
STA3431H (Monte Carlo Methods), Winter 2010

Homework #2

Due: In class by 2:10 p.m. sharp on Monday March 22.

NOTES:

• Late homeworks, even by one minute, will be penalised!

• Homework assignments are to be solved by each student individually; you may discuss
assignments in general terms with other students, but you must solve it on your own,
including doing all of your own computing and writing.

• Your homework should be neatly and clearly presented and explained. Computer
programs should include complete source code and program output, with comments
etc. so they are easy to follow.

• Reminders: project due March 29 at 2:10pm; test April 5 at 2:10 in SS2105.

The assignment:

1. Consider an independence sampler algorithm on X = (1,∞), where π(x) = 3x−4

and q(x) = r x−r−1 for some choice of r > 0, with identity functional h(x) = x.

(a) For what value of r will the algorithm provide i.i.d. samples?

(b) For what values of r will the sampler be geometrically ergodic?

(c) For r = 1/20, find a number n such that D(x, n) < 0.01 for all x ∈ X .

(d) Run the algorithm (on a computer) for the cases r = 1/20 and r = 12, each with
M = 105 and B = 104, to estimate Eπ(h). [Hint: if U ∼ Uniform[0, 1], then what is the
density of U−1/r?]

(e) For both cases, use repeated runs (from an overdispersed starting distribution)
to approximate the standard error of the estimate.

(f) For both cases, compute the standard error factor “varfact”, and hence obtain
different approximations of the standard error of the estimate.

(g) Compare the results of parts (e) and (f).

(h) Use the results of parts (e) and (f) to compare the two cases, to determine (with
explanation) which case leads to a “better” sampling algorithm.
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2. Let X = R, and let π(x) = c g(x), where g(x) = e−|x|/10(1 + cos(x) sin(x3)), and
let h(x) = x + x2. With appropriate choice of M and B and σ and starting distribution
L(X0), estimate Eπ(h) in each of two different ways:

(a) With a usual random-walk Metropolis algorithm for π, with usual proposals
Yn ∼ N(Xn−1, σ

2).

(b) With a Langevin (Metropolis-Hastings) algorithm with proposals Yn ∼ N(Xn−1+
1
2 σ

2 g′(Xn−1) / g(Xn−1), σ2). [Note: Here g′(x) is the usual derivative of g, and should be
computed analytically by you in advance and entered into your program.]

(c) Compare the two algorithms and discuss which one is “better”.

3. Consider the standard variance components model described in lecture, with
K = 6 and Ji ≡ 5, and {Yij} again the famous “dyestuff” data, but now with prior values
a1 = a2 = b1 = b2 = 1, a3 = 0, and b3 = 4. Estimate (as best as you can, together with
standard errors) the posterior mean of W/V , in each of three ways:

(a) With a random-walk Metropolis algorithm.

(b) With a Metropolis-within-Gibbs algorithm.

(c) With a Gibbs sampler. [Note: first derive from scratch the conditional distribu-
tions claimed in class.]

(d) Finally, discuss the relative merits of all three algorithms for this example.

4. Consider the homerun baseball data in the file “Rhomerun”, giving the number
of homeruns Hi and number of attempts (at-bats) Ai for players 1 ≤ i ≤ 12. Consider
the Ai to be fixed, known constants, and the Hi to be observed data. Assume that
Hi ∼ Binomial(Ai, θi) (cond. ind.), where θi ∼ Beta(1001, 1 + 1000S) (cond. ind.) are
unknown. Finally, put a prior S ∼ Poisson(3) on S (note: S is integer-valued).

(a) Specify (up to a normalising constant) the joint posterior distribution of S, θ1, . . . , θ12.

(b) Run at least one MCMC algorithm of your choice for this posterior distribution,
to estimate (as best as you can, together with standard errors), the posterior means of
each of the 3 variables S, θ1, θ2.

(c) For i = 1, 2, compare the estimated posterior mean of θi to the value Hi/Ai. Are
they different, and if so, how and why?
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