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1 Last Example of Random Walks on Groups

1.1 Bit-Flipping

Recall the bit-flipping example:

X = (Z/2)d

Q = Unif({id} ∪ {ej : j ∈ [d]})

where ej frobnicates the jth bit, leaving the other j − 1 bits unchanged, and id = 0 is the identity
element.

We already derived the characters for this group:

χm(x) = exp

(
2πi

n∑
i=d

mixi
2

)
= (−1)〈m, x〉

The eigenvalues of P may then be computed

λm = E
X∼Q

[χm(X)]

=
∑
x∈X

Q(x)χm(x)

= Q(0)χm(0) +
d∑
i=1

Q(ei)χm(ei)

=
1

d+ 1

(
1 +

d∑
i=1

(−1)〈m, ei〉

)

=
1

d+ 1
(1−N(m) + (d−N(m)))

= 1− 2N(m)

d+ 1

where N(m) = 〈m, 1〉 is the number of 1s in m, since 〈m, ei〉 is 1 if mi = 0 and is −1 otherwise.

Thus λ? = 1− 2
d+1 , which is realised when N(m) = 1, for example when m = e1.

Using the crude λ− ?-based method, we have the following bound for the total variation distance
of the marginal distribution of the chain to stationarity:

‖µk − π‖TV ≤
√
|X |
2

λk? =

√
|X |
2

(
1− 2

d+ 1

)k

1



For d = 1000 we get that k? = 175243 is sufficient for ‖µk? − π‖TV ≤ 0.01

Using the more refined summation-based method, we have the following bound for the total varia-
tion distance of the marginal distribution of the chain to stationarity:

‖µk − π‖TV ≤
1

2

√ ∑
m∈X\{0}

|λm|2k

≤ 1

2

√√√√ ∑
m∈X\{0}

∣∣∣∣1− 2N(m)

d+ 1

∣∣∣∣2k

≤ 1

2

√√√√ d∑
n=1

(
d

n

) ∣∣∣∣1− 2n

d+ 1

∣∣∣∣2k

For d = 1000 we get that k? = 3684 is sufficient for ‖µk? − π‖TV ≤ 0.01. This was calculated with
the following R script:

bins = choose(1000,1:1000)

pows = abs(1-2*(1:1000)/1001)

tv.bound = function(k){1/2 * sqrt(sum(bins * pows ^ (2 * k))) -0.01}

k.star = ceiling(uniroot(tv.bound,c(0,176000))$root)

We can also get a lower bound for the total variation distance from stationarity, which gives a
necessary number of steps through the chain:

‖µk − π‖TV ≥
1

2

∣∣∣∣ E
X∼Q

[χe1 ]

∣∣∣∣k
=

1

2

(
1− 2

d+ 1

)k
For d = 1000 we get that k? ≥ 1957 is necessary for ‖µk? − π‖TV ≤ 0.01.

Putting these together we get that, for d = 1000, the true k? is between 1957 and 3684.

2 Drift and Minorisation Conditions

Recall the uniform minorisation condition:

If P (x, ·) ≥ ερ(·) for all x ∈ X for some ε > 0 and some probability measure ρ on X , then the
markov chain is uniformly geometrically ergodic. That is to say, for any initial probability measure
µ0 and for any k ∈ N:

‖µk − π‖TV ≤ (1− ε)k .

The universal quantification over all initial measures seems to be nice mathematically, but restricts
our analysis to Markov chains which converge to stationarity uniformly. In order to be able to
analyse markov chains without uniform convergence properties we need to develop new tools. Te
following example will be used to illustrate non-uniform ergodicity in this section:
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Example 1 (Canonical non-uniformly ergodic example: AR(1)-process). . A particular gaussian
autoregresive process of order 1 is given by:

Let X = R and let P (x, ·) ≡ N (· ; x2 ,
3
4).

This kernel “pulls” the chain back to 0 on each step. The farther the chain is from 0 the longer it
will take to return to a neighbourhood of 0.

Does this process have a stationary distribution? Yes! The stationary distribution is N (0, 1). We
verify this below. Suppose that Xn ∼ N (0, 1), then;

Xn ⊥⊥ Z = Xn+1 −
Xn

2
∼ N (0,

3

4
)

=⇒ Xn+1 ∼ N (0, 1) .

Since this example is so simple, we could directly bound its total variation distance from stationarity.
Since the methods used wouldn’t generalise, this would not be instructive. In this section we will
develop generally applicable techniques, and then apply them to this example.

In this example, we cannot get uniform minorisation for all x ∈ X since, taking any two x sufficiently
far apart w,e could show that no uniform minorising probability measure exists for any ε > 0.

2.1 Drift and minorisation derivation

Instead of minorising uniformly over the whole state space, we may instead attempt to minorise
only uniformly over some subset of the state space. More precisely we will attempt to find C ⊂ X
such that P (x, ·) ≥ ερ(·) for all x ∈ C. We will call such a C a “small set”.

