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Abstract

In this report I generalize the result from [3] to show that for a fixed discrete-time regular Markov chain, cutoff
phenomenon exists for unbounded steps under certain distribution requirements. I then gives several concrete
distributional examples and discussion further directions.

1 Introduction

In the study of stochastic process, cutoff phenomenon represents the abrupt change of the total variation
distance between the transition kernel and its stationary distribution for some Markov chains. Theorem 2.6
in [3] describes the equivalent condition of this phenomenon to the concentration of stopping time on some
sets. In this report I generalize to unbounded steps in the transition of Markov chains, which establish more
conclusions and tools to use in order to show the cutoff for Markov chains.

In Section 2 I introduce the concepts and notations. In Section 3, Theorem 3.2 is established through Lemma
3.2 and more refined conditions on R are built through Proposition 3.3 and Remark 3.4. Examples of common
distributions with cutoff are shown in the end of this section. In Section 4 a counter-example is illustrated and
a potential further direction is discussed.

2 Definitions

This report adapts notations from [3]. Let P be a ϕ-irreducible, aperiodic Markov chain with stationary
distribution π on state space (X ,B). For any S ∈ B define the stopping time τS on S

τS = inf {t ≥ 0 | Xt ∈ S}

I also assume that P is regular, i.e. ∀A ∈ {A ∈ B | π(A) > 0} ,∀x ∈ X ,Ex[τA] < ∞.

Definition 2.1: For any x ∈ X and t ∈ R+,

dx(t) =
∥∥∥P ⌊t⌋(x, ·)− π

∥∥∥
TV

which is the total variation distance between the transition kernel at ⌊t⌋ time (starting from x) and the stationary
distribution π.

Definition 2.2: Let {xn}n∈N be a sequence of starting points in X and let {tn}n∈N be increasing sequences of
positive real numbers s.t. limn→∞ tn = ∞. P has starting point cutoff at time tn starting from xn if

(i) ∀c ∈ (0, 1),
lim
n→∞

dxn
(ctn) = 1

(ii) ∀c > 1,
lim
n→∞

dxn(ctn) = 0

Remark 2.3: According to Theorem 2.6 in [3], the existence of cutoff phenomenon is equivalent to the con-
centration of stopping time to any regular set S. That is,

lim
n→∞

Pxn

(∣∣∣∣τStn − 1

∣∣∣∣ ≤ ε

)
= 1,∀ε > 0
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Therefore, an analysis of the concentration of τS would be sufficient to conclude the presence of cutoff.

In this report, I will explore unbounded steps, which are special types of random variables that are though
unbounded, more concentrated around its mean.

Definition 2.3: A centered random variable W is sub-Exponential if there exists K5 > 0 s.t.

E[eλW ] ≤ eλ
2K2

5 ,∀ |λ| ≤ 1

K5

and denote E(K5) as the set of random variables that satisfy the above condition.

The equivalences of conditions for random variables being sub-Exponential are discussed in [7] and will be
applied later in Section 3 to derive the desired result.

3 Conditions for Cutoff Phenomenon

In Theorem 5.3 in [3], martingale difference method is applied on the martingale {Mt}Tt=0 defined by

Mt =

{
EXt

[τS ] + t if t < τS

τS if t ≥ τS

and T = ⌊(1 + ε)Exn
[τS ]⌋.

The author shows that
P(|τS − Ex[τS ]| > εEx[τS ]) ≤ P(|MT −M0| > εEx[τS ])

and bounding the concentration of the martingale differences through Azuma-Hoeffding inequality is sufficient
to make the conclusion. Here I adapt the same approach.

Lemma 3.1: Suppose there exists K5, for all x ∈ X \ S,

|EX1
[τS ]− Ex[τS ]| ∈ E(K5)

Then for any x ∈ X and ε > 0,

Px(|τS − Ex[τS ]| ≥ εEx[τS ]) ≤ min

{
2 exp

(
− ε2Ex[τS ]

2(1 + ε)K2
6

)
, 2 exp (−K7εEx[τS ])

}
for some constant K6,K7.

Proof : For the martingale {Mt} defined above, if Xt−1 ∈ S, then Mt −Mt−1 = 0; else,

|Mt −Mt−1| = |EX1
[τS ]− Ex[τS ] + 1| ≤ 1 + |EX1

[τS ]− Ex[τS ]|

Let W = |EX1
[τS ]− Ex[τS ]| ∈ E(K5), then

∥1 +W∥Lp
= E[|1 +W |p]1/p

≤ E[|1|p]1/p + E[|W |p]1/p (Minkowski’s Inequality)

≤ 1 +K5p (Proposition 2.7.1 in [7])

≤ (K5 + 1)p (p ≥ 1)

which implies 1 +W is sub-Exponential. The monotonicity between the martingale difference and 1+W , with
one equivalent definition of sub-Exponential random variable in [7], shows that it is also sub-Exponential. More
precisely, ∀t ≥ 0

