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1 Setup

Setup: X is a nonempty set and F is a σ-field on X.

Definition (Markov Kernel). Given a nonempty set X, and a σ -field F on X, a
Markov kernel is a function P : X×F → [0, 1] such that

1. ∀E ∈ F , P (·, E) is measurable, and

2. ∀x ∈ X, P (x, ·) is a probability measure on (X,F).

Definition (Stationary Measure/Distribution). Given a measure space (X,F) and
a Markov kernel P on that space, a probability measure π : F → [0,∞) is a
stationary measure or P is stationary with respect to π, if ∀E ∈ F ,∫

x∈X
P (x,E)π(dx) = π(E).

Definition (Markov Operator). Given a measure space (X,F) and a Markov
kernel P : X×F → [0, 1] with stationary distribution π : F → [0, 1], we define the
Markov Operator to be the function P : L2(π) → L2(π) such that ∀f ∈ L2(π),

Pf(x) :=

∫
X

f(y)P (x, dy), ∀x ∈ X.

We denote R := [−∞,∞] and C similarly.

Theorem 1. For any f ∈ L2(π), the Markov Operator evaluated at f , Pf , is
(F ,BR) -measureable (equivalently (F ,BC) -measureable).

Proof. As f ∈ L2(π), f is measureable and thus the integral
∫
f(y)P (x, dy) is

well-defined for every fixed x ∈ X (note that we haven’t shown it is finite).
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Notice that for every x ∈ X, as∫
X

f(y)P (x, dy) :=

∫
X

f+(y)P (x, dy)−
∫
X

f−(y)P (x, dy),

where f+ and f− are the positive and negative parts of f , respectively, if∫
f+(y)P (·, dy) and

∫
f−(y)P (·, dy) are measureable, so is

∫
f(y)P (·, dy) = Pf .

So we can assume without loss of generality that f is nonnegative. (A similar
argument can be given for complex functions to only consider a positive real part).

As f : X → R is measureable, there exists a sequence of simple functions
{ϕn}n∈N, such that 0 ≤ |ϕ1| ≤ |ϕ2| ≤ · · · ≤ |f |, and ϕn → f pointwise (Theorem
2.10, [2]). As f is nonnegative, we can assume 0 ≤ ϕ1 ≤ ϕ2 ≤ · · · ≤ f . As these
are simple finctions, they have the form

ϕn =
Nn∑
i=1

cni 1En
i
, {cni } ⊂ R, {En

i } ⊂ F , Nn ∈ N, ∀n ∈ N,

by definition. For every n ∈ N, let Fn : X → Rω such that

Fn(x) = (cn1P (x,En
1 ), . . . , c

n
Nn

P (x,En
Nn

), 0, . . . ), ∀x ∈ X,

and let G : Rω → R such that G(x1, x2, . . . ) =
∑∞

i=1 xi, for every (x1, x2, . . . ) ∈
Rω. As P (·, E) is measureable for every E ∈ F , cni P (·, En

i ) is measurebale for
every i ∈ {1, . . . , Nn} for every n ∈ N. Thus Fn is measureable for every n by
Proposition 2.4 of [2].

As G is continuous, it is also measureable (Corollary 2.2, [2]). So, G ◦ Fn :
X → R is measureable for every n. Furthermore,

(G ◦ Fn)(x) =
Nn∑
i=1

cni P (x,En
i ) =:

∫
X

ϕn(y)P (x, dy), x ∈ X.

As {ϕn} and f are nonnegative, ϕn ≤ ϕn+1 for every n ∈ N, and ϕn → f pointwise,
by the Monotone Convergence Theorem (Theorem 2.14, [2]),

Pf(x) =

∫
f(y)P (x, dy) = lim

n→∞

∫
ϕn(y)P (x, dy) = lim

n→∞
(G ◦ Fn)(x), ∀x ∈ X.

Thus as G ◦ Fn is measureable for every n, Pf is also measureable (Proposition
2.7, [2]).

NOTE: The above works for any (F ,BR) -measureable (equivalently (F ,BC)
-measureable) f .
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Theorem 2. If P is a Markov kernel with stationary distribution π, if f ∈ L1(π),
then π(Pf) = π(f), i.e. Eπ : L1(π) → R (the expectation functional with respect
to π) is invariant under P.

Proof. Let f ∈ L2(π). Then

Eπ(Pf) =

∫
x∈X

Pf(x)π(dx)

=

∫
x∈X

∫
y∈X

f(y)P (x, dy)π(dx)

=

∫
y∈X

f(y)

∫
x∈X

P (x, dy)π(dx) (Fubini’s Theorem 2.37 in [2])

=

∫
y∈X

f(y)π(dy) (as P is stationary wrt π)

= Eπ(f).

Theorem 3. If P is a Markov kernel with stationary distribution π, then for every
f ∈ L2(π), Pf ∈ L2(π).

Proof. This is just the case r = 2 in Lemma 1 from [4]. Following their proof,

∥Pf∥2L2(π) =

∫
x∈X

|Pf(x)|2π(dx)

=

∫
x∈X

∣∣∣∣∫
y∈X

f(y)P (x, dy)

∣∣∣∣2 π(dx)
≤
∫
x∈X

(∫
y∈X

|f(y)|P (x, dy)

)2

π(dx) (Triangle Inequality)

≤
∫
x∈X

∫
y∈X

|f(y)|2P (x, dy)π(dx) (Jensen’s Inequality)

=

∫
y∈X

|f(y)|2
∫
x∈X

P (x, dy)π(dx) (Fubini’s Theorem)

=

∫
y∈X

|f(y)|2π(dy) (as P is stationary wrt π)

= ∥f∥2L2(π)

< ∞. (as f ∈ L2(π))
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2 Functional Analysis

Definition (Hilbert Spaces). A Hilbert space H is a linear space over R or C that
is complete with respect to the norm generated by an inner product defined on H.