We cannot use the same construction as in the uniform case — we need to first allow both copies
of the chain to reach the small set, then hope that the chains couple.

2.1.1 Coupling Construction

The coupling is constructed as follows. Let X0 ∼ µ0 and let Y0 ∼ π. At stage n, given the coupled
Xn and Yn and Zn ∼ Bernoulli(ε) we determine the coupled Xn+1 and Yn+1 by:

if Xn = Yn then Xn+1 = Yn+1 ∼ P (Xn, ·)
else if (Xn, Yn) ∈ C2 ∧ Zn = 1 then Xn+1 = Yn+1 ∼ ρ(·)

else if (Xn, Yn) ∈ C2 ∧ Zn = 0 then Xn+1 ∼
P (Xn, ·)− ερ(·)

1− ε
= R(Xn, ·)

⊥⊥ Yn+1 ∼
P (Yn, ·)− ερ(·)

1− ε
= R(Yn, ·)

else (Xn, Yn) 6∈ C2 then Xn+1 ∼ P (Xn, ·)
⊥⊥ Yn+1 ∼ P (Yn, ·)
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2.1.2 Coupling Inequality

To bound the distance from stationarity we use the coupling inequality:

‖µk − π‖TV ≤ P(Xk 6= Yk) .

Choose j ∈ [k]. Let Nk = |
{
m ∈ [k] : (Xm, Ym) ∈ C2

}
|. We can then decompose the RHS above

as:

P(Xk 6= Yk) = P(Xk 6= Yk, Nk−1 ≥ j) + P(Xk 6= Yk, Nk−1 < j)

≤ (1− ε)j + P(Xk 6= Yk, Nk−1 ≤ j − 1)

We need some new techniques to bound P(Xk 6= Yk, Nk−1 ≤ j − 1), the probability that we have
an insufficient number of chances to couple and do not couple.

2.1.3 Drift conditions

The new trick will be to introduce a “drift condition”. There are univariate and bivariate versions
of drift conditions. In this course we will only examine bivariate versions.

We introduce the forward expectation operator P defined by

Ph(x, y) = E[h(X1, Y1)
∣∣(X0, Y0)] = (x, y)

Suppose that we have a function h : X 2 → [1,∞) and α > 1 such that

Ph(x, y) ≤ h(x, y)

α
∀(x, y) 6∈ C2 (1)

Then h is called a drift function and (??) is called a drift . The key idea is that, on average, h gets
smaller per step of the Markov chain. Often times we will use an additive, symmetric drift function
of the form h(x, y) = 1 + V (x) + V (y) for V : X → [0,∞). For the AR(1) example, we will use
V (x) = x2 and so h(x, y) = 1 + x2 + y2.

2.1.4 Final coupling bound

Suppose we have a drift condition as well as a local minorisation condition. Then, for B ≥ 1,

P(Xk 6= Yk, Nk−1 ≤ j − 1)

equality if B 6= 1 ≤ P(Xk 6= Yk, B
−Nk−1 ≥ B−(j−1))

= P
(

(1Xk 6=YkB
−Nk−1) ≥ B−(j−1)

)
Markov’s Ineq. ≤ Bj−1E

[
1Xk 6=YkB

−k−1
]

≤ Bj−1α−kE
[
1Xk 6=Ykα

kB−Nk−1h(Xk, Yk)
]

Let Mk = 1Xk 6=Ykα
kB−Nk−1h(Xk, Yk)and let B = 1 ∨

α(1− ε) sup(x,y)∈C2 E
X1∼R(x,·)
Y1∼R(y,·)

[h(X1, Y1)]

.
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We claim thatMk is a supermartingale with respect to the filtration generated by {(Xk, Yk) : k ∈ N}.
In light of this claim, we have:

P(Xk 6= Yk, Nk−1 ≤ j − 1) ≤ Bj−1α−kE[M0]

= Bj−1α−kE[h(X0, Y0)]

We verify the submartingale claim below. The proof relies on the fact the the Nk−1 term in the
definition of Mk is predictable.

Case 1: The chain coupled by time k + 1, so that Xk+1 = Yk+1. Then Mk+1 = 0 ≤Mk.

Case 2: The chains were not coupled and did not have a chance to couple at time k + 1, i.e.:
(Xk, Yk) 6∈ C2 and Xk+1 6= Yk+1. Then Nk−1 = Nk (no new chance to couple) so that

E[Mk+1

∣∣(Xk, Yk)]

= E[1Xk=YkMk+1

∣∣(Xk, Yk)]

+ E[1(Xk,Yk)6∈C21Xk 6=Yk Mk+1

∣∣(Xk, Yk)]

+ E[1(Xk,Yk)∈C21Xk 6=Yk Mk+1

∣∣(Xk, Yk)]

The first term is 0 since if the chain is coupled at time k then it is coupled at time k+1 so Mk+1 = 0.

