"Struck by Lightning" Supplementary Materials
 Group Experiment about "Gambler's Ruin"

Within your group, proceed as follows:

1. Take one 6 -sided die, and eight pennies, and one index card.
2. Decide who will be "A" and who will be "B".
3. Give six pennies to \mathbf{A}, and two pennies to \mathbf{B}.
4. Roll the die. If it comes up 1 or 2 , then \mathbf{B} gives one penny to \mathbf{A}. If it comes up 3,4 , 5 , or 6 , then \mathbf{A} gives one penny to \mathbf{B}.
5. Repeat step 4 until either \mathbf{A} or \mathbf{B} wins all eight pennies. That person is the "winner".
6. Repeat steps $2-5$ many times (10? 20? more?), keeping track of who wins each time. See if you can estimate, as accurately as possible, the chance that \mathbf{A} wins. Is it more or less than 50% ?
7. Write your best estimate of the probability that \mathbf{A} wins the game, together with all of your names, on the index card, and hand it in to the instructor. Note: There will be a prize later on for the pair that comes the closest to the true probability.

If you have time, you can try some variations on the game, such as:
8. Suppose \mathbf{A} starts with seven pennies (and \mathbf{B} with one)? Or \mathbf{A} starts with five pennies (and \mathbf{B} with three)? How does that affect their chance of winning?
9. Suppose that each time we bet two pennies instead of one. That is, suppose we change step 4 to say, "Roll the die. If it comes up 1 or 2 , then \mathbf{B} gives two pennies to \mathbf{A}. If it comes up 3, 4, 5, or 6 , then \mathbf{A} gives two pennies to \mathbf{B}." Does this affect the chance that \mathbf{A} will win?
10. Suppose that for each bet, A can choose how much the bet will be. (So, betting one penny is like step 4 above, betting two pennies is like step 9 above, etc.) What should A choose to have the best chance of winning?

While you're trying these things out, you might start wondering:
11. How could we figure out, mathematically, the chance that \mathbf{A} will win these different games? (This is not an easy question; it will take many weeks to answer. Why do you think it is so difficult?)
12. How is this exercise related to the figure "one chance in 37,650 " in the middle of page 27 of the book?