P(|Mt −Mt−1| ≥ t) ≤ P (1 +W ≥ t)

≤ 2 exp(−t/K1)

By the footnote 6 in Proposition 2.7.1 in [7], with some additional efforts added in its proof, one can derive that
all K’s in the equivalent definitions of sub-Exponential random variables differ by at most a constant factor. In
this sense,

E[eλ(Mt−Mt−1) | Ft−1] ≤ eλ
2K2

6 ,∀ |λ| ≤ 1

K7
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Therefore, by Theorem 6.8 from [5], which provides a sub-Exponential version of Azuma’s inequality, one derives
the desired result. □

Theorem 3.2: Suppose there exists K5, for all x ∈ X \ S,

|EX1
[τS ]− Ex[τS ]| ∈ E(K5)

Then for any {xn}n∈N s.t.
lim

n→∞
Exn

[τS ] = ∞

there is cutoff phenomenon with tn = Exn [τS ].

Proof : From the result in Lemma 3.1, takes n → ∞, then Exn [τS ] → ∞ and the probability is squeezed to 0 in
either entry in the minimum operator. Then Remark 2.3 gives the desired formulation of the cutoff. □

Here are some concrete realizations of the relatively abstract conditions in Theorem 3.2 under a more restricted
setting. Let {Wt}t∈N be i.i.d. R-valued sub-Exponential random variables. Let the Markov chain be random
walks with each step distribution Wt. Let S = [−∞, 0).

Proposition 3.3: Assume Wt
i.i.d∼ W , and for all y > 0,

E[W | W < −y] + y ≥ −C (∗)

for some constant C, then this chain exhibits starting point cutoff for {xn}n∈N as starting point.

Proof : Let St =
∑t

i=0 Wi. Let µ = E[W ]. Wald’s equation gives

Ex[τ ] =
Ex[Sτ ]

µ

If E[W | W < −y] + y ≥ −C, then

Ex[x+ Sτ ] = Ex [E[x+ Sτ | Sτ−1 = y]]

= Ex [E[y +W1 | τ = 1]] (Strong Markov Property)

= Ex [E[W | W < −y] + y]

≥ −C

Then
−x− C ≤ Ex[Sτ ] ≤ −x

Therefore, after some algebraic manipulations combined with Wald’s equation, one can get

|EX1
[τS ]− Ex[τS ]| ≤

C

|µ|
+

|W1|
|µ|

Since translation and scaling keeps sub-Exponential property and taking absolute value keeps the random
variable sub-Exponential by satisfying the first definition in Theorem 2.7.1 in [7], one get that |EX1 [τS ]− Ex[τS ]|
is sub-Exponential. Then Theorem 3.2 provides the conditions needed for cutoff.

Remark 3.4: For equation (∗), note that for translation of distribution W ′ = W − c, c ∈ R,

E[W ′ | W ′ < −y] + y = E[W − c | W − c < −y] + y

= E[W | W < −(y − c)] + (y − c)

≥ −C

for y ≥ c, and is bounded for y ∈ [0, c], so should be bounded on y ∈ R+.

Also, for scaling of distribution W ′ = aW ,

E[W ′ | W ′ < −y] + y = E[aW | aW < −y] + y

= aE[W | W < −y/a] + a(y/a)

≥ −aC
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Hence condition (∗), or cutoff phenomenon, is satisfied as long as one of the distributions in the ”translation
and scaling family” is satisfied.

Remark 3.5: Let F denote the Cumulative Density Function (cdf) of step W . Then

E[W ′ | W ′ < −y] + y =

∫ −y

−∞ wdF∫ −y

−∞ wdF
− y

=

∫ −y

−∞(w + y))dF∫ −y

−∞ wdF

=
F (w)(w + y) |−y

−∞ −
∫ −y

−∞ F (w)dw

F (−y)

= −
∫ −y

−∞ F (w)dw

F (−y)

= −
∫∞
y

F (−w)dw

F (−y)
(∗∗)

Hence the analysis of equation (∗) can be done through the analysis on equation (∗∗), i.e. on the behavior of
tail bounds.

Remark 3.6: For random walks on Rn one can pick any direction that is feasible and easier to work with, then
project the walk on the 1-dimensional subspace. For example, multidimensional normal distribution random
walk also have cutoff phenomenon, since one can always project in any subspace and it keeps the normality, and
then follow the derivation of standard normal distribution in Example 3.7. Accordingly, one would generalize the
definition of sub-Exponential property to n-dimensions. One would apply the n-dimensional version of moment
generating function to prove the Azuma’s inequality with the same metric embedded in λ-space defined for
sub-Exponential random variables.

