
STA4502: Topics in Stochastic Processes Winter 2018

Lecture 1: Introduction — March 1, 2018

Lecturer: Jeffrey Rosenthal Scribe: Mufan (Bill) Li

1 Introduction to Markov Chains

Before we define a Markov chain, we introduce the following notations and definitions.

Definition 1. We denote (X ,F) our (measurable) state space, equipped with appropriate σ-
algebra F . Here a state space is called discrete if the cardinality of X is finite or countable,
otherwise it’s called continuous.

Here’s a diagram with some examples

state space(X ,F)

discrete:

{
finite: e.g. X = {1, 2, 3, . . . , n},F = P(X ) (the power set)

countable: e.g. X = N = {0, 1, 2, . . .},F = P(X )

continuous: e.g. X = Rd,F = B(Rd) (the Borel sets).

Definition 2. P : X × F → [0, 1] is a transition probability if ∀x ∈ X , P (x, ·) : F → [0, 1] is a
probability measure on (X ,F).

Remark 3. Observe that for a discrete X , P (x, y) is well defined ∀x, y ∈ X , i.e. it’s the probability
of going from point x to point y. For a continuous X , we need to use measurable sets A ∈ F to
talk about transition probability P (x,A) from x to A.

Finally we can define a Markov chain.

Definition 4. We call a sequence of random variables {Xk}∞k=0 taking values in X a Markov
chain if P[Xk+1 ∈ A|Xk] = P (Xk, A),∀k ∈ N, A ∈ F .

At the same time, we would like to define the following distributions on X .

Definition 5. We call ν = L(X0) the initial disitribution, and denote µk = L(Xk). A distribu-
tion π is called a stationary distribution if π(A) =

∫
X P (x,A)dπ(x).

In other words, if the Markov chain starts in a stationary distribution (ν = π), it will remain in
stationarity (µk = π,∀k ∈ N).

The main goal of this course is study whether or not we have convergence of µk → π in some sense,
and if so quantify the “rates” of this convergence. To this end, we will introduce several defintions
and basic conditions to guarantee convergence.
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2 Convergence Conditions

We start with a couple of definitions.

Definition 6. A dicrete Markov chain is irreducible if

∀x, y ∈ X ,P[Xk = y eventually |X0 = x] > 0.

Equivalently, we can say ∃m ∈ N : Pm(x, y) > 0, where Pm(x, y) is the transition probability after
m steps.

In general, we say Markov chain is φ-irreducible if ∃ non-zero σ-finite measure φ on (X ,F) : ∀x ∈
X , A ∈ F with φ(A) > 0, we have that P[Xk ∈ A eventually |X0 = x] > 0.

Remark 7. The general φ-irreducibility is not equivalent to the discrete irreducibility. Consider
for example φ that concentrates only on a single point x ∈ X , then φ-irreducibility only requires
∀y ∈ X ,∃m ∈ N : Pm(y, x) > 0.

Definition 8. For a discrete irreducible Markov chain, a point x ∈ X is said to be aperiodic if
gcd({n, Pn(x, x) > 0}) = 1. The Markov chain is aperiodic if every point is aperiodic.

A general Markov chain with stationary distribution π is aperiodic if there does not exist d ≥ 2

and a partition of size d + 1 such that X =
(⊔d

i=1Xi
)⊔

N , where
⊔

denotes disjoint union, N is

a π-null set, and for π-a.e. x ∈ Xi, P (x,Xi+1) = 1, except for π-a.e. x ∈ Xd, P (x,X1) = 1.

At this point, we can state our first theorem, the conditions to guarantee convergence.

Theorem 9. If a Markov chain is irreducible (or φ-irreducible for the general case), aperiodic, and
have a stationary distribution π, then we have for a discrete Markov chain

∀v initial distribution,∀y ∈ X , lim
k→∞

µk(y) = π(y),

or for a general Markov chain

for π − a.e. x ∈ X , lim
k→∞

sup
A∈F

∣∣∣P k(x,A)− π(A)
∣∣∣ = 0.

Remark 10. For the general chain, this type of convergence is stronger than the typical weak
convergence (in distribution), it is known as convergence in total variation. The name refers
to the total variation distance defined by

TV(µk, π) := sup
A∈F
|µk(A)− π(A)| .

In the discrete case, we also have the following identity

TV(µk, π) =
1

2

∑
y∈X
|µk(y)− π(y)| =

∑
y∈X :µk(y)>π(y)

|µk(y)− π(y)|.

Therefore we have that for the discrete case, weak convergence implies convergence in total varia-
tion.

However, in general this implication is false. Consider the following counter example (by Jeffrey
Negrea). Let X = [0, 1], π = δ0, a point mass at x = 0. Define the transition probability as

P (x, x/2) = 1. Then ∀x ∈ X , ν = δx, we have µk
d−→ δ0. However the total variation distance is

always 1 as |π(0)− µk(0)| = 1, ∀k.

2



Example 11. Let X = {1, 2, . . .}, π = δ1, P (1, 1) = 1. For n ≥ 2, let P (n, n + 1) = 1 − 1/n2,
P (n, 1) = 1/n2. See diagram below for a few sample points.

1 2 3 4 · · · · · ·1
4

1 3
4

8
9

1
9

Observe in this case, the chain is not irreducible in the discrete definition, however it is φ-irreducible
when φ = δ1. Similarly, this Markov chain is aperiodic in the general sense, since the only possible
node to return to has a period of 1.

Here we can check for which x ∈ X we have convergence to stationary distribution.

x = 1 =⇒ µk = δ1 ∀k. 3

x ≥ 2, in this case we have that 1/n2 is summable, which implies
∏∞
n=1(1 − 1/n2) > 0. In other

words, there is a positve probability of Xk →∞. 7

This implies we have µk
TV−−→ π, but only for π-a.e. x ∈ X starting points, which is only x = 1.

Example 12. Let X = {1, 2, 3, 4, 5}, and define a symmetric random walk, i.e. P (x, x + 1) =
P (x, x−1) = 1/2, except at the ends, we have P (1, 1) = P (5, 5) = 1/2 instead. See diagram below.

1 2 3 4 5

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

This chain is clearly irreducible. It is also aperiodic since for every path x → y, we can stop at 1
or 5 for one additional step, making the gcd 1.

The stationary distribution π is uniform since the chain is reversible, i.e. P (x, y) = P (y, x).

Since all the conditions are satisfied we have

lim
k→∞

P[Xk = x] = π(x) =
1

5
,∀x ∈ X .

Goal 13. Find k∗ ∈ N such that

sup
A∈F

∣∣∣P k∗(x,A)− π(A)
∣∣∣ < 0.01

This is called the quantitative rate of convergence. Here we remark that finding one particular
k∗ is already difficult, therefore we are less interested in find the minimal k∗.

