
Correlation Example: Cricket Chirps

• Crickets make chirping sounds.

(http://songsofinsects.com/crickets/striped-

ground-cricket) Sometimes faster, sometimes

slower. Question: Is the frequency of cricket

chirps affected by the temperature?

• An old study (G.W. Pierce, “The Songs of Insects”, 1948)

measured the rate of chirps (pulses per second) 15 times, at

different temperatures (in Celsius). The results were as follows:

Temperature (C) 31.4 22.0 34.1 29.1 27.0 24.0 20.9
Chirps / Second 20.0 16.0 19.8 18.4 17.1 15.5 14.7

Temp 27.8 20.8 28.5 26.4 28.1 27.0 28.6 24.6
C/S 17.1 15.4 16.2 15.0 17.2 16.0 17.0 14.4

• Does this indicate that temperature affects chirps?

− How can we test this??
sta130–119

http://songsofinsects.com/crickets/striped-ground-cricket
http://songsofinsects.com/crickets/striped-ground-cricket


Cricket Chirps (cont’d)

• Are these Yes/No proportions? No, they’re general quantities.

• Can we compare two general samples? No, they’re two different

aspects of the same sample.

• Can any of our previous techniques be applied? Not really . . .

• So what to do?

• One strategy: plot all the values on a graph, of chirps/second

versus temperature, to see if there is a pattern.

• Let’s try it . . .
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Cricket Chirps (cont’d)

• So, is there a pattern?? Seems to be. How to test?

• Let X be the temperature (random), and let Y be the cricket

chirps/second. We want to see if they are “related”.

• First problem: X and Y are in different “units”, on different

“scales”, with different means, different variances, etc. How to

adjust them to be comparable? Solution: use Z-scores!

• Write µX for the true mean of X , and σX for the true sd of X .

And µY and σY for Y .

• Then let Z = (X − µX )/σX be the Z-score for X . And, let

W = (Y − µY )/σY be the Z-score for Y . Then Z and W are on

the same “scale”: they measure how many sd above (or below) the

mean, for X and for Y , respectively.

• So now the question is, are Z and W related?
sta130–122



Cricket Chirps (cont’d)

• Question: Are Z and W related? That is, does increasing Z

tend to increase (or decrease) W , or does it make no difference?

• Idea: Look at some expected values.

− E (Z ) = 0 (since it’s a Z-score!). And E (W ) = 0.

− If Z and W had no relation (independent), then

E (ZW ) = E (Z )E (W ) = 0× 0 = 0.

− But if Z tends to get larger when W gets larger, and smaller

when W gets smaller, then we might find that E (ZW ) > 0.

− Or, if Z tends to get smaller when W gets larger, and larger

when W gets smaller, then we might find that E (ZW ) < 0.

• So, we define the correlation between X and Y as:

ρ = ρX ,Y = E (ZW ) = E

[(
X − µX
σX

)(
Y − µY
σY

)]
.
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Estimating the Correlation

• Recall: the correlation Cor(X ,Y ) between X and Y is:

ρ = ρX ,Y = E (ZW ) = E

[(
X − µX
σX

)(
Y − µY
σY

)]
.

− Can we compute this value?

• Well, given a sample of values x1, x2, . . . , xn for X , and

corresponding sample y1, y2, . . . , yn for Y , we could try to estimate

the correlation as

1

n

n∑
i=1

(
xi − µX
σX

)(
yi − µY
σY

)
.

• The problem is: we don’t know the true means µX and µY , nor

the true sd σX and σY (or the true variances σ2X and σ2Y ).

• Solution: estimate them too!
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Estimating the Correlation (cont’d)

• We can estimate the true means µX and µY , by:

µX ≈ x = 1
n

∑n
i=1 xi , µY ≈ y = 1

n

∑n
i=1 yi ; and the true

variances σ2X and σ2Y , by: σ2X ≈ s2x = 1
n−1

∑n
i=1(xi − x)2,

σ2Y ≈ s2y = 1
n−1

∑n
i=1(yi − y)2.

• Then, the sample correlation between X and Y is

r = rxy =
1

n − 1

n∑
i=1

(
xi − x

sx

)(
yi − y

sy

)
.

− We know all these quantities from our sample. Good!

− If we use the Z-scores zi = (xi − x)/sx , and wi = (yi − y)/sy ,

then we can write this more simply as: r = 1
n−1

∑n
i=1 zi wi .

− (Again, controversy over dividing by n versus n− 1 . . . but R

divides by n − 1, so we’ll usually do that.)
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Back to Cricket Data

Temperature (C) 31.4 22.0 34.1 29.1 27.0 24.0 20.9
Chirps / Second 20.0 16.0 19.8 18.4 17.1 15.5 14.7

Temp 27.8 20.8 28.5 26.4 28.1 27.0 28.6 24.6
C/S 17.1 15.4 16.2 15.0 17.2 16.0 17.0 14.4

• Write X for temperature, and Y for chirps/second. Then

x = 1
n

∑n
i=1 xi = 1

15 [31.4 + 22.0 + . . . + 24.6]
.

