corresponding parameters β, δ, ∆.

Adapting the method in the proof of Theorem 4.4.1, we have

Pin,γ̃nVs0(x̃n)/Vs0(x̃n) ≤Kin,γ̃n(βs0)

1− s0

+Kin,γ̃n(0) +
Kin,γ̃n(β(1− s0))

1− s0

−Kin,γ̃n(β)+

r(s0)(1− 2Kin,γ̃n(0))

(5.9)

where Kj,γ is defined in Equation (4.26).

Hence,

PDRS,γ̃nVs0(x̃n)/Vs0(x̃n) ≤ Hin,γ̃n(β, s0)

where Hj,γ is defined in Equation (4.27).

By similar arguments in the proof of Theorem 4.4.1, Hin,γ̃n(β, s0) ≤ H(β, s0) < 1.

Contradiction! So ADRSMwG is ergodic.
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5.3 A Real-life Cohort Study with the competing

risks

The Cox (1972) proportional hazards model is routinely used for failure time data.

Cox (1975) studied the partial likelihood methods, also see textbook Kalbfleisch and

Prentice (2002). Accordingly, Prentice (1986) proposed the Case-Cohort design to

efficiently analyze Cohort data when most observations are censored, i.e. the inter-

esting events occur with low frequency. For epidemiologic studies, the cohort may

be very large under the previous assumption. Self and Prentice (1988) proved the

asymptotic normal properties of the estimate β̂ under certain regularity conditions

by using a pseudo-likelihood. Wacholder et al. (1989) proposed a bootstrap estimate

of the variance of β̂. Similar estimates for the variance were derived by Lin and Ying

(1993) and Barlow (1994). Pintilie et al. (2009) used a modified partial likelihood to

accommodate the modeling of the hazard of subdistribution for a Case-Cohort study.

They used the Jackknife method to find the estimate’s covariance matrix.

These frequentist methods mainly try to find the optimal coefficient estimates of

covariates such that the pseudo-likelihood reaches the maximum. Here we utilize the

Bayesian method through simulating the posterior distribution of the coefficients of

covariates, and compare three algorithms: MwG, AM and ADSSMG, see Table 5.2.

The following specification of Cox Regression Model is from Kalbfleisch and Pren-

tice (2002). The extensive Cox Regression Model is from Pintilie et al. (2009).

5.3.1 The Model Description

Cox Regression Model (The relative risk model) is a semiparametric model. It

has a nonparametric aspect in the sense that it involves an unspecified function in

the form of an arbitrary baseline hazard function. It also incorporates a parametric

modeling of the relationship between the failure rate and specified covariates.

The incorporate covariates are prefixed and independent of time, or are defined

functions of time.

Let x = (x1, x2, · · · , xK)′ be a vector of fixed covariates that are measured at or

before time 0 on individuals under study. The relative risk models or Cox models are
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specified by the hazard relationship

λ(t;x) = lim
h→0+

P(t ≤ T < t+ h | T ≥ t, x)/h

=λ0(t)r(t, x), t > 0
(5.10)

where T is a corresponding absolutely continuous failure time variate, λ0(t) is an

unspecified baseline hazard function, and the relative risk function r(t, x) specifies

the relationship between the covariates x and the failure rate or hazard function. We

consider the usual exponential form for the relative risk function r(t, x) = exp(Z(t)′β),

which yields the model

λ(t, x) = λ0(t) exp(Z(x)(t)′β). (5.11)

where Z(x)(t) =
(
Z

(x)
1 (t), · · · , Z(x)

p (t)
)′

is a vector of derived, possibly time-dependent

covariates obtained as functions of t and the fixed covariates x. The baseline hazard

function λ0(t) corresponds to Z(x)(t) = (0, · · · , 0)′ for all t, and β = (β1, · · · , βp)′ is a

vector of (unknown) regression parameters.