To this goal, we will introduce the coupling technique.
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3 The Coupling Inequality

If X,Y are jointly defined random variables, then we can bound the total variation distance by the
following steps

‖L(X)− L(Y )‖TV = sup
A∈F
|P(X ∈ A)− P(Y ∈ A)|

partition each event . . . = sup
A∈F
|P(X ∈ A,X = Y ) + P(X ∈ A,X 6= Y )

− P(Y ∈ A,X = Y )− P(Y ∈ A,X 6= Y )|
{X ∈ A,X = Y } = {Y ∈ A,X = Y } =⇒ = sup

A∈F
|P(X ∈ A,X 6= Y )− P(Y ∈ A,X 6= Y )|

≤ P(X 6= Y ),

where a factor of 2 is not required in the last step since both probabilities are non-negative.

Example 14. (Apply to Markov Chains) Here we start with a Markov chain {Xk}∞k=0, and we
make a copy of it denoted {Yk}∞k=0, with the joint distribution specified later.

Usually (although not exclusively), we will let Y0 ∼ π, i.e. start in the stationary distribution,
therefore Yk ∼ π, i.e. remains in stationarity. This implies

‖µk − π‖TV = ‖L(Xk)− L(Yk)‖TV ≤ P(Xk 6= Yk).

Proof intuition: here we let Xk, Yk move together, i.e. if Xk+1 = Xk ± 1, then we also have
Yk+1 = Yk ± 1; while at the end points, one of the chains must remain in the same node, hence
reducing the “distance” by 1. Eventually, the two chains will “converge” to the same value.

Challenge 15. Use the coupling technique above to find k∗ such that

sup
A∈F

∣∣∣P k∗(x,A)− π(A)
∣∣∣ < 0.01
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STA4502: Topics in Stochastic Processes Winter 2018

Lecture 2: Minorization Condition — March 7, 2018

Lecturer: Jeffrey Rosenthal Scribe: Louis Bélisle

4 Recap of previous lecture

A Markov Chain is a sequence {Xk} in a space X , transition probability P , initial distribution
ν = µ0, where the k-th step is distributed following µk = L(Xk). It may have a stationary
distribution π such that πP = π.

Theorem 16. If the chain is irreducible and aperiodic for π-a.e. x = X0, then ‖µk − π‖TV → 0

Remark 17. It is possible to show that the Total Variation function is non-increasing. Start by
noticing that P is a weak contraction operator. In “hand-wavy” form,

|P | < 1⇒ ‖µk+1 − π‖ = ‖(µk − π)P‖ ≤ ‖µk − π‖ · ‖P‖

Proposition 18 (Roberts and Rosenthal, 2004). 1. ‖ν1(.)−ν2(.)‖ = supf :X→[0,1] |
∫
fdν1−

∫
fdν2|

2. ‖ν1(.)− ν2(.)‖ = 1
b−a supf :X→[a,b] |

∫
fdν1 −

∫
fdν2| for any a < b and in particular

‖ν1(.)− ν2(.)‖ = 1
2 supf :X→[−1,1] |

∫
fdν1 −

∫
fdν2|

3. If π is stationary for a Markov chain kernel P , then ‖Pn(x, .)− π(.)‖ is non-increasing in n,
i.e., ‖Pn(x, .)− π(.)‖ ≤ ‖Pn−1(x, .)− π(.)‖ for n ∈ N

4. More generally, letteing (νiP )(A) =
∫
νi(dx)P (x,A), we always have ‖(ν1P )(.)− (ν2P )(.)‖ ≤

‖ν1(.)− ν2(.)‖.

5. Let t(n) = 2 supx∈X ‖Pn(x, .)−π(.)‖, where π(.) is stationary. the t is submultiplicative, i.e.,
t(m+ n) ≤ t(m)t(n) for n,m ∈ N.

6. if µ(.) and ν(.) have densities g and h, respectively, with respect to some σ-finite measure
ρ(.) and M = max(g, h) and m = min(g, h), then

‖µ(.)− ν(.)‖ =
1

2

∫
X

(M −m)dρ = 1−
∫
X
mdρ

7. Given probability measures µ(.) and ν(.), there are jointly defined random variables X and
Y such that X ∼ µ(.) and Y ∼ ν(.) and P [X = Y ] = 1− ‖µ(.)− ν(.)‖.

Proof. Ref: Roberts and Rosenthal, 2004. General State Space Markov Chains and MCMC Algo-
rithms.

Then we saw the coupling inequality and introduced the purpose of this course: studying the speed
of convergence of a Markov Chain. This means:

For any ε > 0, say ε = 0.01, find k∗ such that ‖µk − π‖TV ≤ ε.
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4.1 Challenge Solution

Let X = {1, 2, 3, 4, 5} and P (x, ·) follow a single-step random walk with holding, referring back to
challenge 15 which stems from example 12. We know it has a stationary distribution π = Unif(X ).
Using the coupling inequality,

‖µk − π‖ ≤ P (Xk 6= Yk)

≤
(

7

8

)bk/4c
< 0.01 if k ≥ 140

This value of k gives a number of steps in the chain that will guaranty that the result is within a
“reasonable” distance of its stationary distribution. We can find tighter bounds for k∗, the tightest
exposed in class having been found by numerical exponentiation of P to yield a k∗ = 39. Next, we
will present different ways to get bounds on k∗.

5 Minorization Condition

Goal 19. The goal is to find more efficient ways of finding the speed of convergence of a Markov
chain, other than trial and error. Using the Minorization Condition is similar in a way as thinking
about coupling.

Condition 20 (Rosenthal,1995). A Markov chain with transition kernel P (x,dy) on a state space
X is said to satisfy a minorization condition if there is a probability measure ρ(·) on X , a positive
integer k0, and ε > 0, such that

P k0(x,A) ≥ ερ(A), ∀x ∈ X ,

for all measurable subsets A ⊆ X .

The condition requires every state in the state space to be within reach of any other state. We
can then minorize the transition probability with a density ρ(·) scaled by a parameter ε. This
is equivalent to finding a sliver of a probability distribution where all the transition probabilities
“overlap” with each other (see Figure 1 for illustration). This can fail because we may not have an
overlap in common for all possible values of x ∈ X (see Observation 24).

Remark 21. Why is this similar to coupling? Because coupling is trying to make two Markov
chains become equal, while the minorization condition is showing us how this can be done.

Remark 22. The overlap suggests how to create the joint distribution. We know that the marginals
need to satisfy the Markov Chain conditions, but the joint distribution can be specified to fit our
needs.
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Proposition 23 (Coupling under Minorization Condition). Given Xn−1 = x and Yn−1 = y,

if x 6= y,


With probability = ε, choose z ∼ ρ(·), and set Xn = Yn = z

With probability = (1− ε), choose

{
Xn ∼ 1

1−ε(P (x, ·)− ερ(·))
Yn ∼ 1

1−ε(P (y, ·)− ερ(·))
otherwise, if x = y, leave them together and choose Xn = Yn ∼ P (x, ·)

For a matter of convenience, in the case of x 6= y where we choose Xn and Yn separately (i.e. not set-
ting them equal to z) we often take the two distributions ofXn and Yn to be conditionally independent
from each other. This completely defines the joint distribution of the two Markov processes.