= 26.7. And,

y = 1
n

∑n
i=1 yi = 1

15 [20.0 + 16.0 + . . .+ 14.4]
.

= 16.7.

• And, s2x = 1
n−1

∑n
i=1(xi − x)2 =

1
14 [(31.4− 26.7)2 + (22.0− 26.7)2 + . . . + (24.6− 26.7)2]

.
= 13.9.

So, sx =
√

s2x
.

=
√

13.9
.

= 3.7. Also, s2y = 1
n−1

∑n
i=1(yi − y)2 =

1
14 [(20.0− 16.7)2 + (16.0− 16.7)2 + . . . + (14.4− 16.7)2]

.
= 2.9.

So, sy =
√
s2y

.
=
√

2.9
.

= 1.7.

• Then how to compute the sample correlation r? Take “the

average of the products of the Z-scores”. That is, . . .
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Cricket Data: Correlation

• For the cricket data,

r = rxy = 1
n−1

∑n
i=1 ziwi = 1

n−1

∑n
i=1

(
xi−x
sx

)(
yi−y
sy

)
=

1
14

[ (
31.4−26.7

3.7

) (
20.0−16.7

1.7

)
+
(
22.0−26.7

3.7

) (
16.0−16.7

1.7

)
+ . . .

+
(
24.6−26.7

3.7

) (
14.4−16.7

1.7

) ] .
= 0.84. Phew!

• So, the sample correlation is 0.84. This means that on average,

every time the temperature increases by one standard deviation,

the cricket chirp rate increases by 0.84 of its standard deviation.

− That is, every time the temperature increases by sx , the

cricket chirp rate increases by 0.84 sy .

− Or, every time the temperature increases by one degree, the

cricket chirp rate increases by rxy sy/sx = 0.84 sy/sx .

− Can illustrate with “line of best fit” (more later) . . .
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Correlation: Discussion

• Conclusion so far: the sample correlation rxy between the

temperature in degrees celsius, and the rate of cricket chirps per

second, is equal to 0.84.

• This means that the true correlation ρX ,Y between the

temperature in degrees celsius, and the rate of cricket chirps per

second, is probably: approximately 0.84.

• This means that the correlation between the temperature

in degrees celsius, and the rate of cricket chirps per minute

(not second), is also approximately 0.84. (Since correlation

involves standardised variables, it is unaffected by e.g. multiplying

everything by 60.)

• And, the correlation between the temperature in degrees

fahrenheit, and the rate of cricket chirps per second, is also

approximately 0.84. (Correlation is unaffected by adding any

constants, or multiplying by any positive constants.) sta130–129



Correlation Calculations in R

• Computing the sample correlation rxy requires calculating lots

of things: x , y , sx , sy , zi ,wi , rxy = 1
n−1

∑n
i=1 ziwi .

− Lots of work!

• R can do this automatically . . . with e.g. cor(temp, chirps).

(Just like R can do mean, var, sd, etc.)

• So, in statistics applications, usually we don’t need to do all this

calculation by hand.

− (But you might need to, for example, on an exam!)

• If we try cor(temp, chirps) in R, the answer is: 0.8360942.

− Very close to 0.84.
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Cricket Data: Correlation (cont’d)

• Is 0.84 a lot?

− Well, the correlation is largest if Y is completely

determined by X , e.g. when Y = X . In that case,

ρX ,Y = E
[(

X−µX
σX

)(
Y−µY
σY

)]
= E

[(
X−µX
σX

)(
X−µX
σX

)]
=

E

[(
X−µX
σX

)2]
= (1/σ2X )E

[
(X − µX )2

]
= (1/Var(X )) Var(X ) = 1.

− Summary: the largest possible correlation is: 1, which occurs

if e.g. Y = X . (So, if correlation is near 1, then Y mostly increases

with X .) Similarly, the smallest (i.e., most negative) possible

correlation is: −1, which occurs if e.g. Y = −X . (So, if correlation

is near −1, then Y mostly decreases when X increases.)

• So, yes, 0.84 seems like a lot. But does it actually demonstrate

a correlation? Or, is it just . . . luck?