If the failure time T has the hazard function Equation (5.11), the corresponding

survivor function is

F (t;x) = P(T > t | x) = exp

(
−
∫ t

0

λ0(u) exp(Z(x)(u)′β)du

)
(5.12)

and the density function is

f(t;x) = λ(t;x)F (t;x). (5.13)

Estimation of β

Suppose that the data consist of observations on a random vector Y with the

density function f(y; θ, β) where β is the parameter of interest and θ is the nuisance

parameter of high or infinite dimension. Suppose that Y can be transformed into

A1, B1, · · · , Am, Bm and A(j) = (A1, · · · , Aj) and B(j) = (B1, · · · , Bj). Assume that
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the joint density function of A(m) and B(m) can be written as

n∏
j=1

f(bj | b(j−1), a(j−1), θ, β)
n∏
j=1

f(aj | b(j), a(j−1), β). (5.14)

The second term is called the partial likelihood of β based on {Aj} in the sequence

{Aj, Bj}. One may argue that any information on β in the first term is inextricably

tied up with information on the nuisance parameters θ.

suppose that the sample consists of k uncensored failure times1 t1 < · · · < tk and

ignore for the moment the case of ties. The remaining n − k individuals are right

censored2. Let j denote the individual failing at tj. Let Bj specify the censoring

information in [tj−1, tj) plus the information that one individual fails in the interval

[tj, tj + dtj). Let Aj specify that the item j fails in [tj, tj + dtj). The jth item in the

partial likelihood in Equation (5.14) is

Lj(β) = f(aj | b(j)a(j−1), β). (5.15)

Note that the conditioning event b(j), a(j−1) specifies all the censoring and failure

information in the trial up to time t−j and also provides the information that a failure

occurs in [tj, tj + dtj). Under independent censoring, it follows that

L j(β) =
λ(tj, xj)dtj∑n

l=1 Yl(tj)λ(tj, xl)dtj
, (5.16)

where Yl(t) indicates that item l is in the set R(t) of items at risk of failure at time t−,

just prior to time t. Under the relative risk model Equation (5.11), Equation (5.15)

simplified since the baseline hazard term cancels in the numerator and denominator.

The product over j then provides the partial likelihood for β,

L(β) =
k∏
j=1

λ(tj, xj)dtj∑n
l=1 Yl(tj)λ(tj, xl)dtj

(5.17)

1Time censoring: the censored survival times were observed only if failure had not occurred prior
to a predetermined time at which the study was to terminated. Order statistics censoring: the study
terminates as soon as certain order statistics are observed.

2The data on these individuals who do not fail during their observation period, is called right
censored.
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Censoring variables

Suppose that there is a set of ordered pair times (t∗1, t1), · · · , (t∗n, tn) where t∗js are

the entry times (< tj) and tjs (t1 < · · · < tn) are the event observing times. The

corresponding censor variables are defined as

Cj =


1 when the event of interest was observed

2 when the competing risk event was observed

0 when no event was observed

. (5.18)

The set

R(t) = {i : t∗i ≤ t ≤ ti;Ci = 0 or 1} ∪ {i : t∗i ≤ t;Ci = 2}, (5.19)

is the set of items at risk of failure at time t−, just prior to time t.

The event Cj = 1 is the event of interest (failure happens). The event Cj = 2 is

the uncensored event with competing risks. The event Cj = 0 is the right censored

event.

By Equation (5.11) and Equation (5.17), the modified partial likelihood function at

the time of occurrence and the competing risks events with a specific weight for the

Case-Cohort study is

L∗(β;x) =
n∏
j=1

I(Cj = 1) exp(β>xj)∑
r∈R(tj)

wrj exp(β>xr)
, (5.20)

where the weights wrj =
Ĝ(tj)

Ĝ(tj∧tr)
, and Ĝ(tj) is the Kaplan-Meier estimator for the

probability of censoring, see Kaplan and Meier (1958). The set R(t) represents the

case and time-matched controls at the Cohort follow-up time t. The covariates xi can

be time-dependent on ti.

