STA 261S, Winter 2004, Test #1
(Feb. 11, 2004. Duration: 100 minutes.)

SOLUTIONS

1. Let Ω = S = [0, 1], and let \(L_0(θ \mid s) = e^θ \). Determine (with explanation) whether or not each of the following likelihood functions is equivalent to the likelihood function \(L_0(θ \mid s) \).

(a) \(L_1(θ \mid s) = s^2 + e^θ \).

Solution. Here \(\frac{L_1(θ \mid s)}{L_0(θ \mid s)} = \frac{s^2 + e^θ}{e^θ} = s^2 e^{-θ} + 1 \), which depends on θ. Hence, \(L_1 \) is NOT equivalent to \(L_0 \).

(b) \(L_2(θ \mid s) = e^{s^2 + θ} \).

Solution. Here \(\frac{L_2(θ \mid s)}{L_0(θ \mid s)} = \frac{e^{s^2 + θ}}{e^θ} = e^{s^2} \), which does not depend on θ. Hence, \(L_2 \) IS equivalent to \(L_0 \).

(c) \(L_3(θ \mid s) = e^{s^2 + θ} \).

Solution. Here \(\frac{L_3(θ \mid s)}{L_0(θ \mid s)} = \frac{e^{s^2 + θ}}{e^θ} = e^{(s^2 − 1)θ} \), which depends on θ. Hence, \(L_3 \) is NOT equivalent to \(L_0 \).

2. Let Ω = S = (0, 1). Suppose the likelihood function, given an observation \(s \in S \), is given by \(L(θ \mid s) = θ^{2s} (1 − θ)^{4s} \), for \(θ \in Ω \).

(a) Compute (with explanation) the Score Function for this likelihood.

Solution. Here \(\ell(θ \mid s) = \log L(θ \mid s) = 2s \log(θ) + 4s \log(1 − θ) \), so the Score Function is \(S(θ \mid s) = \frac{∂}{∂θ} \ell(θ \mid s) = \frac{2s}{θ} − \frac{4s}{1−θ} \).

(b) Solve (with explanation) the corresponding Score Equation.

Solution. The Score Equation is \(S(θ \mid s) = 0 \), which is equivalent to \(2s(1 − θ) − 4s(1 − θ) − 2s = 0 \), or \(θ = 2s/6s = 1/3 \).

(c) Determine (with explanation) the MLE, \(\hat{θ} \), for θ.

Solution. Here the derivative \(S(θ \mid s) \) is well-defined throughout Ω. And, the second derivative \(\left(\frac{∂}{∂θ} \right)^2 \ell(θ \mid s) = −2sθ^2 \) \(−4s(1 − θ)^{-2} < 0 \) for all \(θ \in Ω \) and \(s \in S \). And, on the boundary as \(θ → 0 \) or \(θ → 1 \), the likelihood goes to 0. Hence, the solution to the Score Equation must be a global maximum, so \(\hat{θ} = 1/3 \).
Let $\Omega = (0, \infty)$, $S = [6, \infty)$, and $P_\theta = \text{Uniform}[6, 5\theta + 6]$ for $\theta \in \Omega$. Suppose we observe the observations x_1, x_2, \ldots, x_n, with $x_i \geq 6$ for all i.

(a) Compute (with full explanation) the MLE, $\hat{\theta}$, for θ.

Solution. The density of P_θ is equal to $1/5\theta$ for $6 \leq x_i \leq 5\theta + 6$, otherwise 0. Hence, the likelihood function $L(\theta \mid x_1, \ldots, x_n)$ is equal to $(1/5\theta)^n$ provided that $6 \leq x_i \leq 5\theta + 6$ for all i, i.e. $\max_{1 \leq i \leq n} x_i \leq 5\theta + 6$, otherwise it equals 0. Hence, the likelihood is maximised when $(1/5\theta)^n$ is as large as possible (i.e., θ is as small as possible), subject to the constraint that $\max_{1 \leq i \leq n} x_i \leq 5\theta + 6$, i.e. $5\theta + 6 \geq \max_{1 \leq i \leq n} x_i$, i.e. $\theta \geq [(\max_{1 \leq i \leq n} x_i) - 6]/5$. The smallest θ satisfying this constraint is $\hat{\theta} = [\max_{1 \leq i \leq n} (x_i - 6)]$, which is the MLE.

(b) Compute (with explanation) the MLE for θ^2.