Therefore, the distribution of Xn becomes ερ(·)+ 1
1−ε(P (x, ·)−ερ(·)). Similarly for Yn which implies

Pr(Y = X) ≥ ε

For this coupling, P (“becoming equal at step n”) ≥ ε, i.e., the probability of becoming equal at
step n is larger or equal to ε, therefore,

‖µk − π‖ ≤ P (Xk 6= Yk) ≤ (1− ε)k

If the minorization condition is satisfied, then the above inequality would allow us to find a k∗ that
is indicative of the speed of convergence.

Observation 24. It is possible to have a Markov chain where not all states are reachable within
one step of any other state (think of our example 12). However, with a Markov chain that we know
converges to a stationary distribution, it is possible to create an analogous chain that consists of
a small power of the transition kernel P that makes all states reachable within one “step” of this
power.

This means, we can find a k0 such that, if

P k0(x, ·) ≥ ερ(x, ·), ∀x ∈ X ,

then
‖P k0(x, ·)− π‖ ≤ ‖(P k0)bk/k0c(x, ·)− π‖ ≤ (1− ε)bk/k0c

Example 25. For our example 12 from Lecture 1, we do not immediately satisfy the minorization
condition because not all states are reachable from a particular starting point. However, within
4 steps, we have a positive probability to reach any point for every starting state. So we can use
P 4(x, ·) as our “chain” that satisfies the minorization condition. Within 4 steps, we have at least a
probability 1/44 = 1/16 of reaching any other state. We can thus choose ε = 1/16. Then to choose
a distribution ρ(·), we have many options:

1. If we decide to take ρ(·) = δ3(·), i.e., a point mass at state 3, then

P 4(x, 3) ≥ 1

16
δ3(·), ∀x⇒ ‖P k0(x, ·)− π‖ ≤

(
15

16

)bk/4c
≤ 0.01⇒ k∗ = 288

2. If we decide to take ρ(·) = Unif(X ), i.e., the discrete uniform distribution over X , then

P 4(x, ·) ≥ 5

16
Unif(X ), ∀x⇒ ‖P k0(x, ·)− π‖ ≤

(
11

16

)bk/4c
≤ 0.01⇒ k∗ = 52
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Challenge 26. Take a new MC similar to example 12, i.e., single-step random walk over X =
{1, 2, . . . , N}, for N ∈ N but where the transition probabilities are

Pr(Go Left) =1/3

Pr(Stay Put) =1/3

Pr(Go Right) =1/3

1 2 · · · N-1 N

1
3

1
3

1
3

2
3

2
3

1
3

1
3

1
3

1
3

1
3

1
3

1
3

1
3

Then

1. Find k∗ with N = 5

2. What is k∗ with N →∞ (gets arbitrarily large)

5.1 Method to find minorization components

Optimally, we would take
ερ(y) = min

x∈X
P (x, y), ∀y ∈ X ,

which leads us to choose a particular ε and create the ρ(·) such that it is a probability distribution
that fits the criteria for the minorization condition. One way to build such elements is the following:

Discrete:

{
ε =

∑
y minx P (x, y)

ρ(y) = minx P (x,y)∑
y minx P (x,y)

Continuous:

ε =
∫
y infx P (x, dy)

ρ(y) = infx P (x,dy)∫
y infx P (x,dy)

5.2 Continuous state space: an application of the minorization condition

Example 27. Let X = [0, 2]. Let the transition probability from state x ∈ X to a subset A ⊆ X
be

P (x,A) = N(x, 1;A) + r(x)δx(A)

where N(x, 1;A) = Pr(z ∈ A) with z ∼ N(x, 1), and where r(x) = 1−N(x, 1;X ), the probability
that a draw from N(x, 1) falls outside X . (This corresponds to the Metropolis-Hastings algorithm
with π = Unif[0, 2].)
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Remark 28. This transition probability is reversible with respect to π = Unif[0, 2], i.e., if we start
in a neighbourhood of x, the probability of jumping in a neighbourhood of y is the same as if we
had started in neighbourhood of y and measured the probability of jumping in a neighbourhood of x.
∀x, y ∈ X ,

π(x)P (x, y) =π(y)P (y, x), (Discrete)

π(dx)P (x, dy) =π(dy)P (y, dx), (Continuous)

In this situation, we have special case where the Uniform distribution guarantees π(dx) = π(dy)
and the symmetry of the Normal distribution guarantees P (x,dy) = P (y,dx).

Figure 1: Illustration of the overlap required to satisfy the minorization condition

0 2

To be able to use a minorization argument, we must verify 2 things:

1. The Markov chain converges

(a) This chain is φ-irreducible under φ = Lebesgue|[0,2]
(b) It is aperiodic since N(·) covers all the domain [0, 2].

2. The minorization condition is satisfied

(a) we can find ε =
∫
y g(y)dy where g(y) ≤ f(x, y) ∀x, y.

Then, we will be able to find a value k∗ such that, ∀ k ≥ k∗, ‖µk − π‖TV < 0.01. To construct ε, it
helps to think of the “worst case” scenario for the location of x and Y . In this case, take X = 0
and Y = 2 (as represented in Figure 1). The shaded area represents ερ(·). Then,

∀x, y, P (x,dy) ≥min[P (0,dy), P (2,dy)]

⇒ ε =

∫
y

min[P (0, dy), P (2, dy)]

= (Φ(2)− Φ(1)) + (Φ(−1)− Φ(−2))

=2 (Φ(2)− Φ(1))

≥0.27

∴ ‖µk − π‖TV ≤(1− ε)k = (0.73)k

<0.01 if k ≥ 15
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So take ε = 0.23 and k∗ = 15. In this case, we do not need to know the exact form of ρ(·), but by
construction we know ρ(·) has density

f(y) =
min[N(0, 1; y), N(2, 1; y)]

2 (Φ(2)− Φ(1))
I{y∈X}.

6 Eigenvectors and eigenvalues: first concept

We know our distribution at step k is µk = µ0P
k with |X | = d. Suppose we coudl find λi, vi such

that viP = λivi for i = 0, 1, . . . , d− 1. If we represent µ0 as

µ0 = a0v0 + a1v1 + . . .+ ad−1vd−1,

then we could find values for λi’s such that

µk = µ0P
k = a0(λ0)

kv0 + a1(λ1)
kv1 + . . .+ ad−1(λd−1)

kvd−1.

where we would usually take λ0 = 1, v0 = π, a0 = 1 (by relabeling, since we know πP = π) and we
will have |λm| < 1 for m > 0, which will give us bounds on convergence.

10



STA4502: Topics in Stochastic Processes Winter 2018

Lecture 3: Eigenvalue Connection — March 14, 2018
Lecturer: Jeffrey Rosenthal Scriber: Yuenan Joseph Cai

Challenge 26 Solution

Starting from any state, there is at least 1
3N−1 probability to get to any other state in N − 1 steps. This

suggests using Minorization technique with ερ(·) = 1
3N−1 where ρ(·) is a uniform distribution on X . Therefore,

ε = N
3N−1 . For δ > 0, find a bound k∗ s.t. ||µk − π||TV ≤ (1− ε)bk/(N−1)c ≤ δ.