Here, we choose a prior µ(·) for the coefficient β. The target distribution (the

posterior distribution) that we want to simulate is

t(β) ∝ µ(β)L∗(β;x). (5.21)
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Table 5.1: Hypoxia study: 10 records are extracted from dataset
age hgb tumsize IFP HP5 pelvicln resp pelrec disrec survtime stat dftime
78 119 7 8 32.1428571 N CR N N 6.152 0 6.152
69 131 2 8.2 2.173913 N CR N N 8.008 0 8.008
55 126 10 8.6 52.3255814 N NR Y N 0.621 1 0.003
55 141 8 3.3 3.2608696 N CR Y Y 1.12 1 1.073
50 95 8 18.5 85.4304636 Y NR Y N 1.292 1 0.003
57 132 8 20 19.3548387 N CR N N 7.929 0 7.929
53 127 4 21.8 44.5783133 E CR N N 8.454 0 8.454
62 142 5 31.6 59.6774194 N CR Y Y 7.116 0 7.107
23 145 5 16.5 29.1666667 N CR N N 8.378 0 8.378
57 142 3 31.5 85.7142857 N CR N N 8.178 0 8.178
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hgb Haemoglobin (g/l)

pelvicln Pelvic node involvment: N=Negative, E=Equivoval,Y=Positive
pelrec Pelvic disease observed: Y=Yes, N=No
disrec Distant disease observed: Y=Yes, N=No

stat Status at last follow-up: 0=Alive, 1=Dead

5.3.2 The analysis of Hypoxia Study

In the study, 109 patients with cervical cancer were treated at a cancer center be-

tween the year 1994 to 2000. Meanwhile two cancer marker were done in the time of

diagnosis: a hypoxia marker (HP5: percentage of measurements less that 5 mmHg)

and the interstitial fluid pressure (IFP). IFP are measured at a number of locations

in the tumor and a mean value per patients was calculated. There are totally six di-

agnosis variables (age, hgb, tumorsize, IFP, HP5, pelvicln) and five outcome variables

(resp, pelrec, disrec, survtime, stat), see Table 5.1. The outcome variables include

the information of the treatment, relapse and death. The response to treatment has

two cases: complete response (CR) when the tumor has completely disappeared after

treatment, and no response (NR) when either the disease has progressed to other sites

or the tumor has not disappeared. Under the situation that resp is NR, if disease

progressed to other sites then disrec=Y; if the tumor still is present then pelrec=Y,

see other analysis about this case in textbook Pintilie (2006).

Consider the modified partial likelihood Equation (5.20). Here the number n of

observations is 109. We use all the diagnosis variables as the covariates so the β is

defined on R6 where the components are sequentially age, hgb, tumsize, IFP, HP5

and pelvicln. All the entry times t∗i s are zero, and the failure times tjs are from the

variable dftime. We use the outcome variables to define the censor variables Cj for

competing risks,

Cj = I(pelrecj = Y ) + 2I(pelrecj = N, statj = 1), (5.22)
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Table 5.2: The settings of MwG, AM, and ADSSMG
Initial point Burn-in time # iterations proposal other

MwG N(0, I6) 0 1, 000, 000 N(0, 0.1)
AM N(0, I6) 0 1, 000, 000 see Example 4.3.1 θ = 0.3

ADSSMG N(0, I6) 0 1, 000, 000 normal distribution

Table 5.3: The coefficient estimates by CRR, MwG, AM and ADSSMG
βage βhgb βtumsize βifp βhp5

βpelv.
CRR −0.025950 −0.013330 0.258900 0.031370 0.001198 0.497400
AM −0.026309 −0.014401 0.245710 0.031485 0.001299 0.513099

MwG −0.026543 −0.013669 0.257617 0.031522 0.001398 0.506934
ADSSMG −0.026521 −0.013658 0.256224 0.031679 0.001285 0.510447

which means that the competing risk here is defined as that patients are dead and

the tumors has disappeared.

Here we apply the MwG, AM and ADSSMG to sample the data for the posterior

distribution t(·) in Equation (5.21). We compare the estimates generated by three

algorithms with the R package cmprsk - CRR. Table 5.3 shows the coefficients esti-

mate generated by CRR, AM, MwG, and ADSSMG. The three algorithms present

very well. From Table 5.4, the standard errors of the coefficients generated by CRR

and ADSSMG which show that the two groups of data are roughly same.

From Figure 5.3, the 100-step average of acceptance rates by AM is smallest, that

by MwG stays in the middle, and that by ADSSMG is highest roughly staying in 0.4.

