
STA447/2006 Midterm, February 16, 2017

(2 hours; 5 questions; 3 pages; total points = 52)

[SOLUTIONS]

1. Suppose there are 10 lily pads arranged in a circle, numbered consecutively clockwise
from 1 to 10. A frog begins on lily pad #1. Each second, the frog jumps one pad clockwise
with probability 1/4, or two pads clockwise with probability 3/4.

(a) [3] Specify a state space S, initial probabilities {νi}, and transition probabilities {pij},
with respect to which this process is a Markov chain.

Solution. Here S = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}, and ν1 = 1 (with νi = 0 for all other i).
Also, for 1 ≤ i ≤ 9, pi,i+1 = 1/4, and for 1 ≤ i ≤ 8, pi,i+2 = 3/4, and p10,1 = 1/4, and
p9,1 = p10,2 = 3/4, with pij = 0 otherwise.

(b) [2] Determine if this Markov chain is irreducible.

Solution. Yes, since it is always possible to move one space clockwise, and hence eventually
get to every other state with positive probability.

(c) [2] Determine if this Markov chain is aperiodic, or if not then what its period equals.

Solution. From any state i, it is possible to return in 10 seconds by moving one pad
clockwise at each jump, or to return in 9 seconds by moving two pads clockwise on the first
jump and then one pad clockwise for 8 additional jumps. Since gcd(10, 9) = 1, the chain is
aperiodic.

(d) [3] Determine whether or not
∑∞

n=1 p
(n)
15 =∞.

Solution. Since the chain is irreducible, and the state space is finite, by the Finite Space
Theorem we have

∑∞
n=1 p

(n)
ij =∞ for all i, j ∈ S, so in particular

∑∞
n=1 p

(n)
15 =∞.

(e) [3] Either find a stationarity distribution {πi} for this chain, or prove that no stationary
distribution exists.

Solution. For every state j ∈ S,
∑

i∈S pij = (1/4) + (3/4) = 1. Hence, the chain is
doubly stochastic. So, since |S| <∞, the uniform distribution on S is a stationary distribu-
tion. Hence, we can take π1 = π2 = . . . = π10 = 1/10.

(f) [2] Determine whether or not limn→∞ p
(n)
15 exists, and if so what it equals.

Solution. Yes, since the chain is irreducible and aperiodic with stationary distribution {πi},
therefore limn→∞ p

(n)
ij = πj = 1/10 for all i, j ∈ S, and in particular limn→∞ p

(n)
15 = π5 =

1/10.

(g) [2] Determine whether or not limn→∞
1
2
[p

(n)
15 + p

(n+1)
15 ] exists, and if so what it equals.
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Solution. Since limn→∞ p
(n)
15 = 1/10, therefore also limn→∞ p

(n+1)
15 = 1/10, and hence also

limn→∞
1
2
[p

(n)
15 + p

(n+1)
15 ] = 1/10.

2. For each of the following sets of conditions, either provide (with explanation) an
example of a state space S and Markov chain transition probabilities {pij}i,j∈S such that the
conditions are satisfied, or prove that no such a Markov chain exists.

(a) [3] There is a state k ∈ S such that if the chain is started at k, then there is a positive
probability that the chain will visit k exactly twice more (and then never again).

Solution. Yes. For example, let S = {1, 2}, with p11 = 1/3, p12 = 2/3, and p22 = 1 (with
pij = 0 otherwise). Then if the chain is started at k = 1, then it will initially follow the
path 1→ 1→ 1→ 2→ 2→ 2→ . . . with probability (1/3)(1/3)(2/3)(1)(1) . . . >= 2/27 >
0.

(b) [3] The chain is irreducible and transient, and there are k, ` ∈ S with fk` = 1.

Solution. Yes. For example, consider simple random walk with p = 3/4, so S = Z and
pi,i+1 = 3/4 and pi,i−1 = 1/4 for all i ∈ S (with pij = 0 otherwise). Let k = 0 and ` = 5.
Then as shown in class, f05 = 1, and the chain is irreducible and transient. (Of course, S is
infinite here; if S is finite then all irreducible chains are recurrent.)

(c) [3] The chain is irreducible and transient, and is reversible with respect to some
probability distribution π.

Solution. Does not exist. Indeed, if the chain is reversible with respect to π, then π is a
stationarity distribution. Then if it is also irreducible, then by the Stationarity Recurrence
Lemma, it is recurrent, i.e. it is not transient.