Solution. Since the mapping $\theta \mapsto \theta^2$ is 1–1 on S, we can use the “Plug-In Estimator” as the MLE for θ^2. Thus the MLE for θ^2 is equal to $(\hat{\theta})^2 = \left(\frac{1}{n} \max_{1 \leq i \leq n} (x_i - 6)\right)^2 = \frac{1}{2n} \max_{1 \leq i \leq n} (x_i - 6)^2$.

4. Suppose we observe three observations: $x_1 = 2$, $x_2 = 3$, $x_3 = 7$.

(a) Compute \bar{x} and S^2. [Provide actual numbers, not just formulae.]

Solution. $\bar{x} = \frac{1}{3}[2 + 3 + 7] = 12/3 = 4$.

$S^2 = \frac{1}{3-1}[(2 - 4)^2 + (3 - 4)^2 + (7 - 4)^2] = \frac{1}{2}[4 + 1 + 9] = 14/2 = 7$.

(b) Suppose the statistical model is a Location-Scale Model, with $\Omega = \mathbb{R} \times (0, \infty)$, and $P_{(\mu, \sigma^2)} = N(\mu, \sigma^2)$ for $(\mu, \sigma^2) \in \Omega$. Compute (with explanation) a 95% confidence interval for μ. [You should provide an explicit numerical formula, but you do not need to simplify arithmetic expressions. You may use the facts that if $T_2 \sim t(2)$, $T_3 \sim t(3)$, and $T_4 \sim t(4)$, then $P[T_2 \leq -2.92] = P[T_3 \leq -2.35] = P[T_4 \leq -2.13] = 0.05$, and $P[T_2 \leq -4.30] = P[T_3 \leq -3.18] = P[T_4 \leq -2.78] = 0.025$.

Solution. We know that under P_{θ}, $T \equiv \sqrt{n}/S^2 (X - \mu) \sim t(n - 1)$, i.e. $T \equiv \sqrt{\frac{1}{n-1}} (X - \mu) \sim t(2)$. Hence, $P[-4.30 < T < +4.30] = 1 - P[T \leq -4.30] - P[T \geq +4.30] = 1 - 2 P[T \leq -4.30] = 1 - 2(0.025) = 0.95$. Thus, $P[-4.30 < T < +4.30] = P[X - 4.30 \sqrt{\frac{7}{3}} < \mu < X - 4.30 \sqrt{\frac{7}{3}}]$. Hence, a 95% C.I. is $(\bar{x} - 4.30 \sqrt{\frac{7}{3}}, \bar{x} + 4.30 \sqrt{\frac{7}{3}}) = (4 - 4.30 \sqrt{\frac{7}{3}}, 4 + 4.30 \sqrt{\frac{7}{3}})$. [This equals $(-2.57, 10.57)$, but you don’t need to compute that.]

(c) Suppose the statistical model is a Location Model, with $\Omega = \mathbb{R}$, and $P_\theta = N(\theta, 4)$ for
\(\theta \in \Omega \). Compute (with explanation) a P-value for the null hypothesis \(H_0 : \theta = 6 \) versus the alternative hypothesis \(H_1 : \theta \neq 6 \). [You may leave your answer in terms of the \(\Phi \) function.]

Solution. We know that under \(P_0 \), \(Z \equiv \sqrt{n/\sigma^2}(\bar{X} - 6) = \sqrt{3/4}(\bar{X} - 6) \sim N(0,1) \). The observed value of \(Z \) was \(\sqrt{3/4}(4 - 6) = -\sqrt{3} \). The probability (under \(P_0 \)) of observing a value which is at least as surprising, is equal to \(P[|Z| \geq \sqrt{3}] = 2 \Phi(-\sqrt{3}) \). [This equals 0.0833, but you don’t need to compute that.]

5. Let \(\Omega = S = \mathbb{R} \), with \(P_\theta = \text{Uniform}[\theta - 3, \theta + 3] \) for \(\theta \in \Omega \). Suppose we observe \(x_1, x_2, \ldots, x_{100} \), and that \(\bar{x} = 11 \).

(a) Find \(C_1 > 0 \) and \(C_2 \) (which may depend on \(\theta \), but may not depend on \(x_1, \ldots, x_{100} \)) such that if \(Z = C_1(\bar{X} - C_2) \), then under \(P_0 \), \(Z \) has mean 0 and variance 1. [Here \(\bar{X} \) stands for the corresponding random variable, as opposed to the observed value \(\bar{x} \). Also, recall that the Uniform\([a,b]\) distribution has mean \((a+b)/2\), and variance \((b-a)^2/12\).]

Solution. Here \(P_0 \) has mean \(((\theta - 3) + (\theta + 3))/2 = \theta \), and variance \(((\theta + 3) - (\theta - 3))^2/12 = 6^2/12 = 3/2 \). Hence, \(\bar{X} \) has mean \(\theta \) and variance \(3/2n = 3/100 \).