The second term can be bounded by:

E[1(Xk,Yk)6∈C21Xk 6=YkMk+1

∣∣(Xk, Yk)] ≤ E[1(Xk,Yk) 6∈C2∧Xk 6=Yk α
k+1B−Nkh(Xk+1, Yk+1)

∣∣(Xk, Yk)]

= αE[1(Xk,Yk) 6∈C2∧Xk 6=Yk α
kB−Nk−1h(Xk+1, Yk+1)

∣∣(Xk, Yk)]

= 1(Xk,Yk) 6∈C2Mk
E[h(Xk+1, Yk+1)

∣∣(Xk, Yk)]

h(Xk, Yk)/α

≤ 1(Xk,Yk)6∈C2Mk

The third term can be bounded by:

E[1(Xk,Yk)∈C21Xk 6=YkMk+1

∣∣(Xk, Yk)] ≤ E[1(Xk,Yk)∈C2∧Xk 6=Yk∧Zk=0 α
k+1B−Nkh(Xk+1, Yk+1)

∣∣(Xk, Yk)]

≤ α

B
E[1(Xk,Yk)∈C2∧Xk 6=Yk∧Zk=0 α

kB−Nk−1h(Xk+1, Yk+1)
∣∣(Xk, Yk)]

= 1(Xk,Yk)∈C2Mk
E[1Zk=0h(Xk+1, Yk+1)

∣∣(Xk, Yk)]

Bh(Xk, Yk)/α

= 1(Xk,Yk)∈C2Mk
(1− ε)E[h(Xk+1, Yk+1)

∣∣(Xk, Yk, Zk = 0)]

Bh(Xk, Yk)/α

≤ 1(Xk,Yk)∈C2Mk

The last step follows from the choice of B. Combining these, we get the supermartingale property
for Mk.
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2.1.5 Drift and minorisation theorem

Theorem 2. If a Markov chain has a stationnary distribution, π, and a local minorisation condition
of the form:

∃(C ∈ ΣX , ε > 0, ρ ∈M(ΣX )) : (π(C) > 0 and (x ∈ C =⇒ P (x, ·) ≥ ερ(·))) ,

and a drift condition of the form:

(∃h : X 2 → [1,∞), α > 0) : ((x, y) 6∈ C × C =⇒ Ph(x, y) ≤ α−1h(x, y))

then for any j ∈ [k] we have

‖µk − π‖TV ≤ (1− ε)j + α−kBj−1Eh(x0, y0) ,

where B = 1 ∨

α(1− ε) sup(x,y)∈C2 E
X1∼R(x,·)
Y1∼R(y,·)

[h(X1, Y1)]

.

Example 3 (Canonical non-uniformly ergodic example: AR(1)-process — continued). We will
choose C = [−

√
3,
√

3] and h(x, y) = 1 + x2 + y2. Then we get:

ε =

∫
R

inf
x∈C
N (dy ;

x

2
,
3

4
)

= P(|N (0, 1)| ≥ 1)

= 0.3173105 ,

and, for (x, y) 6∈ C2 we have h(x, y) ≥ 4, so then:

Ph(x, y) = 1 +

(
x2

4
+

3

4

)
+

(
y2

4
+

3

4

)
=

9 + h(x, y)

4
=

9
44 + h(x, y)

4

≤ h(x, y)

4

(
1 +

9

4

)
=

13

16
h(x, y)

6



which means we can take

α =
16

13

B =
16

13
(1− 0.3173105) sup

(x,y)∈C2

E
X1∼R(x,·)
Y1∼R(y,·)

[h(X1, Y1)]

≤ 16

13
(1− 0.3173105) sup

(x,y)∈C2

(
1 +R[x2] +R[y2]

)
=

16

13
(1− 0.3173105) sup

(x,y)∈C2

1 +

P [x2]− ε E
W∼ρ

[W ]

1− ε
+

P [y2]− ε E
W∼ρ

[W ]

1− ε


=

16

13
(1− 0.3173105) sup

(x,y)∈C2

(
1 +

P [x2]

1− ε
+
P [y2]

1− ε

)
=

16

13
(1− 0.3173105)

(
1 +

3/4 + 3/4

1− ε
+

3/4 + 3/4

1− ε

)
=

16

13
(1− 0.3173105)

(
1 +

3

1− ε

)
=

16

13
(4− 0.3173105)

= 4.532541 ≤ 4.6

Take j = bk/10c

Then we get the following bound for µ0 = δ0:

‖µk − π‖TV ≤ (0.683)bk/10c +

(
13

16

)k
4.6bk/10c−1 2 (2)

Since Eh(X0, y0) = 1 + 0 + EY 2
0 = 2

Finally, for k? = 130 we have ‖µk? − π‖TV ≤ 0.01, which was computed with the following R script:

tv.bound = function(k){(1-2*pnorm(-1))^floor(k/10) +

(13/16)^k * ((16/13) * (4- 0.3173105))^(floor(k/10)-1)*2 -0.01 }

k.star = ceiling(uniroot(tv.bound,c(0,1000))$root)
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