⇒ k∗ ≥ (N − 1)(
ln(δ)

ln(1− N
3N−1 )

+ 1).

When N = 5 and δ = 0.01, k∗ = 294. Can this be improved?

A Note on Coupling under Minorization Condition

The coupling method does not modify the marginal transition probabilities of {Xn} and {Yn}. Recall
(Xn, Yn) is jointly updated in the following manner:

- If Xn−1 = x 6= y = Yn−1,

{
w.p. ε, choose Xn = Yn ∼ ρ(·)
w.p. 1− ε, choose Xn ∼ 1

1−ε (P (x, ·)− ερ(.)) and Yn ∼ 1
1−ε (P (y, ·)− ερ(·))

;

- Otherwise, let Xn = Yn ∼ P (x, ·).

In the nontrivial case Xn−1 = x 6= y = Yn−1,

P (Xn ∈ ·|Xn−1 = x) = ερ(·) + (1− ε)
( 1

1− ε
(P (x, ·)− ερ(·))

)
= P (x, ·).

Similarly, P (Yn ∈ ·|Yn−1 = y) = P (y, ·).

Example 29. (Coupling - Card Shuffling) Suppose a deck of cards is to be shuffled by taking the top card
and place it randomly back into the deck. How long will it take to well scrambled the deck (i.e. “almost”
equally likely to obtain any card arrangement)?

To make our analysis easier, consider an alternative shuffling method that takes a card at random from
the deck and place it on top. It can be shown that the “random-to-top” shuffling method is equivalent to
“top-to-random” method 1.

How to apply coupling? Consider using two desks of cards, a well mixed deck on the left and the one to
be shuffled on the right. We can choose a card randomly from a deck, find the same card in the other one,
and place both cards on top of the respective deck. Despite having the same card drawn from both decks,
it is still a random draw from each in terms of marginals. Once all the cards have been selected once, both
decks must be in the same order. Now the question can be viewed as a coupon collector’s problem in finding
the probability that more than k shuffles are needed to touch all n cards. Formally, the left deck starts in

1They are random walks on a group. One way to relate the two methods is that they are “time reversal” version of each

other (p̃(x, y) = p(y, x)
π(y)
π(x)

, where p̃ is the new description under ”random-to-top” method). In terms of group operations,

each “top-to-random” draw t can be matched by a “random-to-top” draw and p̃(x, xt) = p(x, xt−1). We have µ̃k(x) = µk(x−1)
where x and x−1 are a permutation operation and its inverse.
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stationary distribution, and after k steps,

||µk − π||TV
≤P (T > k, where T is the time taken to select all cards at least once)

=P (Have not touch all cards by time k)

=P (∪ni=1Have not touch card i by time k)

≤
n∑
i=1

P (Have not touch card i by time k)

=n(1− 1

n
)k

≤ne− k
n

=e−(
k
n−ln(n))

If k = cn ln(n), then ||µk − π||TV ≤ n1−c. The bound is small when c > 1 and n is large. For a deck with
52 suit cards, ||µk − π||TV ≤ 0.01 when c ≈ 2.2, or k∗ ≈ 452.

6 Eigenvectors and Eigenvalues

In this section we will study the connections between Markov chains and eigenvalues. Assume a Markov
Chain on finite state space X of size d, the transition probability P is diagonalizable 2 with elements in C.
Recall that the eigenpairs (λm, vm) of P satisfies vmP = λmvm for m = 0, 1, ..., d− 1. Since πP = π if π is
a stationary distribution, we can always assign (1, π) to (λ0, v0).

For an initial distribution written in terms basis of (left) eigenvectors µ0 = a0v0 + ...+ ad−1vd−1, the k-step
distribution is µk = µ0P

k = a0λ
k
0v0 + ...+ ad−1λ

k
d−1vd−1. Let λ∗ = maxi≥1 |λi|, then

|µk(x)− π(x)|
=|a1λk1v1(x) + ...ad−1λ

k
d−1vd−1(x)|

≤|λ1|k|a1v1(x)|+ ...+ |λd−1|k|ad−1vd−1(x)|
≤|λ∗|k

(
|a1v1(x)|+ ...+ |ad−1vd−1(x)|

)
=Cµ0,x|λ∗|k

Remark 30. If |λ1|, ..., |λd−1| < 1, then as k → ∞, µk → a0π where a0 = 1. For the other direction, if
the Markov Chain with stationary distribution π is irreducible and aperiodic, then |λi| < 1 ∀i ≥ 1. A few
comments:

1. We may have other |λi| = 1 for some i ∈ {1, ..., d−1} when the chain is periodic. Consider an example
on {1, 2} of period 2:

P =

[
0 1
1 0

]
.

The eigenpairs are {
(
1, (1, 1)

)
,
(
− 1, (−1, 1)

)
}. In this case the k-step distribution does not converge

to the stationary distribution ( 1
2 ,

1
2 ) for general µ0. Instead we require periodic version of the Markov

Chain Convergence Theorem.

2If P is not diagonalizable (when some eigenvalues have multiplicity ≥ 2), then we obtain the Jordan canonical form.
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2. If the chain is not irreducible, we may still be able to find irreducible sub-chains where the statement
still holds.

Next we will review a few results from Linear Algebra

Definition 31. (L2(π) norm) The L2(π) norm between v and w is < v,w >L2(π):=
∑
x∈X v(x)w(x)π(x).

If the eigenvectors {vi} are orthonormal in L2(π), then < vi, vj >L2(π)= δij . We seek for conditions in which
P is diagonalizable w.r.t. some orthonormal vectors.

Definition 32. 1. The adjoint operator P ∗ of P satisfies < v,wP >=< vP ∗, w >.
2. P is normal if PP ∗ = P ∗P .
3. P is self-adjoint if P = P ∗.

Fact 33. 1. If P is self-adjoint, then it is also normal, with real eigenvalues.
2. If P is either normal or self-adjoint, then there exists an orthonormal basis {vi}.
3. If π is a uniform distribution, then P ∗ = P † where P † is the conjugate transpose of P . Furthermore
P is self-adjoint iff P is symmetric.

Fact 34. P is self-adjoint iff the chain is reversible w.r.t P .

Fact 35. Using Cauchy–Schwarz inequality, one can show that

||µk − π||TV

=
1

2

∑
x

|µ(x)− π(x)|

=
1

2

∑
x

|µ(x)− π(x)|
√
π(x))

1√
π(x)

≤1

2

√∑
x

(µk(x)− π(x))2π(x)
∑
x

1

π(x)

≤1

2

√∑
x

(µk(x)− π(x))2π(x)
n

minx π(x)

=
1

2

√
n

minx π(x)
||µk − π||L2(π)

13



Fact 36. The result below will allow us to quantify the convergence rate in terms of eigenvalues.

||µk − π||2L2(π)

= < µk − π, µk − π >L2(π)

= <

n−1∑
i=1

aiλ
k
i vi,

n−1∑
i=1

aiλ
k
i vi >L2(π)

=

n−1∑
i,j=1

aiajλ
k
i λ

k
j < vi, vj >L2(π)

=

n−1∑
i=1

a2iλ
2k
i

≤λ2k∗
n−1∑
i=1

a2i

≤λk∗
n−1∑
i=1

a2i

Remark 37. In continuous case, we are interested in the operator norm ||P0||L2(π)→L2(π)
3. The notation

P0 := P |π⊥ stands for P restricted to signed measure of total mass 0 (analog of {v1, ..., vd−1}, which are
orthogonal elements of v0 = π). In general, ||P ||L2(π)→L2(π) = 1. If ||P0|| < 1, the chain is geometric ergodic.