Figure 5.4 presents the histograms of the sample marginal densities of HP5 and

IPF where the densities by these three algorithms. The R function “hist” is called

with the parameters: breaks= 172 for IPF and breaks= 400 for HP5; color is yellow

and the border color is red. Here we only show the truncated histograms (HP5 is in

[−0.1, 0.1], IPF is in [−0.04, 0.04]) because there are few sample data on the rest of

Table 5.4: The estimates of standard errors by CRR and ADSSMG
βage βhgb βtumsize βifp βhp5

βpelv.
CRR 0.01564 0.01201 0.10690 0.01705 0.00633 0.33520

ADSSMG 0.01522 0.01298 0.10591 0.01982 0.00704 0.30021
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Figure 5.3: The left plot is the 100-step average of acceptance rates generated by
MwG; the center plot is the 100-step average of acceptance rates generated by AM;
the right plot is the 100-step average of acceptance rates generated by ADSSMG.

Figure 5.4: The top left is the histogram of HP5 by MwG; the top center is the
histogram of HP5 by AM; the middle right is the histogram of HP5 by ADSSMG; the
bottom left is the histogram of IPF by MwG; the bottom center is the histogram of
IPF by AM; the bottom right is the histogram of IPF by ADSSMG.
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Figure 5.5: The top left is the ACF of HP5 by MwG; the top center is the ACF of
HP5 by AM; the middle right is the ACF of HP5 by ADSSMG; the bottom left is the
ACF of IPF by MwG; the bottom center is the ACF of IPF by AM; the bottom right
is the histogram of IPF by ADSSMG.

Figure 5.6: The left is the integrated autocorrelation time of HP5 by MwG, AM and
ADSSMG; the right is the integrated autocorrelation time of IPF by MwG, AM and
ADSSMG.
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the range. If the histogram shows more red borders, it means that more data are

concentrated in the interval (it has relatively small estimate of covariance). For HP5,

ADSSMG gets relatively larger estimate of covariance. For IPF, AM gets relatively

smaller estimate of covariance.

From Figure 5.5, the sample autocorrelations generated by AM and ADSSMG get

close to zero earlier than MwG. The point also can be found from integrated auto-

correlation time (IAT) in Figure 5.6. For HP5, IAT from ADSSMG is smallest and

roughly equal to 10. For IPF, IAT from AM is smallest and roughly equal to 20.

Although MwG, AM and ADSSMG perform well for this Cohort study, the inte-

grated autocorrelation times of AM and ADSSMG are much smaller than MwG.



Chapter 6

Conclusions

In the thesis, first we study some relationships among Containment and Dimin-

ishing Adaptation and ergodicity of adaptive MCMC through some examples and

some theoretical results. 1. Containment and Diminishing Adaptation imply ergod-

icity see (Roberts and Rosenthal, 2007, Theorem 13). 2. Diminishing Adaptation

alone may not guarantee ergodicity, see Examples 2.1.1 and 2.2.1. Example 2.2.1 is

more interesting, because there are only two transition kernels in the collection of

transition kernels. 3. Containment alone may not guarantee ergodicity, see Roberts

and Rosenthal (2007, Example 4). 4. Neither Diminishing Adaptation nor Contain-

ment is necessary for ergodicity, see Proposition 2.1.2. 5. Under certain additional

condition, Containment is necessary, see Theorem 3.2.1 and Corollary 3.2.1. 6. For

adaptive Metropolis algorithms, using some standard statistics as the adaptation of

adaptive MCMC, Diminishing Adaptation can be implied by some simple conditions,

see Proposition 4.3.2.

Second we study simultaneous polynomial ergodicity. For most cases of S.P.E.,

Containment is implied, because the boundedness of the process {V (Xn) : n ≥ 0}
for some test function V can be shown. Simultaneous geometric ergodicity which is

a special case of S.P.E., is also studied through considering the quantitative bound

given by Rosenthal (1995).

Third we give some simple and easy-to-check conditions for adaptive Metropolis

and adaptive Metropolis-within-Gibbs algorithms. The proposals are not necessarily
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restricted in the family of Gaussian distributions. For targets with lighter-than-

exponential tails, uniform local positivity just is required for proposals. For targets

with exponential tails, the condition that the uniform first moment of proposals has

some specific lower bound is required besides uniform local positivity. For targets

with hyperbolic tails, the uniform local compact support condition for proposals is

required besides the above two conditions.

