"Struck by Lightning" Supplementary Materials

Reminder About Solution to Gambler's Ruin Problem.
Recall that we were considering the following game (to be referred to as the original game). A starts with a pennies, and \mathbf{B} starts with $8-a$ pennies. A fair 6 -sided die is repeatedly rolled. If it comes up 1 or 2 , then \mathbf{B} gives one penny to \mathbf{A}. If it comes up $3,4,5$, or 6 , then \mathbf{A} gives one penny to \mathbf{B}. This is repeated until either \mathbf{A} or \mathbf{B} wins all the pennies. That person is the "winner". Recall that we wrote $s(a)$ for the chance that \mathbf{A} wins this game, starting with a pennies.

What follows is a very brief "reminder" of how we derived a formula for $s(a)$. Learn it well; we will come back to these issues soon!

Step \#1. Obviously $s(0)=0$ and $s(8)=1$.
Step \#2. By considering what happens on the first bet, we see that

$$
s(a)=\frac{1}{3} s(a+1)+\frac{2}{3} s(a-1)
$$

for $a=1,2,3,4,5,6,7$.
Step \#3. Since $s(a)=\frac{1}{3} s(a)+\frac{2}{3} s(a)$, this last formula can be re-written as

$$
s(a+1)-s(a)=2[s(a)-s(a-1)] .
$$

Step \#4. Hence, setting $x=s(1)$, we see that

$$
s(1)-s(0)=x, \quad s(2)-s(1)=2 x, \quad s(3)-s(2)=4 x, \quad \text { etc. }
$$

and in general that

$$
s(a+1)-s(a)=2^{a} x
$$

for $a=0,1,2,3,4,5,6,7$.
Step \#5. It follows that, for $a=0,1,2,3,4,5,6,7,8$,

$$
\begin{aligned}
s(a)=s(a)-s(0) & =(s(a)-s(a-1))+(s(a-1)-s(a-2))+\ldots+(s(1)-s(0)) \\
& =\left(2^{a-1}+2^{a-2}+\ldots+2+1\right) x=\left(2^{a}-1\right) x
\end{aligned}
$$

Step \#6. Since $s(8)=1$, it follows that $x=\frac{1}{2^{8}-1}$, whence

$$
s(a)=\frac{2^{a}-1}{2^{8}-1}=\frac{2^{a}-1}{255} .
$$

So, for example, $s(6)=\left(2^{6}-1\right) / 255=63 / 255 \doteq 0.2470588 \doteq 24.7 \%$.