− How to test? What probabilities? Coming next! But first . . .
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Rough Guidelines for Interpreting Correlation

• How to interpret correlation? Hard to say; depends

on context! Here’s one suggestion, taken from:

http://www.statstutor.ac.uk/resources/uploaded/pearsons.pdf

Range of rxy Relationship between X and Y

0.80 to 1.00 very strong positive correlation
0.60 to 0.79 strong positive correlation
0.40 to 0.59 moderate positive correlation
0.20 to 0.39 weak positive correlation
0.00 to 0.19 very weak positive correlation
−0.19 to −0.00 very weak negative correlation
−0.39 to −0.20 weak negative correlation
−0.59 to −0.40 moderate negative correlation
−0.79 to −0.60 strong negative correlation
−1.00 to −0.80 very strong negative correlation

• Rough guidelines only . . . debatable . . .
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More Correlation Guidelines

• Or, here’s another slightly different interpretation, taken from:

https://explorable.com/statistical-correlation

Range of rxy Relationship between X and Y

0.50 to 1.00 strong positive correlation
0.30 to 0.50 moderate positive correlation
0.10 to 0.30 weak positive correlation
−0.10 to 0.10 none or very weak correlation
−0.30 to −0.10 weak negative correlation
−0.50 to −0.30 moderate negative correlation
−1.00 to −0.50 strong negative correlation

• Which interpretation is more correct? Hard to say! Some

“judgement” is required.
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Probabilities for Correlation

• Recall: For cricket chirps versus temperature, the sample

correlation is rxy = 0.84. (Strong positive correlation.) And,

rxy = 1
n

∑n
i=1 ziwi , where zi = (xi − x)/sx and wi = (yi − y)/sy are

the corresponding Z-scores.

• To draw statistical inferences about correlation, we need to

know the probabilities for rxy .

• Well, rxy is an average of different products ziwi .

− And, each such product has mean

E (ziwi ) ≈ E (ZW ) = E
[(

X−µX
σX

)(
Y−µY
σY

)]
, which equals ρX ,Y ,

i.e. equals the true correlation between X and Y .

− So, E (rxy ) ≈ ρX ,Y . That is, the sample correlation rxy has

mean approximately equal to the true correlation ρX ,Y . (Just like

how x has mean µX , and sx has mean approximately σX .)
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Probabilities for Correlation (cont’d)

• So rxy has mean approximately ρX ,Y . But what about the

variance and sd of rxy?

• First of all, what is Var(ziwi )? It should equal Var(ZW ). But

what is that? Hard! Know E (Z ) = 0 and Var(Z ) = 1, but . . .

• Assume for now that X and Y are actually independent,

i.e. they do not affect each other at all. Then Z and W are

also independent. Then the true correlation of X and Y is

ρX ,Y = E (ZW ) = E (Z )E (W ) = (0)(0) = 0.

− In particular, E (ZW ) = ρX ,Y = 0, i.e. µZW = 0.

− Then Var(ZW ) = E [(ZW − µZW )2] = E [(ZW − 0)2] =

E [(ZW )2] = E [Z 2W 2] = E (Z 2)E (W 2) = (1) (1) = 1.

• So, in the independent case, E (ziwi ) ≈ 0, and Var(ziwi ) ≈ 1.
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Probabilities for Correlation (cont’d)

• Recall: if X and Y are independent, then each ziwi has

variance ≈ 1.

• Then Var (
∑n

i=1 ziwi ) ≈ 1 + 1 + . . .+ 1 = n × 1 = n.

• So what about Var(rxy )? Well,

Var(rxy ) ≈ Var
(
1
n

∑n
i=1 ziwi

)
= 1

n2
Var (

∑n
i=1 ziwi ) ≈ 1

n2
(n) = 1/n.

• Summary: in the independent case, Var(rxy ) ≈ 1/n. Hence,

sd(rxy ) ≈ 1/
√
n.

• FACT: Even if X and Y are not independent, still approximately

Var(rxy ) ≈ 1/n. (This is rather subtle, and there is no general

formula. One approach is to consider the “Fisher transformation”

arctanh(rxy ) := 1
2 ln

(
1+rxy
1−rxy

)
, see R’s cor.test, which has variance

approximately 1/n in the general case. But still only approximate!

So, let’s not worry about this, and just use that Var(rxy ) ≈ 1/n.)
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P-Values for Correlation

• For the crickets example, suppose want to test the null

hypothesis that ρX ,Y = 0, versus the alternative hypothesis that

ρX ,Y 6= 0. (two-sided)

• We know that if ρX ,Y = 0, then rxy would have mean 0 and sd

approximately 1/
√
n = 1/

√
15

.
= 0.258. And approximately normal.

• But the observed value of rxy was 0.84.

• So, the P-value is the probability that a normal random

quantity, with mean 0, and sd 1/
√
n = 1/

√
15, is 0.84 or

more, or −0.84 or less (two-sided). In R: pnorm(0.84, 0,

1/sqrt(15), lower.tail=FALSE) + pnorm(−0.84, 0, 1/sqrt(15),

lower.tail=TRUE). Answer is: 0.001140706.

• Much less than 0.05! Conclusion: The data indicates that the

true correlation between temperature and cricket chirp rate is not

zero. That is, they are “correlated”. sta130–137



“Correlation Does Not Imply Causation”

• (Mentioned on HW#2.) What does this mean?