Finally, we propose an adaptive directional Metropolis-within-Gibbs algorithm,

and compare it with Metropolis-within-Gibbs sampler. We conclude that For tar-

gets with high correlations, adaptive directional Metropolis-within-Gibbs algorithms

perform better than Metropolis-within-Gibbs sampler from simulation results.



Appendix A

Appendix A Markov Chain

The following notations and fundamental results are mainly drawn from text-

book Meyn and Tweedie (1993) and Roberts and Rosenthal (2004).

A.1 Definition

Consider the state space X and the σ-field B(X ). The function P (·, ·) : X×B(X )→
R is called to be a transition kernel if

(i) For each x ∈ X , A→ P (x,A) is a probability measure on (X ,B(X ));

(ii) For each A ∈ B(X ), x→ P (x,A) is a measurable function.

The process X = {Xn : n ∈ Z+} (Z+ := {0, 1, 2, · · · }) is called a discrete time

homogeneous Markov Chain with respect to a filtration Fn := σ(X0, · · · , Xn) if the

property

P (Xn ∈ A | Fn−1) = P (Xn ∈ A | Xn−1) := P (Xn−1, A), A ∈ B(X ) (A.1)

is satisfied. Denote the n-step transition kernel by P n(x,A) := P (Xn ∈ A | X0 = x).

Theorem A.1.1 (Chapman-Kolmogorov equation). For any m with 0 ≤ m ≤ n,

P n(x,A) =

∫
X
Pm(x, dy)P n−m(y, A), x ∈ X , A ∈ B(X ). (A.2)
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We regard values of the whole chain X as lying in the sample path space

Ω = X∞ =
∏∞

i=0Xi, where Xi is a copy of X . The X is a random variable on Ω

equipped with a σ-field F . Denote the probability measure of the chain X starting

with the initial distribution µ by Pµ (Px := Pδx). The triple (Ω,F ,Pµ) defines a

Markovian Chain with the initial distribution µ.

The state space X is called discrete if X has a finite or countable number of ele-

ments. The X is called general if it is equipped with a countably generated σ-field

B(X ). The state space X is called topological if it is equipped with a locally compact

separable metrizable topology with B(X ) as the Borel σ-field. In the thesis we only

consider the discrete or general state space.

We denote the first entry time and the hitting time by τA := min{n > 0 : Xn ∈ A}
and σA := min{n ≥ 0 : Xn ∈ A} respectively.

Let {a(n)} be a distribution on Z+, consider the sample chain Xa with transition

kernel Ka(x,A) :=
∑∞

n=0 P
n(x,A)a(n), for x ∈ X , A ∈ B(X ), see the properties of

sample chain in textbook Meyn and Tweedie (1993).

A.2 Irreducibility and Aperiodicity

Definition A.2.1 (Irreducible). If the state space is discrete, irreducibility means

that for all x, y ∈ X , y is accessible from x, i.e. there exists n ∈ N such that

P n(x, {y}) > 0. If the state space X is a general state space, we call the chain X

ϕ-irreducible if there exists a measure ϕ on B(X ) such that, whenever ϕ(A) > 0, we

have Px(τA <∞) > 0 for all x ∈ X .

If X is ϕ-irreducible for some measure ϕ, then there exists a probability measure

ψ (maximal irreducibility measure) on B(X ) such that

(i) X is ψ-irreducible;

(ii) for any other measure ϕ′, X is ϕ′-irreducible if and only if ϕ′ is absolutely

continuous with respect to ψ;

(iii) if ψ(A) = 0 then ψ{y : Px(τA <∞) > 0} = 0;

(iv) ψ is equivalent to
∫
X ϕ

′(dy)Ka1/2
(y, ·) for any finite irreducibility measure ϕ′

where Ka1/2
(x,A) :=

∑∞
n=0 P

n(x,A)2−(n+1).
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Let ψ-irreducibility represent that ψ is a maximal irreducibility measure. We write

B+(X ) := {A ∈ B(X ) : ψ(A) > 0} for the sets of positive ψ-measure. A set A is called

full if ψ(Ac) = 0 and absorbing if P (x,A) = 1 for x ∈ A.