Hence, if \(C_1 = 1/\sqrt{3/100} = 10/\sqrt{3} \) and \(C_2 = \theta \), then \(Z = C_1(\bar{X} - C_2) = 10(\bar{X} - \theta)/\sqrt{3} \) has mean 0 and variance 1 under \(P_0 \).

(b) Compute (with explanation) an approximate 95% confidence interval for \(\theta \). [Hint: Use the C.L.T.]

Solution. Since \(n = 100 \) is reasonably large, we can use the C.L.T. approximation to conclude that under \(P_0 \), \(Z \approx N(0,1) \), i.e. \(10(\bar{X} - \theta)/\sqrt{3} \approx N(0,1) \).

Thus \(0.95 \approx P[-1.96 < (\bar{X} - \theta)(10/\sqrt{3}) < +1.96] = P[\bar{X} - (\sqrt{3}/10)1.96 < \theta < \bar{X} + (\sqrt{3}/10)1.96] \). Hence, a 95% C.I. is \((\bar{x} - 1.96\sqrt{3}/10, \bar{x} + 1.96\sqrt{3}/10) = (11 - 0.196\sqrt{3}, 11 + 0.196\sqrt{3}) \). [This equals \((10.66, 11.34) \), but you don’t need to compute that.]

6. Suppose \(\Omega = S = \mathbb{R} \), and we observe two observations \(x_1 \) and \(x_2 \), and the likelihood function is given by \(L(\theta | x_1, x_2) = \exp[(x_1 - \theta)^2] \exp[2\theta x_2] \). Let \(T(x_1, x_2) = x_1 - x_2 \).

(a) Is \(T \) a sufficient statistic for \(\theta \)? (Explain your reasoning.)

Solution. Yes, \(T \) is sufficient. Indeed, \(L(\theta | x_1, x_2) = \exp[(x_1 - \theta)^2 + 2\theta x_2] = \exp[x_1^2 - 2\theta x_1 + \theta^2 + 2\theta x_2] = \exp[x_1^2 + \theta^2 - 2\theta T(x_1, x_2)] = h(x_1, x_2) g_\theta(T(x_1, x_2)) \), where \(h(x_1, x_2) = \exp[x_1^2] \), and \(g_\theta(t) = \exp[\theta^2 - 2\theta t] \). Hence, by the Factorisation Theorem, \(T \) is sufficient.

(b) Is \(T \) a minimal sufficient statistic for \(\theta \)? (Explain your reasoning.)

Solution. Yes, \(T \) is minimal.
Proof #1: Indeed, if \(L(\theta \mid x_1, x_2) = K L(\theta \mid y_1, y_2) \) for all \(\theta \in \Omega \), then

\[
L(1 \mid x_1, x_2)/L(1 \mid y_1, y_2) = L(0 \mid x_1, x_2)/L(0 \mid y_1, y_2).
\]

Hence,

\[
L(1 \mid x_1, x_2)/L(0 \mid x_1, x_2) = L(1 \mid y_1, y_2)/L(0 \mid y_1, y_2),
\]

i.e.

\[
\exp[x_1^2 + 1^2 - 2(1)T(x_1, x_2)]/\exp[x_1^2 + 0^2 - 2(0)T(x_1, x_2)]
= \exp[y_1^2 + 1^2 - 2(1)T(y_1, y_2)]/\exp[y_1^2 + 0^2 - 2(0)T(y_1, y_2)],
\]

i.e. \(\exp[1 - 2T(x_1, x_2)] = \exp[1 - 2T(y_1, y_2)] \). It follows that \(1 - 2T(x_1, x_2) = 1 - 2T(y_1, y_2) \), and so \(T(x_1, x_2) = T(y_1, y_2) \). Hence, \(T \) is minimal.

Proof #2: If \(L(\theta \mid x_1, x_2) = K L(\theta \mid y_1, y_2) \) for all \(\theta \in \Omega \), then \(S(\theta \mid x_1, x_2) = S(\theta \mid y_1, y_2) \), i.e. \(2\theta - 2\theta T(x_1, x_2) = 2\theta - 2\theta T(y_1, y_2) \), and so \(T(x_1, x_2) = T(y_1, y_2) \). Hence, \(T \) is minimal.

Proof #3: The solution to the Score Equation is \(\theta = T(x_1, x_2) \). Hence, since equivalent likelihoods have the same Score Equation, they also have the same value of \(T \). Hence, \(T \) is minimal.