• Just because two quantities are truly correlated (i.e., have

non-zero true correlation), this does not necessarily mean that the

second quantity is caused by the first quantity.

• Other possibilities include: the first quantity causes the second

quantity (“reverse causation”); or the two quantities are both

caused by some other quantity (“common cause”); or . . .

• For cricket example: Does increased temperature cause the

crickets to chirp more? Maybe. Other possibilities?

− Perhaps cricket chirps cause temperature increase? (No!)

− Perhaps both cricket chirps and temperature increase are

caused by some other quantity? (Well, maybe, but what quantity?

Perhaps . . . sunlight! Except, crickets mostly chirp at night.)

− So, probably(?) temperature increase causes chirps. sta130–138



Causation Example: Drowning

• Suppose that in a certain city, the number of people who

drown each day is positively correlated with the number of

ice cream cones sold each day.

− Possibility #1: Ice cream cones cause drowning! Surely not!

− Possibility #2: Drowning causes people to buy ice cream!

Surely not!

− Possibility #3: Drowning and ice cream are both caused by

something else. But by what?

− Perhaps by warm, sunny weather, which makes more people

go swimming, and makes more people buy ice cream!

− Seems likely! Then have correlation, but not causation! How

to test this? Could get additional data, about each day’s weather,

and the number of people who go swimming each day.
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Causation Example: Yellow Fingers

• Suppose there is a positive correlation between people who get

lung cancer, and people who have yellow stains on their finger.

− Possibility #1: Yellow fingers cause lung cancer! Surely not!

− Possibility #2: Lung cancer makes fingers yellow! Surely not!

− Possibility #3: Lung cancer and yellow finger stains are both

caused by something else. But by what?

− Perhaps by smoking cigarettes, which definitely causes lung

cancer, and which might also cause yellow stains on fingers (at

least with old-style cigarette filters).

− Seems likely! How to test? Perhaps change the cigarette

filters to a different colour! (Tricky to arrange, over many years . . . )

• Many other similar examples. Have to think about (and

explain) the meaning of a correlation.
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Example: Ice Cream Sales

• A student monitored the weekly sales (in U.S. dollars), and

average temperature (in degrees celsius), at a Southern California

ice cream shop, for 12 consecutive weeks during the Summer of

2013.

− TEMPERATURES (◦C): 14.2, 16.4, 11.9, 15.2, 18.5, 22.1,

19.4, 25.1, 23.4, 18.1, 22.6, 17.2.

− SALES (U.S. $): 215, 325, 185, 332, 406, 522, 412, 614,

544, 421, 445, 408.

• Is there a statistically significant correlation between the two?

• Let’s check!

− Compute the sample correlation! (Guesses?)
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Example: Ice Cream Sales (cont’d)

• Let X be temperature, and Y be sales. Then

x = 1
12 [14.2 + 16.4 + . . . + 17.2]

.
= 18.7, and

y = 1
12 [215 + 325 + . . . + 408]

.
= 402. Then

s2x = 1
11 [(14.2−18.7)2+(16.4−18.7)2+. . .+(17.2−18.7)2]

.
= 16.09,

so sx
.

=
√

16.09
.

= 4.01. And,

s2y = 1
11 [(215− 402)2 + (325− 402)2 + . . .+ (408− 402)2]

.
= 15887,

so sy
.

=
√

15887
.

= 126.

• Hence, r = rxy = 1
n−1

∑n
i=1 ziwi = 1

11

∑12
i=1

(
xi−x
sx

)(
yi−y
sy

)
=

1
11

[ (
14.2−18.7

4.01

) (
215−402

126

)
+
(
16.4−18.7

4.01

) (
325−402

126

)
+ . . .

+
(
17.2−18.7

4.01

) (
408−402

126

) ] .
= 0.957.

• Extremely high positive correlation!

• So what can we conclude from this?
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Example: Ice Cream Sales (cont’d)

• First Conclusion: Ice cream sales are positively correlated with

temperature.

• But does this imply causation? That is, do higher temperatures

cause higher ice cream sales?

• First consider other possible explanations:

− Reverse causation? Perhaps ice cream sales cause higher

temperatures? No, ice cream can’t affect the temperature.

− Common cause? I can’t think of one . . .

− Does causation make sense? Yes! Heat makes people hot and

thirsty, so they might want more ice cream!

• So, in this case, I would say: Yes, this does imply causation, i.e.

higher temperatures do cause people to buy more ice cream.
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Example: Smoking and Wealth, by U.S. State

• I found data giving the percentage of adults who

smoke, in each of the 50 U.S. states, in 2014; see

www.probability.ca/sta130/statesmoke

• And I found their average income per capita in 2012; see

www.probability.ca/sta130/stateincome

• Is there a correlation? Positive or negative? Strong or weak?