Another property of maximal irreducibility is that for any ψ-null set, its com-

plement set can be decomposed into two sets N and A0 where N is ψ-null and

P (x,A0) ≡ 1 for any x ∈ A0.

Definition A.2.2 (Petite set and Small set). We call a set C ∈ B(X ) νa-petite if the

sample chain satisfies

Ka(x,B) ≥ νa(B), (A.3)

for all x ∈ C, B ∈ B(X ), where νa is a non-trivial measure on B(X ). If the sample

distribution a(·) is a point mass distribution on some m ∈ Z+, the νa-petite set is

called νm-small set.

Definition A.2.3 (Aperiodic). Suppose that X is a ϕ-irreducible Markov Chain. The

largest d for which a d-circle1 occurs for X is called the period of X. When d = 1,

the chain X is called aperiodic. When there exists a ν1-small set A with ν1(A) > 0,

the chain X is called strongly aperiodic.

Now we introduce the theorem which presents the relationship between petite set

and small set.

Theorem A.2.1. If X is irreducible and aperiodic then every petite set is small.

A.3 Recurrence and Transience

In terms of the occupation time ηA :=
∑∞

i=1 I(Xi ∈ A), we study the transience

and recurrence of the subset A ⊂ X . A is called uniformly transient if there exists

M > 0 such that for all x ∈ A, Ex [ηA] < M . A is called recurrent if Ex [ηA] = ∞
for all x ∈ A. A is called transient if it can be covered with a countable number of

uniformly transient sets.

Definition A.3.1 (Recurrence and Transience). The chain X is called recurrent if it

is ψ-irreducible and Ex [ηA] =∞ for every x ∈ X and every A ∈ B+(X ). The chain

1there exist disjoint sets D1, · · · , Dd ∈ B(X ) such that (i) for x ∈ Di, P (x,Di+1) = 1, i =
0, · · · , d− 1 (mod d); (ii) the set N = [∪di=1Di]c is ψ null.
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X is called transient if it is ψ-irreducible and X is transient.

The set A is called Harris recurrent if the probability of the occupation time equal

to infinity is 1 starting from any point in A, i.e. Pδx(ηA = ∞) = 1 for x ∈ A. The

chain X is called Harris recurrent if it is ψ-irreducible and every set in B+(X ) is

Harris recurrent.

Obviously, every Harris recurrent set is recurrent. Furthermore, if the chain X is

recurrent then the state space X can be decomposed into two parts: a set N and a

non-empty set H, where N is ψ-null transient and any subset of H in B+(X ) is Harris

recurrent and P (x,H) = 1 for x ∈ H.

Theorem A.3.1. Suppose that X is ψ-irreducible. Then either

(i) every set in B+(X ) is recurrent, in which case we call the chain X is recurrent; or

(ii) the chain X is transient.

The drift operator ∆ is defined for any nonnegative measurable function V by

∆V (x) = PV (x)− V (x) for x ∈ X . The following theorem presents the relationship

between the drift operator, and recurrence and transience.

Theorem A.3.2. Suppose that X is ψ-irreducible.

(i) The chain X is transient if and only if there is a bounded non-negative

function V and a set C ∈ B+(X ) such that ∆V (x) ≥ 0 for x ∈ Cc and{
x : V (x) > supy∈C V (y)

}
∈ B+(X );

(ii) The chain X is recurrent if there exists a petite set C ⊂ X , and a function V

which is unbounded off petite sets in the sense that CV (n) := {y : V (y) ≤ n} is petite

for all n, such that ∆V (x) ≤ 0 for x ∈ Cc.

A.4 Coupling Method and Aperiodic Ergodic The-

orem

For any two initial measures µ1 and µ2, define two process Xn ∼ P n
µ1

(·) and Yn ∼
P n
µ2

(·) with the same transition kernel P (x, ·). Let the coupling time T be the minimal

random time of Xn = Yn, i.e. T = min {n ≥ 0 : Xn = Yn}. Then the chain Z where

Zn = XnI(n < T ) + YnI(n ≥ T ) has the same distribution as X. The coupling
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inequality

‖P (Xn ∈ ·)− P (Yn ∈ ·)‖ = ‖P (Zn ∈ ·)− P (Yn ∈ ·)‖ ≤ P (T > n). (A.4)

is satisfied where the total variation norm

‖ν(·)‖ := sup
A∈B(X )

|ν(A)| . (A.5)

A σ-finite measure π on B(X ) with the property π(A) =
∫
X π(dx)P (x,A) for

A ∈ B(X ) is called invariant. π is called stationary if it is an invariant probability

measure.

