Given name:_____ Family name:_____

Student number:_____ Signature:_____

Tutorial (circle one):

LM157-Natasha WE76-Maelle SS621-Jason

UNIVERSITY OF TORONTO Faculty of Arts and Science

STA130H1 (Introduction to Statistical Reasoning) MIDTERM TEST

February 24, 2016, 2:10 p.m.

Duration: 100 minutes. Total points: 44.

Aids allowed: a simple non-programmable calculator

This examination paper consists of **6** single-sided pages (including this cover page), and **8** questions. The backs of the pages can be used to continue an answer (be sure to INDICATE THIS), or as scrap paper. The value of each question is indicated in [square-brackets].

NOTE: A standard normal probability table is included at the end.

DO NOT OPEN THIS TEST UNTIL YOU ARE TOLD TO DO SO.

		Score
1	(5)	
2	(4)	
3	(3)	
4	(4)	
Subtotal		

For graders' use only:

		Score
5	(4)	
6	(6)	
7	(9)	
8	(9)	
Subtotal		

IN209-Thivviya

LM123-Nora

Total (44)	
--------------	--

- 1. Suppose X is a random quantity which equals 0 with probability 1/2, or equals 2 with probability 1/3, or equals 8 with probability 1/6.
 - (a) [2] Compute the expected value E(X).

(b) [2] Compute the variance Var(X).

(c) [1] Compute the standard deviation sd(X).

- 2. Suppose Y is a random quantity having normal probabilities with mean 40 and variance 25.
 - (a) [2] Compute P(Y < 44). [Hint: don't forget the standard normal probability table included at the end of this test.]

(b) [2] Compute P(Y > 38).

3. [3] Suppose we roll an ordinary fair six-sided die. Let X be three times the observed die value plus four. (For example, if the die shows 5, then $X = 3 \times 5 + 4 = 19$.) Compute (with explanation) the expected value E(X).

4. [4] In three or four complete English sentences, without using any technical symbols or equations, explain the basic idea of what a P-value is and what it is for, in simple terms that could be understood by someone who has never taken a statistics course.

- 5. A recent poll¹ repoted in the media² asked about "happiness". They surveyed n = 1,530 Canadian adults, and found that 79% of them reported being happy³.
 - (a) [1] Based on the above, how many of the surveyed adults reported being happy?
 - (b) [3] Let p be the true fraction of all Canadian adults who would report being happy, and let \hat{p} be the sample fraction from a survey of this size. Then in terms of pand n, what are the mean and variance and sd of \hat{p} ?

- 6. Consider the happiness poll from the previous question.
 - (a) [4] Using the conservative option, compute a 95% confidence interval for p based on the poll's findings.

(b) [2] State your conclusion from the confidence interval as a complete English sentence.

¹http://angusreid.org/wp-content/uploads/2016/01/2016.01.26-life-satisfaction.pdf

 $^{^{2}}$ http://www.thestar.com/life/2016/02/01/two-thirds-of-canadians-pretty-happy-poll-finds.html

³For "Happy", we combined the responses "Very happy" and "Pretty happy" together.

- 7. Consider the happiness poll from the previous two questions.
 - (a) [2] Consider testing the null hypothesis that p = 0.77 against the alternative hypothesis that p > 0.77. Specify in a complete English sentence what the P-value would correspond to in this case.

(b) [3] Compute this P-value, using (with explanation) a normal approximation.

(c) [2] Determine (with explanation) whether or not the null hypothesis should be rejected in this case, according to standard scientific practice.

(d) [2] State in a complete English sentence your conclusion from this hypothesis test.

- 8. The above happiness poll also included separate results for each province. In Ontario, they surveyed $n_1 = 511$ adults, and found that 80% of them reported being happy. In Quebec, they surveyed $n_2 = 360$ adults, and found that 77% of them reported being happy. Write p_1 and \hat{p}_1 for the true and sample fractions who report being happy in Ontario, and p_2 and \hat{p}_2 for Quebec.
 - (a) [3] In terms of p_1 and p_2 and n_1 and n_2 , what are the mean and variance and sd of the sample difference $\hat{p}_2 \hat{p}_1$?

(b) [4] Using the bold option, compute a 95% confidence interval for the difference $p_2 - p_1$ based on the poll's findings.

(c) [2] State your final conclusion as a complete English sentence.

End of examination Total pages: 6 Total points: 44