Check in R (www.probability.ca/sta130/stateR). cor(sm,inc):

−0.427. Moderate negative correlation! Statistically significant

(check)! Why? Does smoking cause people to earn less

(causation)? Do lower wages make people smoke more (reverse

causation)? Are they both caused by some other factor (common

cause)? If so, what other factor? Education?

− I also found high school completion percentage in each U.S.

state: www.probability.ca/sta130/statehigh cor(high,inc): 0.438.

cor(high,sm): −0.335. Interpretation?? sta130–144
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Confidence Intervals

• Recall that Trudeau Government poll: out of 1,500 Canadians

surveyed, 795 of them (53%) approved of the government.

• We verified earlier that this “demonstrates” that more than half

of Canadians approve. (P-value = 0.01006838.)

− (Well, at least assuming that it was a truly random sample,

everyone replied honestly, etc. Let’s assume that for now.)

• But it does not demonstrate that over 51% approve. (P-value

= 0.06063039.)

• So what precisely can we claim? More than 50.5%??

• Should we just keep doing different hypothesis tests?

• Better: use confidence intervals. (The poll said: “The margin

of error for a comparable probability-based random sample of the

same size is +/- 2.6%, 19 times out of 20.” Huh?)
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Confidence Interval for the Trudeau Poll

• Recall: of n = 1, 500 people surveyed, 795 (53%) approve.

• Suppose the true fraction of all Canadians who approve is equal

to some value p (unknown). What are the “plausible” values for p?

40%? (no!) 50%? (no!) 51%? (yes!) 50.5%? 57%??

• Let T = number of respondents (out of 1,500) who approve.

Then T is approximately normal, with mean = np = 1500 p, and

variance = np(1− p) = 1500 p(1− p), so sd =
√

np(1− p).

• Then if p̂ = T/n = T/1, 500, then p̂ is approximately

normal, with mean = np / n = p, and sd =√
np(1− p) / n =

√
p(1− p)/n. Then p̂ − p has mean = 0, and

sd =
√
p(1− p)/n. So (p̂ − p)/

√
p(1− p)/n has mean = 0, and

sd = 1. (“standard normal”)

• For the standard normal, we can find the “plausible” values by

measuring. What is a 95% range? Let’s see . . . sta130–146
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Confidence Interval for Trudeau Poll (cont’d)

• That is: the standard normal has probability about 95% of

being between −1.96 and +1.96.

− Check: pnorm(+1.96,0,1,lower.tail=TRUE) −
pnorm(-1.96,0,1,lower.tail=TRUE) equals 0.9500042. good!

− (What if we wanted probability 99%? Replace “1.96” by

about: 2.58. Then get: 0.99012.)

• So, if Z has the standard normal distribution (i.e., probabilities),

then P[−1.96 < Z < +1.96]
.

= 0.95.

So, apply this to: Z = (p̂ − p)/
√
p(1− p)/n

• Conclusion: P[−1.96 < (p̂− p)/
√
p(1− p)/n < +1.96]

.
= 0.95.

So, P[−1.96
√

p(1− p)/n) < p̂ − p < +1.96
√
p(1− p)/n]

.
= 0.95.

So, P[p̂− 1.96
√
p(1− p)/n) < p < p̂ + 1.96

√
p(1− p)/n]

.
= 0.95.

− That is, with probability 95%, p is within ±1.96
√

p(1− p)/n

of the observed fraction p̂. This is what we want!
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Confidence Interval for Trudeau Poll: Conclusion?

• With probability 95%, p is within ±1.96
√
p(1− p)/n of p̂.

− Here 1.96
√

p(1− p)/n is the “margin of error” (MOE).

− And, the interval from p̂ − 1.96
√
p(1− p)/n) to

p̂ + 1.96
√

p(1− p)/n is the “(95%) confidence interval”.

• Good! Just one problem: “p” is unknown! So we can’t

calculate this margin of error! Bad! What to do?

• Bold Option: replace p (unknown) by p̂. Get

1.96
√

p̂(1− p̂)/n = 196%
√
p̂(1− p̂)/n.

• Conservative Option: replace p by 1/2. Get

1.96
√

1
2(1− 1

2)/n = 1.96
√

1/n/2 = 0.98/
√
n = 98%/

√
n.

• Do polls use this??
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Confidence Interval for Trudeau Poll: Conclusion

• Trudeau poll: p̂ = 0.53, and n = 1500.

− So, 98%/
√
n = 98%/

√
1500

.
= 2.530349%.

• Or, could use the bold option:

196%
√
p̂(1− p̂)/n = 196%

√
0.53(1− 0.53)/1, 500

.
= 2.52579%.

Very similar! (since p̂ ≈ 0.5 in this case . . . )

• What do they claim? “The margin of error for a comparable

probability-based random sample of the same size is +/- 2.6%, 19

times out of 20.” Check: (98%)/
√

1, 500
.

= 2.530349%
.