6.1 A Few Motivating Examples

Example 38. (Frog Walk) Suppose there are n lily pads arranged in a circle. A frog starts at pad 0 and
at each step, with equal probability, either moves clockwise, counter-clockwise or remains at where it was.
The transition matrix associated with the Markov Chain on X = {0, 1, ..., n− 1} = Z/(n) is:

P =



1/3 1/3 0 ... 0 1/3
1/3 1/3 1/3 0 ... 0
0 1/3 1/3 1/3 0 ... 0
... ...
0 ... 0 1/3 1/3 1/3 0
0 ... 0 1/3 1/3 1/3

1/3 0 ... 0 1/3 1/3


This chain is reversible w.r.t the uniform distribution on X and therefore, π(x) = 1

N is a stationary distri-
bution. For fixed ε, find k∗ such that ∀k ≥ k∗, ||µk∗ − π||TV ≤ ε; in particular, solve for n = 1000 and
ε = 0.01.

This is a random walk on an abelian group which will be covered in the following lecture. One may simplify
the notations in terms of step distributions for random walk on abelian groups.

Q(−1) = Q(0) = Q(1) =
1

3
.

3Norm of operator A is defined as ||A|| = supu 6=0
||Au||
||u||
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Example 39. (Bit Flipping) Suppose the state space X = (Z/(2))d represents the set of bits of length d
(for example d = 8, x = (0, 0, 1, 1, 1, 0, 1, 0) ∈ X ). Define a Markov Chain with the following transition
probabilities: {

w.p. 1
d+1 , do nothing to the list

w.p. d
d+1 , change a random bit

.

Equivalently,
w.p. 1

d+1 , set Xn = Xn−1

w.p. d
d+1 , set

{
Xn,i = Xn−1,i, i 6= j

Xn,i = 1−Xn−1,i, i = j
where j is chosen uniformly from {1, ..., d}

.

This chain is also reversible w.r.t the uniform distribution on X and therefore, π(x) = 1
2d

is a stationary
distribution. How fast does the k-th step distribution converge to π?
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STA4502: Topics in Stochastic Processes Winter 2018

Lecture 4: Random Walks on Groups — March 21, 2018

Lecturer: Jeffrey Rosenthal Scribe: Tiantian Zheng

An aside on the choice of norm

In our last lecture we obtained bounds on the convergence rate in terms of eigenvalues. The norm
we used for this exercise was the L2(π) norm, defined between vectors v and w as:

Definition 31. 〈v, w〉L2(π) :=
∑

x∈X v(x)w(x)π(x)

Under this norm, P is reversible iff 〈v, Pw〉 = 〈Pv,w〉, ∀v, w .

Other norms might also be used, such as:

Definition 40. 〈v, w〉∗ :=
∑

x∈X
v(x)w(x)
π(x)

This norm can be thought of as acting on densities instead of vectors w.r.t π as

〈v, w〉∗ =
∑
x∈X

v(x)

π(x)

w(x)

π(x)
π(x)

In this case, P is reversible iff 〈v, wP 〉∗ = 〈vP,w〉∗, ∀v, w.

Challenge 41. Check requirements for reversibility under the two norm definitions.

In both cases, P being self adjoint implies that there exists an orthonormal basis {vi} which can
be used to improve bounds on the convergence rate. Furthermore, the norm according to Def. 40
has some nice properties when we consider how it bounds the total variation distance:

2‖µk − π‖TV =
∑
x∈X
|µk(x)− π(x)|

=
∑
x∈X
|µk(x)

π(x)
− 1|π(x)

= ‖µk − π‖L1(∗)

≤ ‖µk − π‖L2(∗)

where the inequality comes from the Cauchy-Schwarz inequality.

This bound does not depend on π, whereas using the L2(π) norm, the coefficient for the bound
depends on π:

2‖µk − π‖TV ≤
√

n

min
x
π(x)

‖µk − π‖L2(π)

1



However, as we will see, in the case of random walks on groups, π is uniform on X , and both
definitions of the norm work, and we will keep using the L2(π) norm.

7 Random Walks on Groups

In the last section we saw that we could get various bounds on convergence in terms of eigenvalues
and eigenvectors of the transition matrix P . However, in general, it is usually hard to find these if
X is large.

In the case of random walks on groups, however, it is always possible to obtain explicit forms for
the eigenvalues and eigenvectors.

Definition 42. A random walk on a group is a Markov chain on a state space of some general
discrete group X . Transition probabilities are written as P (x, y) = Q(x−1y) where Q(·) is some
fixed step distribution on X . The increment distributions defined by Q are i.i.d.

Example 43. Our previous example of card shuffling is a random walk on the group Sn, the
symmetric group of permutations.

Example 44. Random walk on Z:

• For the random walk with 1
2 −

1
2 probabilities of moving by +1 and -1:

Q(+1) = Q(−1) =
1

2

• For the random walk with 1
3 −

1
3 −

1
3 probabilities of moving by +1, 0 and -1:

Q(+1) = Q(0) = Q(−1) =
1

3

It is possible to work with continuous groups, e.g. O(n), the orthogonal group, containing the set of
all n× n orthogonal matrices. For now, we restrict our discussion to finite, abelian groups. As the
law of composition is commutative on these groups, we use addition notation, i.e. replace Q(x−1y)
with Q(y − x) to represent P (x, y).

Fact 45. A random walk P on a finite group always has π = Unif(X ), i.e. π(x) = 1
n , ∀x ∈ X , since

P is doubly stochastic (i.e.
∑

x P (x, y) = 1,∀y).

Proof. ∑
x

P (x, y) =
∑
x

Q(y − x) =
∑
z

Q(z) = 1

Fact 46. Finite abelian groups are always of the form X = Z/(n1)× Z/(n2)× ...× Z/(nr)

Example 47. Frog walk: A frog jumps on a circular arrangement of 20 lilypads, each time moving
clockwise or counterclockwise by one lilypad. The state space is given by X = Z/(20).

2



Example 48. Bit flipping: A set of bits of length d can have each bit, or no bit flipped at each
timestep with probability 1

d+1 .

• The state space is given by X =
(
Z/(2)

)d
.

• The step distribution is given by Q(0) = Q(e1) = ... = Q(ed), where ei = (0, 0, 0, ..., 0, 1, 0, ...),
i.e. all entries are 0, except for the ith entry, which is replaced by 1.

For the above examples, it is not immediately obvious what the eigenvalues and eigenvectors are.
To derive these, we introduce characters, which are the beginnings of representation theory of
groups.