Using the coupling method and the splitting technique (see textbook Meyn and

Tweedie (1993)), the following theorem can be shown.

Theorem A.4.1 (Aperiodic Ergodic Theorem). Suppose the chain X is aperiodic

and Harris recurrent with invariant measure π. The following are equivalent:

(i) the unique invariant measure π is finite;

(ii) there is a petite set C ∈ B(X ) such that supx∈C Ex[τC ] <∞;

(iii) there exists some petite set C, some b <∞ and a non-negative function V finite

at some x0 ∈ X , satisfying

∆V (x) ≤ −1 + bIC(x), x ∈ X . (A.6)

Any of these condition is equivalent to the existence of a unique invariant probability

measure π such that for every initial condition x ∈ X , ‖P n(x, ·)− π(·)‖ → 0.

When the state space X is discrete, the irreducibility of the chain X implies positive

recurrent. So, if the chain X on the discrete space X is irreducible and aperiodic then

X is ergodic.



104 A.5. GEOMETRIC ERGODICITY AND POLYNOMIAL ERGODICITY

A.5 Geometric Ergodicity and Polynomial Ergod-

icity

A Markov Chain satisfies a geometric drift condition if there are constant 0 < λ < 1

and b <∞, and a function V : X −→ [1,∞], such that,

PV ≤ λV + bIC , (A.7)

for some C ∈ B+(X ).

Definition A.5.1 (Geometric Ergodicity). A Markov Chain with stationary distri-

bution π is geometric ergodic if

‖P n(x, ·)− π(·)‖ ≤M(x)ρn, n = 1, 2, 3, · · · (A.8)

for some ρ < 1, where M(x) <∞ for π-a.e. x ∈ X .

If the function M(·) in the above definition is a constant then the chain is called

uniformly ergodic, see its properties in Roberts and Rosenthal (2004).

The following theorem shows the criterion of geometric ergodicity, see Roberts and

Rosenthal (2004).

Theorem A.5.1. Consider a ψ-irreducible aperiodic Markov Chain X with stationary

distribution π(·). Suppose that C ∈ B+(X ) is a small set. Suppose further that the

geometric drift condition is satisfied for some constants 0 < λ < 1 and b <∞, and a

function V : X −→ [1,∞) with V (x) <∞ for at least one x ∈ X . Then the chain is

geometrically ergodic.

To study polynomial ergodicity, Fort and Moulines (2003) developed the following

result, see also Jarner and Roberts (2002).

Let f : X → [1,∞) be a Borel function, q be a positive integer and a non-empty

set C ∈ B(X ).

P1: There exist some measurable functions on X , 1 ≤ f =: V0 ≤ · · · ≤ Vq, and

some finite constants bk, k ∈ {0, . . . , q − 1}, such that sup
x∈C

Vq(x) < ∞ and for all

k ∈ {0, . . . , q − 1},
PVk+1 − Vk+1 ≤ −Vk + bkIC . (A.9)
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Theorem A.5.2. Let q be a positive integer, f be a Borel function and C ∈ B(X )

be a non-empty petite set. Suppose that P is ψ-irreducible and aperiodic and that

P1 holds. Then P possesses an unique invariant probability measure π such that

π(f) <∞ and for all x in the full and absorbing set {Vq <∞},

lim
n

(n+ 1)q−1 ‖P n(x, ·)− π(·)‖f = 0, (A.10)

where ‖µ‖f = sup|g|≤f |µ(g)|.
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Société Française de Statistique, 148(5):5–28, 2007.

C Andrieu and E Moulines. On the ergodicity properties of some adaptive Markov

Chain Monte Carlo algorithms. . Ann. Appl. Probab., 16(3):1462–1505, 2006.

C. Andrieu and C.P. Robert. Controlled MCMC for optimal sampling. . Preprint,

2001.
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