= 2.6%.

− Yep! (Though “rounded up”, to be safe . . . )

− Conclude that true support p is between 53%−2.6% = 50.4%,

and 53% + 2.6% = 55.6%. Confidence interval is: [50.4%, 55.6%].

• Other polls?
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• Check: 98%/
√
n = 98%/

√
1000

.
= 3.099%

.
= 3.1%.

(Which they rounded up to 3.5%.) Or, use bold option:

196%
√
p̂(1− p̂)/n = 196%

√
0.65(1− 0.65)/1, 000

.
= 2.9563%.

(A bit smaller. They didn’t use that.) Let’s use 3.1%.

• Then, 95% confidence interval is: [61.9%, 68.1%].
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But Do Poll Companies Really Use This?

• To check this, I went to the main web site for Forum Research

Inc., a leading Canadian pollster.

• For information about margins of error, they refer you to this

web page:

http://www.forumresearch.com/tools-margin-of-error.asp

• That page gives various margins of error, based on the Sample

Size (n) and the Observed Proportion (p̂).

• Does it follow our formula? Let’s check. Oh yeah!

• (In practice, they usually use the “Observed Proportion = 50%”

row – corresponding to the . . . conservative option.)

• Can we use margins of error and confidence intervals for other

experiments besides polls? Yes! e.g. RPS . . .
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• Suppose you play RPS 100 times, and win 69

times. Then p̂ = 0.69, and margin of error =

98%/
√
n = 98%/

√
100 = 9.8% = 0.098 (conservative option), or

1.96
√

p̂(1− p̂)/n = 1.96
√

0.69× 0.31/100
.

= 0.090 (bold).

So, 95% confidence interval (conservative option) for p is:

[0.592, 0.788]. Or, bold option: [0.600, 0.780].

• Or, if you play 1000 times, and win 550 times: p̂ = 0.55, and

95% M.O.E. (cons.) = 0.98/
√

1000
.

= 0.031, and 95% conf. int.

(cons.) = [0.519, 0.581]
.

= [0.52, 0.58] = [52%, 58%]. (Not 50%!)

• Or, if you play 20 times, and win 14 times: p̂ = 0.70, and

95% M.O.E. (cons.) = 0.98/
√

20
.

= 0.22, and 95% conf.

int. (cons.) = [0.48, 0.92]. Or, bold option: M.O.E. =

1.96
√

0.7× 0.3/20
.

= 0.20, conf. int. = [0.50, 0.90].

• Boy or Girl? Of n = 377, 636 births, 184,049 were female,

so p̂ = 184, 049/377, 636
.

= 0.4874. M.O.E. (cons.) =

0.98/
√
n
.

= 0.0016. So, conf. int. = [0.4858, 0.4890].
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Confidence Intervals for General Quantities

• For proportions, have confidence intervals p̂± 1.96
√
p(1− p)/n

(bold option) or p̂ ± 0.98/
√
n (conservative option).

• What about general quantities (like Baby Weights, etc.)?

• Can we use a conservative option? No! No upper bound!

• Can we use a bold option? Yes!

• Need to replace “p̂” with a more general estimate of the true

mean. We know how to do this: use x instead!

• And, we need to replace “p(1− p)/n” with a more general

estimate of the variance of x . We know how to do this, with s2/n

instead! So, we estimate variance of x by s2/n.

• So, for a general quantity, the 95% confidence interval is:

[x −1.96
√
s2/n, x + 1.96

√
s2/n] = [x −1.96s/

√
n, x + 1.96s/

√
n].

Easy!
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• Baby Weights (North Carolina) example: n = 10.

Found that x = 8.11 pounds, and s2 = 1.362. So,

confidence interval is: [x − 1.96
√

s2/n, x + 1.96
√
s2/n] =

[8.11− 1.96
√

1.326/10, 8.11 + 1.96
√

1.326/10] = [7.40, 8.82]

pounds. (So, here MOE = 1.96
√

1.326/10
.

= 0.71.)

− Conclusion: we are 95% confident that the true mean baby

weight in North Carolina is somewhere between 7.40 and 8.82

pounds.

• Student biceps (female): n = 39. Found that

x = 24.93 cm, and s2 = 4.39. So, confidence

interval is: [x − 1.96
√
s2/n, x + 1.96

√
s2/n] =

[24.93− 1.96
√

4.39/39, 24.93 + 1.96
√

4.39/39]
.

= [24.3, 25.6] cm.

− Conclusion: we are 95% confident that the true mean

circumference of female students’ biceps is somewhere between

24.3 and 25.6 cm.
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Confidence Intervals for Differences of Proportions

• Suppose Poll #1 has sample size n1, and observed proportion

p̂1. Similarly n2 and p̂2 for Poll #2.

• What is 95% confidence interval for true difference p2 − p1?

