
STA4502: Topics in Stochastic Processes Winter 2018

Lecture 4: Random Walks on Groups — March 21, 2018

Lecturer: Jeffrey Rosenthal Scribe: Tiantian Zheng

An aside on the choice of norm

In our last lecture we obtained bounds on the convergence rate in terms of eigenvalues. The norm
we used for this exercise was the L2(π) norm, defined between vectors v and w as:

Definition 31. 〈v, w〉L2(π) :=
∑

x∈X v(x)w(x)π(x)

Under this norm, P is reversible iff 〈v, Pw〉 = 〈Pv,w〉, ∀v, w .

Other norms might also be used, such as:

Definition 40. 〈v, w〉∗ :=
∑

x∈X
v(x)w(x)
π(x)

This norm can be thought of as acting on densities instead of vectors w.r.t π as

〈v, w〉∗ =
∑
x∈X

v(x)

π(x)

w(x)

π(x)
π(x)

In this case, P is reversible iff 〈v, wP 〉∗ = 〈vP,w〉∗, ∀v, w.

Challenge 41. Check requirements for reversibility under the two norm definitions.

In both cases, P being self adjoint implies that there exists an orthonormal basis {vi} which can
be used to improve bounds on the convergence rate. Furthermore, the norm according to Def. 40
has some nice properties when we consider how it bounds the total variation distance:

2‖µk − π‖TV =
∑
x∈X
|µk(x)− π(x)|

=
∑
x∈X
|µk(x)

π(x)
− 1|π(x)

= ‖µk − π‖L1(∗)

≤ ‖µk − π‖L2(∗)

where the inequality comes from the Cauchy-Schwarz inequality.

This bound does not depend on π, whereas using the L2(π) norm, the coefficient for the bound
depends on π:

2‖µk − π‖TV ≤
√

n

min
x
π(x)

‖µk − π‖L2(π)
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However, as we will see, in the case of random walks on groups, π is uniform on X , and both
definitions of the norm work, and we will keep using the L2(π) norm.

7 Random Walks on Groups

In the last section we saw that we could get various bounds on convergence in terms of eigenvalues
and eigenvectors of the transition matrix P . However, in general, it is usually hard to find these if
X is large.

In the case of random walks on groups, however, it is always possible to obtain explicit forms for
the eigenvalues and eigenvectors.

Definition 42. A random walk on a group is a Markov chain on a state space of some general
discrete group X . Transition probabilities are written as P (x, y) = Q(x−1y) where Q(·) is some
fixed step distribution on X . The increment distributions defined by Q are i.i.d.

Example 43. Our previous example of card shuffling is a random walk on the group Sn, the
symmetric group of permutations.

Example 44. Random walk on Z:

• For the random walk with 1
2 −

1
2 probabilities of moving by +1 and -1:

Q(+1) = Q(−1) =
1

2

• For the random walk with 1
3 −

1
3 −

1
3 probabilities of moving by +1, 0 and -1:

Q(+1) = Q(0) = Q(−1) =
1

3

It is possible to work with continuous groups, e.g. O(n), the orthogonal group, containing the set of
all n× n orthogonal matrices. For now, we restrict our discussion to finite, abelian groups. As the
law of composition is commutative on these groups, we use addition notation, i.e. replace Q(x−1y)
with Q(y − x) to represent P (x, y).

Fact 45. A random walk P on a finite group always has π = Unif(X ), i.e. π(x) = 1
n , ∀x ∈ X , since

P is doubly stochastic (i.e.
∑

x P (x, y) = 1,∀y).

Proof. ∑
x

P (x, y) =
∑
x

Q(y − x) =
∑
z

Q(z) = 1

Fact 46. Finite abelian groups are always of the form X = Z/(n1)× Z/(n2)× ...× Z/(nr)

Example 47. Frog walk: A frog jumps on a circular arrangement of 20 lilypads, each time moving
clockwise or counterclockwise by one lilypad. The state space is given by X = Z/(20).
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Example 48. Bit flipping: A set of bits of length d can have each bit, or no bit flipped at each
timestep with probability 1

d+1 .

• The state space is given by X =
(
Z/(2)

)d
.

• The step distribution is given by Q(0) = Q(e1) = ... = Q(ed), where ei = (0, 0, 0, ..., 0, 1, 0, ...),
i.e. all entries are 0, except for the ith entry, which is replaced by 1.

For the above examples, it is not immediately obvious what the eigenvalues and eigenvectors are.
To derive these, we introduce characters, which are the beginnings of representation theory of
groups.

7.1 Characters

Definition 49. χm : X → C is a character defined for m = (m1,m2, ...,mr) ∈ X ,

χm(x) = e
2πi(

m1x1
n1

+
m2x2
n2

+...mrxr
nr

)

Note 50. (some identities)

1. χm(x+ y) = χm(x)χm(y)

2. χm(0) = 1

3. |χm(x)| = 1

4. χm(−x) = χm(x)

5.
∑

m∈X χm(x) =

{
n, x = 0

0, x 6= 0
= nδx0, where n = n1n2...nr = |X |

6. 〈χm, χj〉L2(π) =
∑

x∈X χm(x)χj(x)π(x) =
∑

x∈X χm(x)χj(x) 1
n =

{
1,m = j

0,m 6= j
= δmj

Identity 5 for x 6= 0 follows from the fact that χm(x) are equally distributed on the unit circle in
the complex plane, or alternatively, noting that this is a product of geometric sums that evaluate
to 0

∑
m∈X

χm(x) =
∑
m∈X

( r∏
j=1

e
2πi

mjxj
nj

)
=

r∏
j=1

( nj−1∑
mj=0

e
2πimjxj

nj

)
=

r∏
j=1

1− e2πixj

1− e
2πixj
nj

= 0

In Identity 6, we have made use of the fact that π = Unif(X ), and when m 6= j, the sum reduces
to
∑

x χm−j(x), which is zero for the same reason as in Identity 5.