7.1 Characters

Definition 49. χm : X → C is a character defined for m = (m1,m2, ...,mr) ∈ X ,

χm(x) = e
2πi(

m1x1
n1

+
m2x2
n2

+...mrxr
nr

)

Note 50. (some identities)

1. χm(x+ y) = χm(x)χm(y)

2. χm(0) = 1

3. |χm(x)| = 1

4. χm(−x) = χm(x)

5.
∑

m∈X χm(x) =

{
n, x = 0

0, x 6= 0
= nδx0, where n = n1n2...nr = |X |

6. 〈χm, χj〉L2(π) =
∑

x∈X χm(x)χj(x)π(x) =
∑

x∈X χm(x)χj(x) 1
n =

{
1,m = j

0,m 6= j
= δmj

Identity 5 for x 6= 0 follows from the fact that χm(x) are equally distributed on the unit circle in
the complex plane, or alternatively, noting that this is a product of geometric sums that evaluate
to 0

∑
m∈X

χm(x) =
∑
m∈X

( r∏
j=1

e
2πi

mjxj
nj

)
=

r∏
j=1

( nj−1∑
mj=0

e
2πimjxj

nj

)
=

r∏
j=1

1− e2πixj

1− e
2πixj
nj

= 0

In Identity 6, we have made use of the fact that π = Unif(X ), and when m 6= j, the sum reduces
to
∑

x χm−j(x), which is zero for the same reason as in Identity 5.

It follows therefore from Identity 6 that {χm} are orthonormal. It remains to be shown that they
are eigenvectors.
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(
χmP

)
(y) =

∑
x∈X

χm(x)P (x, y)

=
∑
x∈X

χm(−x)P (x, y)

=
∑
x∈X

χm(−x)Q(y − x)

Making the change of variable z = y − x,−x = z − y:

(
χmP

)
(y) =

∑
z∈X

χm(z − y)Q(z)

=
∑
z∈X

χm(z)χm(−y)Q(z)

= χm(y)
∑
z∈X

χm(z)Q(z)

= EQ(χm)χm(y)

Therefore, {χm} is the set of eigenvectors, with corresponding eigenvectors, {λm} being the expec-
tation of the characters under Q. As usual, we set λ0 = 1 and define λ∗ = max

m 6=0
|λm|.

Finally we want to be convinced that in the case when the random walker starts in a designated
position, i.e. µ0 = δ0(·) is a point mass, we can still write µ0 as a linear combination of the
eigenvectors of P . I.e. we want to show that µ0 =

∑
m amvm for some set of complex coefficients

{am}.

This can be done by simply observing that am = 1
n since

∑
m χm(x) = nδx0 =

∑
m vm. This leads

us to conclude that µ0 − π = 1
n(
∑

m vm − 1) = 1
n(
∑

m 6=0 vm).

Therefore µk = 1
n

∑
m(λm)kvm, and µk − π. From this we obtain

∑
x∈X
|µk(x)− π(x)|2π(x) =

∑
m6=0

|am|2|λm|2k

as {vm} are orthonormal.

And as π(x) = 1
n = am

∑
x∈X
|µk(x)− π(x)|2 =

1

n

∑
m 6=0

|λm|2k

We therefore obtain a bound on the total variation distance

4



(
2‖µk − π‖TV

)2

=

(∑
x∈X
|µk(x)− π(x)|

)2

=

(
n
∑
x∈X
|µk(x)− π(x)|π(x)

)2

= n2
(
〈µk − π,1〉

)2

≤ n2‖µk − π‖2L2(π)‖1‖
2
L2(π)

= n2‖µk − π‖L2(π)

=
∑
m6=0

|λm|2k

where again the inequality comes from the Cauchy-Schwarz inequality.

Conclusion 51. ‖µk − π‖TV ≤ 1
2

√∑
m 6=0|λm|2k ≤

√
n−1
2 (λ∗)

k

7.2 Application to examples

7.2.1 Frog walk

X = Z/(n), Q(0) = Q(1) = Q(−1) = 1
3

χm(x) = e2πi(
mx
n

)

λm = EQ
(
χm
)

=
1

3
χm(0) +

1

3
χm(1) +

1

3
χm(−1)

=
1

3
(1) +

1

3
e

−2πim
n +

1

3
e

2πim
n

=
1

3
+

2

3
cos(

2πm

n
)

m = 0 corresponds to λm = 1. It can be seen that as m increases, cos(2πmn ) decreases, then
increases back towards 1, but cannot exceed cos(2πn ). The value for λ∗ is therefore 1

3 + 2
3cos

(
2π
n

)
.

‖µk − π‖ ≤
√
n

2

(1

3
+

2

3
cos(

2π

n
)
)k

=

√
n

2

(
1− 2

3
(1− cos(

2π

n
))
)k

Assuming n ≥ 3, we have that for 0 ≤ x ≤
√

6, cos(x) ≤ 1− x2

4 . Further, 1− x ≤ e−x, therefore,
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‖µk − π‖ ≤
√
n

2
e−

2π2

3n2
k

For n = 1000, this gives k∗ = 1120000. This bound requires k to be on the order of n2log(n). Since
we know all the eigenvalues, we can obtain a tighter bound

‖µk − π‖2 ≤
1

4

n−1∑
m=1

|λm|2k

≤
dn−1

4
e∑

m=1

e−
4π2m2

3n2
k

≤
∞∑
m=1

e−
4π2m
3n2

k

=
e−

4π2

3n2
k

1− e−
4π2

3n2
k

Which for n = 1000, gives k∗ = 351000. This bound now scales with n2. How much tighter still
can we make this bound? To answer this question, we look at the lower bound for convergence.
First note that as Eµk(χm) is the eigenvalue of P k corresponding to the eigenvector χm, it is equal
to the kth power of the corresponding eigenvalue of P :

Eµk(χm) = (EQ(χm))k

We therefore have

‖µk − π‖ =
1

2
sup
|f |≤1
|Eµk(f)− Eπ(f)|

≥ 1

2
|Eµk(χ1)− 0|

=
1

2
|EQ(χ1)|k

=
1

2

(
1

3
+

2

3
cos
(2π

n

))k
where the inequality comes from the fact that the supremum of a set must be greater than or equal
to any member of that set.

so for n = 1000, k∗ ≥ 290000, therefore our previous bound cannot be improved by much more.
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STA4502: Topics in Stochastic Processes Winter 2018

Lecture 5: Introduction — March 28, 2018

Lecturer: Jeffrey Rosenthal Scribe: Jeffrey Negrea

1 Last Example of Random Walks on Groups

1.1 Bit-Flipping

Recall the bit-flipping example:

X = (Z/2)d

Q = Unif({id} ∪ {ej : j ∈ [d]})

where ej frobnicates the jth bit, leaving the other j − 1 bits unchanged, and id = 0 is the identity
element.