• We can estimate p2 − p1 by p̂2 − p̂1, and estimate its

sd by
√

p̂1(1− p̂1)/n1 + p̂2(1− p̂2)/n2 (bold option), or√
1/n1 + 1/n2 /2 (conservative option).

• So, 95% confidence interval is

[p̂2 − p̂1 − 1.96
√
p̂1(1− p̂1)/n1 + p̂2(1− p̂2)/n2,

p̂2 − p̂1 + 1.96
√
p̂1(1− p̂1)/n1 + p̂2(1− p̂2)/n2] (bold), or

[p̂2 − p̂1 − 0.98
√

1/n1 + 1/n2, p̂2 − p̂1 + 0.98
√

1/n1 + 1/n2]

(conservative).

• Example: U.S. Marijuana Surveys of 2012 and 2015 . . .
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• In 2012, had n1 = 1, 100, and p̂1 = 0.47. In 2015, had

n2 = 1, 012, and p̂2 = 0.53. So, the observed value of p̂2 − p̂1 was

0.06 (i.e., 6%).

• True sd of p̂2 − p̂1 is
√
p1(1− p1)/n1 + p2(1− p2)/n2.

• Conservative option: estimate sd as√
1/n1 + 1/n2 / 2 =

√
1/1, 100 + 1/1, 012 / 2

.
= 0.022.

− So, 95% confidence interval for p2 − p1 is

[0.06− 1.96× 0.022, 0.06 + 1.96× 0.022]
.

= [0.017, 0.103].

− Conclusion: We are 95% confident that the true U.S. support

for legalising marijuana in 2015, minus the support in 2012, is

between 0.017 and 0.103, i.e. is between 1.7% and 10.3%.

• Or, bold option: estimate sd as√
p̂1(1− p̂1)/n1 + p̂2(1− p̂2)/n2 =√
0.47(1− 0.47)/1, 100 + 0.53(1− 0.53)/1, 012

.
= 0.0217.

Almost exactly the same (since p̂1, p̂2 ≈ 1/2).
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Confidence Intervals for General Differences

• Suppose we have general data sets x1, . . . , xn and y1, . . . , ym,

with true means µ1 and µ2

• What is confidence interval for the difference µ2 − µ1?

• Here we estimate the means by x and y , and estimate variance

by s21 and s22 , respectively.

• Then can estimate µ2 − µ1 by y − x , and estimate its variance

by s21/n1 + s22/n2.

• So, a 95% confidence interval for µ2 − µ1 is

[y − x − 1.96
√

s21/n1 + s22/n2, y − x + 1.96
√
s21/n1 + s22/n2].

• Example: Confidence interval for phone call differences . . .
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• Recall: data for phone call lengths (in seconds) of male and

female students at Hope College (Michigan).

• Males: n1 = 25, x = 288.4 (seconds), s21 = 173070. Females:

n2 = 24, y = 539.4, s22 = 645153.

• So, 95% confidence interval is

[y − x − 1.96
√

s21/n1 + s22/n2, y − x + 1.96
√

s21/n1 + s22/n2] =

[539.4− 288.4− 1.96
√

173070/25 + 645153/24, [539.4− 288.4 +

1.96
√

173070/25 + 645153/24]
.

= [−109, 611].

• Conclusion: We are 95% confident that the difference between

the mean time female students talk on the phone, minus the mean

time male students talk on the phone, is between −109 and 611

seconds, i.e. between about −1.8 and 10.2 minutes.

• That is, we are 95% confident that on average, female students

talk on the phone between 1.8 minutes less than male students,

and 10.2 minutes more than male students. (More data?) sta130–160



Confidence Intervals for Correlations

• Recall: for the cricket data, we found the correlation between

temperature and chirp rate was r = 0.84.

• Confidence interval?

• Here we estimated variance as: 1/n = 1/15.

• So, confidence interval is [r − 1.96
√

1/n, r + 1.96
√

1/n] =

[0.84− 1.96/
√

15, 0.84 + 1.96/
√

15]
.

= [0.33, 1.35].

• But correlation is always ≤ 1, so we could replace this

confidence interval by: [0.33, 1].

• Conclusion: We are 95% confident that the true correlation

between temperature and cricket chirp rate is somewhere between

0.33 and 1, i.e. is more than 0.33.

− (i.e., moderately positive to strongly positive . . . )
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Lucky Correlations?

• Suppose two quantities X and Y have a sample correlation

which is far from 0, with P-value < 0.05. Then perhaps:

− X causes Y ? (directly or indirectly)

− Y causes X?

− X and Y are both caused by a third quantity?

− It’s still just luck! Could it be??

• Example: http://tylervigen.com/spurious-correlations Huh?

− Would we have P-value < 0.05 in these cases? Yep!

− But still “spurious”. Why? They tested too many

correlations before finally finding a significant one! “Multiple

testing (comparisons) problem”. What to do? Demand smaller

P-values? Do follow-up studies? Challenging!

