
STA3431H (Monte Carlo Methods), Winter 2009

Homework #2

Due: In class by 2:10 p.m. sharp on Monday March 2.

NOTE: All the same “Notes” from HW#1 still apply. In particular, homeworks which
are late, even by one minute, will be penalised.

The assignment:

1. Suppose π(x, y) = c g(x, y) where π and c > 0 are unknown, and g(x, y) =
x2y3 sin(y/5) cos(x4y2/6)e−(x−y)2 for 0 < x < 1 and 0 < y < 2, otherwise 0. Let f be
the density of the uniform distribution on [0, 1] × [0, 2]. Compute Eπ[X2Y ] using each
of the following two different Monte Carlo algorithms, each based on samples from this
same density f . For each algorithm, you should explain and program and run it, and also
estimate (with explanation) its standard error.

(a) An Importance Sampler.

(b) A Rejection Sampler.

2. Consider the standard variance components model described in lecture. Suppose
K = 2 and J1 = J2 = 4, with data Y11 = 1, Y12 = 2, Y13 = 3, Y14 = 4, Y21 = 2, Y22 = 4,
Y23 = 6, Y24 = 8. Use the prior values a1 = a2 = b1 = b2 = 1, a3 = 0, and b3 = 4. Program
an appropriate Metropolis algorithm for the corresponding posterior distribution, and use
it to estimate (as best as you can, together with standard errors) the posterior probability
that V > W .

3. Repeat the previous question where now K = 6 and Ji ≡ 5, and the data Yij are
the famous “dyestuff” data, available in the file “Rdye”.

4. Consider the homerun baseball data in the file “Rhomerun”, giving the number
of homeruns Hi and number of attempts (at-bats) Ai for players 1 ≤ i ≤ 12. Consider
the Ai to be fixed, known, constants, and the Hi to be observed data. Assume that
Hi ∼ Binomial(Ai, θi) (cond. ind.), where θi ∼ Beta(1001, 1 + 1000S) (cond. ind.) are
unknown. Finally, put a prior S ∼ Poisson(4) on S.

(a) Specify (up to a normalising constant) the joint probabilities for
θ1, . . . , θ12, S,H1, . . . ,H12.

(b) By conditioning on the observed values of the Hi (from “Rhomerun”), specify
(up to a normalising constant) the conditional (posterior) probabilities for θ1, . . . , θ12, S.

(c) Run a Metropolis algorithm (or other MCMC algorithm) for this posterior distri-
bution (with appropriate proposal scaling and run length and burn-in, as best as you can,
together with standard errors), to estimate the posterior means of each of the 13 variables
θ1, . . . , θ12, S. [Note: this is not an easy simulation, and will probably require very long
runs with very small proposal scalings to get it right.]