We already derived the characters for this group:

χm(x) = exp

(
2πi

n∑
i=d

mixi
2

)
= (−1)〈m, x〉

The eigenvalues of P may then be computed

λm = E
X∼Q

[χm(X)]

=
∑
x∈X

Q(x)χm(x)

= Q(0)χm(0) +
d∑
i=1

Q(ei)χm(ei)

=
1

d+ 1

(
1 +

d∑
i=1

(−1)〈m, ei〉

)

=
1

d+ 1
(1−N(m) + (d−N(m)))

= 1− 2N(m)

d+ 1

where N(m) = 〈m, 1〉 is the number of 1s in m, since 〈m, ei〉 is 1 if mi = 0 and is −1 otherwise.

Thus λ? = 1− 2
d+1 , which is realised when N(m) = 1, for example when m = e1.

Using the crude λ− ?-based method, we have the following bound for the total variation distance
of the marginal distribution of the chain to stationarity:

‖µk − π‖TV ≤
√
|X |
2

λk? =

√
|X |
2

(
1− 2

d+ 1

)k

1



For d = 1000 we get that k? = 175243 is sufficient for ‖µk? − π‖TV ≤ 0.01

Using the more refined summation-based method, we have the following bound for the total varia-
tion distance of the marginal distribution of the chain to stationarity:

‖µk − π‖TV ≤
1

2

√ ∑
m∈X\{0}

|λm|2k

≤ 1

2

√√√√ ∑
m∈X\{0}

∣∣∣∣1− 2N(m)

d+ 1

∣∣∣∣2k

≤ 1

2

√√√√ d∑
n=1

(
d

n

) ∣∣∣∣1− 2n

d+ 1

∣∣∣∣2k

For d = 1000 we get that k? = 3684 is sufficient for ‖µk? − π‖TV ≤ 0.01. This was calculated with
the following R script:

bins = choose(1000,1:1000)

pows = abs(1-2*(1:1000)/1001)

tv.bound = function(k){1/2 * sqrt(sum(bins * pows ^ (2 * k))) -0.01}

k.star = ceiling(uniroot(tv.bound,c(0,176000))$root)

We can also get a lower bound for the total variation distance from stationarity, which gives a
necessary number of steps through the chain:

‖µk − π‖TV ≥
1

2

∣∣∣∣ E
X∼Q

[χe1 ]

∣∣∣∣k
=

1

2

(
1− 2

d+ 1

)k
For d = 1000 we get that k? ≥ 1957 is necessary for ‖µk? − π‖TV ≤ 0.01.

Putting these together we get that, for d = 1000, the true k? is between 1957 and 3684.

2 Drift and Minorisation Conditions

Recall the uniform minorisation condition:

If P (x, ·) ≥ ερ(·) for all x ∈ X for some ε > 0 and some probability measure ρ on X , then the
markov chain is uniformly geometrically ergodic. That is to say, for any initial probability measure
µ0 and for any k ∈ N:

‖µk − π‖TV ≤ (1− ε)k .

The universal quantification over all initial measures seems to be nice mathematically, but restricts
our analysis to Markov chains which converge to stationarity uniformly. In order to be able to
analyse markov chains without uniform convergence properties we need to develop new tools. Te
following example will be used to illustrate non-uniform ergodicity in this section:
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Example 1 (Canonical non-uniformly ergodic example: AR(1)-process). . A particular gaussian
autoregresive process of order 1 is given by:

Let X = R and let P (x, ·) ≡ N (· ; x2 ,
3
4).

This kernel “pulls” the chain back to 0 on each step. The farther the chain is from 0 the longer it
will take to return to a neighbourhood of 0.

Does this process have a stationary distribution? Yes! The stationary distribution is N (0, 1). We
verify this below. Suppose that Xn ∼ N (0, 1), then;

Xn ⊥⊥ Z = Xn+1 −
Xn

2
∼ N (0,

3

4
)

=⇒ Xn+1 ∼ N (0, 1) .

Since this example is so simple, we could directly bound its total variation distance from stationarity.
Since the methods used wouldn’t generalise, this would not be instructive. In this section we will
develop generally applicable techniques, and then apply them to this example.

In this example, we cannot get uniform minorisation for all x ∈ X since, taking any two x sufficiently
far apart w,e could show that no uniform minorising probability measure exists for any ε > 0.

2.1 Drift and minorisation derivation

Instead of minorising uniformly over the whole state space, we may instead attempt to minorise
only uniformly over some subset of the state space. More precisely we will attempt to find C ⊂ X
such that P (x, ·) ≥ ερ(·) for all x ∈ C. We will call such a C a “small set”.

We cannot use the same construction as in the uniform case — we need to first allow both copies
of the chain to reach the small set, then hope that the chains couple.

2.1.1 Coupling Construction

The coupling is constructed as follows. Let X0 ∼ µ0 and let Y0 ∼ π. At stage n, given the coupled
Xn and Yn and Zn ∼ Bernoulli(ε) we determine the coupled Xn+1 and Yn+1 by:

if Xn = Yn then Xn+1 = Yn+1 ∼ P (Xn, ·)
else if (Xn, Yn) ∈ C2 ∧ Zn = 1 then Xn+1 = Yn+1 ∼ ρ(·)

else if (Xn, Yn) ∈ C2 ∧ Zn = 0 then Xn+1 ∼
P (Xn, ·)− ερ(·)

1− ε
= R(Xn, ·)

⊥⊥ Yn+1 ∼
P (Yn, ·)− ερ(·)

1− ε
= R(Yn, ·)

else (Xn, Yn) 6∈ C2 then Xn+1 ∼ P (Xn, ·)
⊥⊥ Yn+1 ∼ P (Yn, ·)
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2.1.2 Coupling Inequality

To bound the distance from stationarity we use the coupling inequality:

‖µk − π‖TV ≤ P(Xk 6= Yk) .

Choose j ∈ [k]. Let Nk = |
{
m ∈ [k] : (Xm, Ym) ∈ C2

}
|. We can then decompose the RHS above

as:

P(Xk 6= Yk) = P(Xk 6= Yk, Nk−1 ≥ j) + P(Xk 6= Yk, Nk−1 < j)

≤ (1− ε)j + P(Xk 6= Yk, Nk−1 ≤ j − 1)

We need some new techniques to bound P(Xk 6= Yk, Nk−1 ≤ j − 1), the probability that we have
an insufficient number of chances to couple and do not couple.

2.1.3 Drift conditions

The new trick will be to introduce a “drift condition”. There are univariate and bivariate versions
of drift conditions. In this course we will only examine bivariate versions.

We introduce the forward expectation operator P defined by

Ph(x, y) = E[h(X1, Y1)
∣∣(X0, Y0)] = (x, y)

Suppose that we have a function h : X 2 → [1,∞) and α > 1 such that

Ph(x, y) ≤ h(x, y)

α
∀(x, y) 6∈ C2 (1)

Then h is called a drift function and (??) is called a drift . The key idea is that, on average, h gets
smaller per step of the Markov chain. Often times we will use an additive, symmetric drift function
of the form h(x, y) = 1 + V (x) + V (y) for V : X → [0,∞). For the AR(1) example, we will use
V (x) = x2 and so h(x, y) = 1 + x2 + y2.