• See also: https://imgs.xkcd.com/comics/significant.png
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Another Perspective: Regression

• (Actually “simple linear regression”, also called “ordinary least

squares (OLS) regression”, or the “line of best fit”.)

• Suppose the quantities X and Y have true correlation ρ.

• Then E (ZW ) = ρ, i.e. E
[(

X−µX
σX

)(
Y−µY
σY

)]
= ρ.

• Intuitively, this means that W = ρZ + L, where L is “leftover”

randomness, independent of Z and X , with mean 0.

• That is, Y−µY
σY

= ρ
(
X−µX
σX

)
+ L.

• Solving, Y = (ρ σY /σX )X + (µY − µXρσY /σX ) + σY L.

• That is, Y = β1X + β0 + e, where: β1 = ρ σY /σX (“regression

coefficient”), β0 = µY − µXρ σY /σX (“intercept”), and e = σY L

(“error term”; mean=0). Approximate this by Y = b1X + b0,

where b1 = rxy sy/sx , and b0 = y − xrxy sy/sx . This is the same

line of best fit as before!
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Coefficient of Determination

• Recall: Y = β1X + β0 + e, where β1 = ρ σY /σX , and

β0 = µY − µXρ σY /σX is some constant, and e is independent of

X with mean 0. (Check: µY = E (Y ) = β1µX + β0 + 0? Yep!)

• From this formula, Var(Y ) = (β1)2Var(X ) + 0 + Var(e).

• Question: How much of Var(Y ) is “explained” or “caused” by

changes in X? Well, (β1)2Var(X ) of it.

• So, what fraction of Var(Y ) is “explained” by changes in X? Well,

a fraction [(β1)2 Var(X )]/Var(Y ) = [(ρ σY /σX )2 σ2X ]/σ2Y = ρ2.

Approximate this by (rxy )2, i.e. by r2.

• Definition: The “coefficient of determination”, when regressing

Y against X , is given by r2 (“R squared”). It measures how well Y

is “explained” by X , i.e. how well the line fits the data. Minimum

possible value is 0, maximum is 1. Crickets: r2 = (0.84)2
.

= 0.71

(pretty large, i.e. temperature “explains” chirps pretty well).
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Regression’s “Least Squares” Property

• Recall our regression “line of best fit”: Y = b1X + b0, where

b1 = r sy/sx , and b0 = y − xsy/sx . Why these b1 and b0?

− Suppose we used some line, Y = aX + c . (“linear model”)

− Then for each data value xi , this model would “predict” a

corresponding Y value of Y = axi + c.

− But the “real” corresponding data value is yi .

− So, we want axi + c to be close to yi .

− The sum of squares of the errors is :
∑n

i=1(yi − axi − c)2.

• FACT: The choices a = b1 and c = b0 (as above) are the

choices which minimise this sum of squares of errors.

− “ordinary least squares estimate” (OLS)

• See also R’s function lm, e.g. lm(chirps ∼ temp).
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Multiple Regression

• Sometimes a quantity Y might depend on multiple other

quantities X1,X2, . . . ,Xp, not just a single X .

− We can still compute Cor(Y ,X1), Cor(Y ,X2), etc.

− But if the different Xi depend on each other, then the

interpretation of these correlations gets complicated.

• Use multiple regression: Y = β1X1 +β2X2 + . . .+βpXp +β0 + e,

where again e has mean 0. (If p = 1, then it’s the same as before.)

• Can again find estimates bj of the coefficients βj from the data,

by minimising the sum of squares. Requires multivariable calculus.

We’ll just trust R’s lm function for this! Interpretation?

• U.S. Smoking/Wealth again (www.probability.ca/sta130/stateR).

Try lm(sm∼inc), and lm(sm∼high), and lm(sm∼inc+high)

(perhaps with summary(. . . )). What can we conclude??
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• More Examples: Student data! Relationships

between height (Q6), bicep (Q9b), wrist (Q8b)?

www.probability.ca/sta130/studentdata.txt

• Countries: www.probability.ca/sta130/countrydata.txt

Try various correlations (cor) and linear regressions (lm).

Values? coefs? sd? R2? Interpretation? Causation?

www.probability.ca/sta130/countryR

• www.probability.ca/sta130/SAT.txt SAT scores (verbal

and math) by state, plus percent taking SATs, and teacher

salaries. Try: lm(satm∼satv), lm(pay∼satm), lm(pay∼satv),

lm(pay∼satm+satv), lm(perc∼pay). coefs? R2? Causation?

• Twin birth weights: www.probability.ca/sta130/twindata.txt

• A certain politician, and their fraction of Georgia primary votes

won, by county: www.probability.ca/sta130/trumpdata.txt

Which variables affect their “fracvotes”? Significant? Causation?

• Country inequality: www.probability.ca/sta130/inequality.txt
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