It follows therefore from Identity 6 that {χm} are orthonormal. It remains to be shown that they
are eigenvectors.
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(
χmP

)
(y) =

∑
x∈X

χm(x)P (x, y)

=
∑
x∈X

χm(−x)P (x, y)

=
∑
x∈X

χm(−x)Q(y − x)

Making the change of variable z = y − x,−x = z − y:

(
χmP

)
(y) =

∑
z∈X

χm(z − y)Q(z)

=
∑
z∈X

χm(z)χm(−y)Q(z)

= χm(y)
∑
z∈X

χm(z)Q(z)

= EQ(χm)χm(y)

Therefore, {χm} is the set of eigenvectors, with corresponding eigenvectors, {λm} being the expec-
tation of the characters under Q. As usual, we set λ0 = 1 and define λ∗ = max

m 6=0
|λm|.

Finally we want to be convinced that in the case when the random walker starts in a designated
position, i.e. µ0 = δ0(·) is a point mass, we can still write µ0 as a linear combination of the
eigenvectors of P . I.e. we want to show that µ0 =

∑
m amvm for some set of complex coefficients

{am}.

This can be done by simply observing that am = 1
n since

∑
m χm(x) = nδx0 =

∑
m vm. This leads

us to conclude that µ0 − π = 1
n(
∑

m vm − 1) = 1
n(
∑

m 6=0 vm).

Therefore µk = 1
n

∑
m(λm)kvm, and µk − π. From this we obtain

∑
x∈X
|µk(x)− π(x)|2π(x) =

∑
m6=0

|am|2|λm|2k

as {vm} are orthonormal.

And as π(x) = 1
n = am

∑
x∈X
|µk(x)− π(x)|2 =

1

n

∑
m 6=0

|λm|2k

We therefore obtain a bound on the total variation distance
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(
2‖µk − π‖TV

)2

=

(∑
x∈X
|µk(x)− π(x)|

)2

=

(
n
∑
x∈X
|µk(x)− π(x)|π(x)

)2

= n2
(
〈µk − π,1〉

)2

≤ n2‖µk − π‖2L2(π)‖1‖
2
L2(π)

= n2‖µk − π‖L2(π)

=
∑
m6=0

|λm|2k

where again the inequality comes from the Cauchy-Schwarz inequality.

Conclusion 51. ‖µk − π‖TV ≤ 1
2

√∑
m 6=0|λm|2k ≤

√
n−1
2 (λ∗)

k

7.2 Application to examples

7.2.1 Frog walk

X = Z/(n), Q(0) = Q(1) = Q(−1) = 1
3

χm(x) = e2πi(
mx
n

)

λm = EQ
(
χm
)

=
1

3
χm(0) +

1

3
χm(1) +

1

3
χm(−1)

=
1

3
(1) +

1

3
e

−2πim
n +

1

3
e

2πim
n

=
1

3
+

2

3
cos(

2πm

n
)

m = 0 corresponds to λm = 1. It can be seen that as m increases, cos(2πmn ) decreases, then
increases back towards 1, but cannot exceed cos(2πn ). The value for λ∗ is therefore 1

3 + 2
3cos

(
2π
n

)
.

‖µk − π‖ ≤
√
n

2

(1

3
+

2

3
cos(

2π

n
)
)k

=

√
n

2

(
1− 2

3
(1− cos(

2π

n
))
)k

Assuming n ≥ 3, we have that for 0 ≤ x ≤
√

6, cos(x) ≤ 1− x2

4 . Further, 1− x ≤ e−x, therefore,
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‖µk − π‖ ≤
√
n

2
e−

2π2

3n2
k

For n = 1000, this gives k∗ = 1120000. This bound requires k to be on the order of n2log(n). Since
we know all the eigenvalues, we can obtain a tighter bound

‖µk − π‖2 ≤
1

4

n−1∑
m=1

|λm|2k

≤
dn−1

4
e∑

m=1

e−
4π2m2

3n2
k

≤
∞∑
m=1

e−
4π2m
3n2

k

=
e−

4π2

3n2
k

1− e−
4π2

3n2
k

Which for n = 1000, gives k∗ = 351000. This bound now scales with n2. How much tighter still
can we make this bound? To answer this question, we look at the lower bound for convergence.
First note that as Eµk(χm) is the eigenvalue of P k corresponding to the eigenvector χm, it is equal
to the kth power of the corresponding eigenvalue of P :

Eµk(χm) = (EQ(χm))k

We therefore have

‖µk − π‖ =
1

2
sup
|f |≤1
|Eµk(f)− Eπ(f)|

≥ 1

2
|Eµk(χ1)− 0|

=
1

2
|EQ(χ1)|k

=
1

2

(
1

3
+

2

3
cos
(2π

n

))k
where the inequality comes from the fact that the supremum of a set must be greater than or equal
to any member of that set.

so for n = 1000, k∗ ≥ 290000, therefore our previous bound cannot be improved by much more.
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