2.1.4 Final coupling bound

Suppose we have a drift condition as well as a local minorisation condition. Then, for B ≥ 1,

P(Xk 6= Yk, Nk−1 ≤ j − 1)

equality if B 6= 1 ≤ P(Xk 6= Yk, B
−Nk−1 ≥ B−(j−1))

= P
(

(1Xk 6=YkB
−Nk−1) ≥ B−(j−1)

)
Markov’s Ineq. ≤ Bj−1E

[
1Xk 6=YkB

−k−1
]

≤ Bj−1α−kE
[
1Xk 6=Ykα

kB−Nk−1h(Xk, Yk)
]

Let Mk = 1Xk 6=Ykα
kB−Nk−1h(Xk, Yk)and let B = 1 ∨

α(1− ε) sup(x,y)∈C2 E
X1∼R(x,·)
Y1∼R(y,·)

[h(X1, Y1)]

.
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We claim thatMk is a supermartingale with respect to the filtration generated by {(Xk, Yk) : k ∈ N}.
In light of this claim, we have:

P(Xk 6= Yk, Nk−1 ≤ j − 1) ≤ Bj−1α−kE[M0]

= Bj−1α−kE[h(X0, Y0)]

We verify the submartingale claim below. The proof relies on the fact the the Nk−1 term in the
definition of Mk is predictable.

Case 1: The chain coupled by time k + 1, so that Xk+1 = Yk+1. Then Mk+1 = 0 ≤Mk.

Case 2: The chains were not coupled and did not have a chance to couple at time k + 1, i.e.:
(Xk, Yk) 6∈ C2 and Xk+1 6= Yk+1. Then Nk−1 = Nk (no new chance to couple) so that

E[Mk+1

∣∣(Xk, Yk)]

= E[1Xk=YkMk+1

∣∣(Xk, Yk)]

+ E[1(Xk,Yk)6∈C21Xk 6=Yk Mk+1

∣∣(Xk, Yk)]

+ E[1(Xk,Yk)∈C21Xk 6=Yk Mk+1

∣∣(Xk, Yk)]

The first term is 0 since if the chain is coupled at time k then it is coupled at time k+1 so Mk+1 = 0.

The second term can be bounded by:

E[1(Xk,Yk)6∈C21Xk 6=YkMk+1

∣∣(Xk, Yk)] ≤ E[1(Xk,Yk) 6∈C2∧Xk 6=Yk α
k+1B−Nkh(Xk+1, Yk+1)

∣∣(Xk, Yk)]

= αE[1(Xk,Yk) 6∈C2∧Xk 6=Yk α
kB−Nk−1h(Xk+1, Yk+1)

∣∣(Xk, Yk)]

= 1(Xk,Yk) 6∈C2Mk
E[h(Xk+1, Yk+1)

∣∣(Xk, Yk)]

h(Xk, Yk)/α

≤ 1(Xk,Yk)6∈C2Mk

The third term can be bounded by:

E[1(Xk,Yk)∈C21Xk 6=YkMk+1

∣∣(Xk, Yk)] ≤ E[1(Xk,Yk)∈C2∧Xk 6=Yk∧Zk=0 α
k+1B−Nkh(Xk+1, Yk+1)

∣∣(Xk, Yk)]

≤ α

B
E[1(Xk,Yk)∈C2∧Xk 6=Yk∧Zk=0 α

kB−Nk−1h(Xk+1, Yk+1)
∣∣(Xk, Yk)]

= 1(Xk,Yk)∈C2Mk
E[1Zk=0h(Xk+1, Yk+1)

∣∣(Xk, Yk)]

Bh(Xk, Yk)/α

= 1(Xk,Yk)∈C2Mk
(1− ε)E[h(Xk+1, Yk+1)

∣∣(Xk, Yk, Zk = 0)]

Bh(Xk, Yk)/α

≤ 1(Xk,Yk)∈C2Mk

The last step follows from the choice of B. Combining these, we get the supermartingale property
for Mk.
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2.1.5 Drift and minorisation theorem

Theorem 2. If a Markov chain has a stationnary distribution, π, and a local minorisation condition
of the form:

∃(C ∈ ΣX , ε > 0, ρ ∈M(ΣX )) : (π(C) > 0 and (x ∈ C =⇒ P (x, ·) ≥ ερ(·))) ,

and a drift condition of the form:

(∃h : X 2 → [1,∞), α > 0) : ((x, y) 6∈ C × C =⇒ Ph(x, y) ≤ α−1h(x, y))

then for any j ∈ [k] we have

‖µk − π‖TV ≤ (1− ε)j + α−kBj−1Eh(x0, y0) ,

where B = 1 ∨

α(1− ε) sup(x,y)∈C2 E
X1∼R(x,·)
Y1∼R(y,·)

[h(X1, Y1)]

.

Example 3 (Canonical non-uniformly ergodic example: AR(1)-process — continued). We will
choose C = [−

√
3,
√

3] and h(x, y) = 1 + x2 + y2. Then we get:

ε =

∫
R

inf
x∈C
N (dy ;

x

2
,
3

4
)

= P(|N (0, 1)| ≥ 1)

= 0.3173105 ,

and, for (x, y) 6∈ C2 we have h(x, y) ≥ 4, so then:

Ph(x, y) = 1 +

(
x2

4
+

3

4

)
+

(
y2

4
+

3

4

)
=

9 + h(x, y)

4
=

9
44 + h(x, y)

4

≤ h(x, y)

4

(
1 +

9

4

)
=

13

16
h(x, y)
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which means we can take

α =
16

13

B =
16

13
(1− 0.3173105) sup

(x,y)∈C2

E
X1∼R(x,·)
Y1∼R(y,·)

[h(X1, Y1)]

≤ 16

13
(1− 0.3173105) sup

(x,y)∈C2

(
1 +R[x2] +R[y2]

)
=

16

13
(1− 0.3173105) sup

(x,y)∈C2

1 +

P [x2]− ε E
W∼ρ

[W ]

1− ε
+

P [y2]− ε E
W∼ρ

[W ]

1− ε


=

16

13
(1− 0.3173105) sup

(x,y)∈C2

(
1 +

P [x2]

1− ε
+
P [y2]

1− ε

)
=

16

13
(1− 0.3173105)

(
1 +

3/4 + 3/4

1− ε
+

3/4 + 3/4

1− ε

)
=

16

13
(1− 0.3173105)

(
1 +

3

1− ε

)
=

16

13
(4− 0.3173105)

= 4.532541 ≤ 4.6

Take j = bk/10c

Then we get the following bound for µ0 = δ0:

‖µk − π‖TV ≤ (0.683)bk/10c +

(
13

16

)k
4.6bk/10c−1 2 (2)

Since Eh(X0, y0) = 1 + 0 + EY 2
0 = 2

Finally, for k? = 130 we have ‖µk? − π‖TV ≤ 0.01, which was computed with the following R script:

tv.bound = function(k){(1-2*pnorm(-1))^floor(k/10) +

(13/16)^k * ((16/13) * (4- 0.3173105))^(floor(k/10)-1)*2 -0.01 }

k.star = ceiling(uniroot(tv.bound,c(0,1000))$root)
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