3. [6] Let S = {1, 2, 3, . . .}, with πi = 2/3i for all i ∈ S. Find (with proof) explicit

transition probabilities {pij}i,j∈S such that limn→∞ p
(n)
ij = πj for all i, j ∈ S. [Hint: Don’t

forget the Metropolis (MCMC) algorithm.]

Solution. The Metropolis algorithm says that for j = i±1 we want pij = (1/2) min(1, πj/πi).
So, for all i ≥ 1, we set pi+1,i = 1/2, and pi,i+1 = (1/2)[(2/3i+1)/(2/3i)] = (1/2)[1/3] = 1/6.
Then p11 = 1−p12 = 1−(1/6) = 5/6, and for i ≥ 2, pii = 1−pi,i−1−pi,i+1 = 1−(1/2)−(1/6) =
1/3, with pij = 0 otherwise. Then by construction, πipij = πjpji for all i, j ∈ S, the chain
is reversible with respect to π, and hence π is a stationary distribution. Also, the chain is
irreducible since it is always possible to increase or decrease by 1. And, the chain is aperiodic
since e.g. p11 > 0. Hence, limn→∞ p

(n)
ij = πj for all i, j ∈ S.

4. [5] Consider the undirected graph with vertex set V = {1, 2, 3, 4, 5}, and an undirected
edge (of weight 1) between each of the following six pairs of vertices (and no other edges):
(1,2), (2,3), (3,4), (4,5), (1,3), and (3,5). Let {pij}i,j∈V be the transition probabilities for

random walk on this graph. Compute (with full explanation) limn→∞ p
(n)
23 , or prove that this

limit does not exist.
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Solution. The graph is connected (since we can get from 1 → 2 → 3 → 4 → 5 and back),
so the walk is irreducible. Also, the walk is aperiodic since e.g. we can get from 1 to 1
in 2 steps by 1 → 2 → 1, or in 3 steps by 1 → 3 → 2 → 1, and gcd(2, 3) = 1. Here
Z =

∑
u d(u) = 2|E| = 2(6) = 12 <∞. Hence, as shown in class, if πu = d(u)/Z = d(u)/12,

then the walk is reversible with respect to π, so π is a stationary distribution. Also d(3) = 4,
because there are four edges from the vertex 3. Hence, by the Graph Convergence Theorem,
limn→∞ p

(n)
23 = π3 = d(3)/12 = 4/12 = 1/3.

5. Let {Xn} be a Markov chain on the state space S = {1, 2, 3, . . .} of all positive integers,
which is also a martingale. Assume X0 = 5, and that there is c > 0 such that pi,i−1 = c and
pi,i+2 = 1− c for all i ≥ 2. Let T = inf{n ≥ 0 : Xn = 1 or Xn ≥ 10}.

(a) [3] Determine (with explanation) what c must equal. [Hint: remember that {Xn} is a
martingale.]

Solution. For i ≥ 2, we need
∑

j jpij = i, so (i− 1)c+ (i+ 2)(1− c) = i, so i+ 2− 3c = i,
so 2 = 3c, so c = 2/3.

(b) [3] Determine (with explanation) what p11 must equal. [Hint: again, remember that
{Xn} is a martingale.]

Solution. We need
∑

j∈S jp1j = 1. But
∑

j∈S jp1j =
∑∞

j=1 jp1j = p11 +
∑∞

j=2 jpij ≥ p11 +∑∞
j=2 2pij = p11 + 2(1− p11) = 2− p11. For this to equal 1, we need p11 = 1.

(c) [3] Determine (with explanation) the value of E(X3).

Solution. Since {Xn} is a martingale, E(Xn) = E(X0) = 5 for all n, so in particular
E(X3) = 5.

(d) [3] Determine (with explanation) the value of E(XT ).

Solution. Clearly the chain is bounded up to time T , indeed we always have |Xn|1n≤T ≤ 11.
Hence, by the Optional Stopping Corollary, E(XT ) = E(X0) = 5.

(e) [3] Prove or disprove that
∑∞

n=1 p
(n)
55 =∞.

Solution. Starting at 5, the chain has positive probability of immediately going 5 → 4 →
3 → 2 → 1 and then getting stuck at 1 forever and never returning to 5. Hence, the
state 5 is transient. It thus follows from the Recurrence Theorem that

∑∞
n=1 p

(n)
55 < ∞, i.e.∑∞

n=1 p
(n)
55 6= ∞. (Note that this chain is not irreducible, since e.g. f12 = 0, so the Cases

Theorem etc do not apply.)
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