Example 3.7:

(i) For F (−w) = wke−w, k ∈ N, condition (∗∗) is satisfied by doing integration by parts directly on the
numerator and note that the expression will converge to 1 as y → ∞:

−
∫ −y

−∞ wke−wdw

wke−w
= −e−w(wk + Pk−1(w))

wke−w
(degPk−1 = k − 1)

→ −1

as w → ∞.

(ii) For F (−w) = P (w)e−w, where P (w) is a polynomial, note that the highest degree term will dominate
when y large, so the expression in condition (∗∗) will also be bounded.

(iii) For F (−w) = Φ(−w), where Φ is the cdf of standard normal distribution, since the normal distribution
is symmetric, I can consider the right tail. Let f(y) = E(W |W > y)− y, then

f ′(y) =
ϕ

(1− Φ)2
[ϕ− y(1− Φ)]− 1

where ϕ denote the probability density function (pdf) of standard normal distribution. Note that using

integration by parts with u = 1
w and dv = we−w2/2dw (the conclusion draws from [6])∫ ∞

y

e−w2/2dw = −e−w2/2

w

∣∣∣∞
y

−
∫ ∞

y

e−w2/2

w2
dw (Integration by Parts)

=
e−y2/2

y
−

∫ ∞

y

e−w2/2

w2
dw
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Again applying integration by parts with u = 1
w3 and dv = we−w2/2dw, one gets∫ ∞

y

e−w2/2

w2
dw = −e−w2/2

w3

∣∣∣∞
y

−
∫ ∞

y

−e−w2/2−3

w4
dw

=
e−y2/2

y3
−

∫ ∞

y

3e−w2/2

w4
dw

Hence, after scaling 1√
2π

, I get

1− Φ ≥ ϕ

x
(1− 1

x2
)

Further,

f ′(y) ≤ ϕ · y
2

ϕ2
(1− 1

y2
)−2 · (ϕ− y · ϕ

y
(1− 1

y2
))− 1

= (1− 1

y2
)−2 − 1

=
2y2 − 1

(y2 − 1)2

≤ 3

y2
(for y large)

Then one can integrate f ′ by the Fundamental Theorem of Calculus and show that condition f is bounded,
thus condition (∗) is satisfied.

4 Further Discussions

4.1 A Counter-Example to Condition (∗∗) for Sub-Exponential Random Variables

Consider A cdf F (−w) that values εe−y0 for ε << 1 at y0 and keeps constant as much as it can. Assume it is
sub-Exponential and symmetric, thus F (−w) ≤ e−w. Then the constant value can ”sustain” for − ln ε until it
hits the bound of exponential. Then considering condition (∗∗), we find that

−
∫∞
y0

F (−w)dw

F (−y0)
≤ −

∫ y0−ln ε

y0
εe−y0dw

εe−y0

= − ln ε

Since ε can be taken arbitrarily small, ln ε will go to infinity and thus there is not a uniform lower bound.
Hence, there exists sub-Exponential random variables that fails to satisfy condition (∗∗).

4.2 Drift Theorems in Proving the Cutoff

The key in deriving the cutoff for sub-Exponential martingale difference is to show that the stopping state,
E[x + Sτ ], is bounded from below. Condition (∗) use iterated expectation to realize this condition. One can
consider a more macro view, i.e. apply variants of optional stopping theorem on sub-/super-martingale to bound
the expectation. Drift theorems are used to analyze the expectation and concentration of stopping time. By
Wald’s equation, one can convert the problem in space domain into a problem in time domain.

By theorem 3.2 (i) in [4], one can construct non-negative function g to restrict the general stochastic process to
a non-negative chain, thus able to apply Optional Stopping Theorem on sub-martingale. However, it turns out
that g(x) = max {0, x} turns the condition

E[g(Xt)− g(Xt+1)− αu;Xt > 0 | Ft] ≥ 0,∀t ∈ N, αu > 0

exactly into condition (∗∗).
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On the other hand, if one restricts the space domain to [−C,∞) and apply Theorem 7 in [2], which requires
the new chain to satisfy

Xt − E[Xt+1 | Ft] ≥ δ

For random walks, δ = −E[W | W ≥ −C] < −E[W ], so for unbounded distribution W , δ converges to what we
want (i.e. −E[W ]) but never touches it. If we consider Ex[τ ] as a function of x ∈ R, then it is under a set of
lines whose slope is arbitrarily close to the desired value. However, from there we cannot make any conclusion:
For example, the function f(x) = x+

√
x has the tangent line slope close to 1 when x large, but it is not under

any x+ C for C constant since
√
x goes to infinity.

Furthermore, Theorem 5.5 in [1] gives concentration upper bounds for the stopping time. However, it only
applies when stopping time is larger than 2n/δ, where the desired cutoff would be n/δ and would like to apply
the tail sum formula of expectation to bound the stopping time.

However, applying drift theorems is a feasible direction to work on. To do this, one would develop more general
versions that allow unbounded state space from below. Also, one could draw ideas from multiplicative and
variable drifts to fit into the context of this problem. ??
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