For the rest of this section, we assume H to be a Hilbert space, and the map
f × g 7→ ⟨f, g⟩ from H×H → C to be the inner product defined on H, such that
H is complete with respect to the norm generated by this inner product, namely
∥f∥ = ⟨f, f⟩1/2 for f ∈ H.

Definition (Linear Operators). A function T : H → H is called an operator, and
it is linear if for every α, β ∈ C and for every f, g ∈ H,

T (αf + βg) = αT (f) + βT (g).

Definition (Bounded Operators). A linear operator T : H → H is bounded if
there exists C > 0 such that for every f ∈ H,

∥Tf∥ ≤ C ∥f∥ .

We denote the space of bounded linear operators from H → H by B(H).

Definition (Operator Norm). We define a norm on the operators, i.e. a function
from B(H) → C, T 7→ ∥T∥ as

∥T∥ := sup{∥Tf∥ : f ∈ H, ∥f∥ = 1}.

Lemma 4. Here we prove some equivalent definitions of the norm of an operator.
For any T ∈ B(H),

∥T∥ : = sup {∥Tf∥ : f ∈ H, ∥f∥ = 1} (1)

= sup

{
∥Tf∥
∥f∥

: f ∈ H, f ̸= 0

}
(2)

= inf {C > 0 : ∥Tf∥ ≤ C ∥f∥ ,∀f ∈ H} (3)

Proof. We prove this by showing (1) ≤ (2) ≤ (3) ≤ (2) ≤ (1). Let T ∈ B(H).
(1) ≤ (2) :

Notice if f ∈ H such that ∥f∥ = 1, then ∥Tf∥
∥f∥ = ∥Tf∥. So,

{∥Tf∥ : f ∈ H, ∥f∥ = 1} ⊂
{
∥Tf∥
∥f∥

: f ∈ H, f ̸= 0

}
.

Thus taking the supremum of each set gives us our desired result.
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(2) ≤ (3) :
As T is bounded, there exists C > 0 such that ∥Tf∥ ≤ C ∥f∥ for every f ∈ H.
For any such C, notice for any f ̸= 0,

∥Tf∥
∥f∥

≤ C ∥f∥
∥f∥

= C.

Thus sup
{

∥Tf∥
∥f∥ : f ∈ H, f ̸= 0

}
≤ inf {C > 0 : ∥Tf∥ ≤ C ∥f∥ ,∀f ∈ H}.

(3) ≤ (2) :

Let S := (2). Note that S exists as
{

∥Tf∥
∥f∥ : f ∈ H, f ̸= 0

}
is bounded from above,

as T is a bounded operator.
Now for any f ∈ H, ∥Tf∥ ≤ S ∥f∥, as if f = 0, then ∥T0∥ = 0. Thus, S ∈
{C > 0 : ∥Tf∥ ≤ C ∥f∥ ,∀f ∈ H}, and the result follows.

(2) ≤ (1) :

For any f ∈ H, f ̸= 0, g = f
∥f∥ ∈ H and ∥g∥ = ∥f∥

∥f∥ = 1, by the linearity of the
norm. So, as T and the norm are linear,

∥Tf∥
∥f∥

= ∥Tg∥ .

Lemma 5. Let T : H → H be a linear operator. The following statements are
equivalent:

1. T is bounded. I.e. T ∈ B(H).

2. T is continuous.

3. T is continuous at 0 ∈ H.

Proof. 1 =⇒ 2.
Let f ∈ H and let ϵ > 0. Take δ = ϵ/ ∥T∥. Then for any g ∈ H such that

∥f − g∥ < δ, as T ∈ B(H),

∥Tf − Tg∥ = ∥T (f − g)∥ ≤ ∥T∥ ∥f − g∥ < ∥T∥ δ = ϵ.

2 =⇒ 3.
Trivial.
3 =⇒ 1.
Take ϵ = 1. Then there exists δ > 0 such that for every f ∈ H such that ∥f∥ ≤

δ, ∥Tf∥ ≤ 1. Then for every f ̸= 0 ∈ H, let αf = δ
∥f∥ . Then ∥αff∥ = αf ∥f∥ = δ,

so
∥Tf∥ = α−1

f ∥T (αff)∥ ≤ α−1
f = δ−1 ∥f∥ .
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Proposition 6. If P is a Markov kernel with stationary distribution π, then P :
L2(π) → L2(π) is a bounded linear operator with operator norm equal to 1.

Proof. P is clearly linear by the linearity of integrals, and we see from the proof
of Theorem 3 that

∥Pf∥ :=

(∫
x∈X

|Pf(x)|2π(dx)
)1/2

≤
(∫

y∈X
|f(y)|2π(dy)

)1/2

=: ∥f∥ ,

so that in fact P is a bounded linear operator from L2(π) to itself.
For every f ∈ L2(π), by the above ∥Pf∥ ≤ ∥f∥. Thus ∥P∥ = inf{c > 0 :

∥Pf∥ ≤ c ∥f∥ , f ∈ L2(π)} ≤ 1.
For the reverse inequality, notice that for 1 ∈ L2(π), i.e. 1 : L2(π) → L2(π) such

that 1(x) = 1 for every x ∈ X, satisfies ∥1∥ = 1 as π is a probability distribution.
Furthermore,

∥P1∥ =

∫
x∈X

(∫
y∈X

P (x, dy)

)2

π(dx) =

∫
x∈X

π(dx) = 1.

As ∥P∥ = sup{∥Pf∥ : ∥f∥ = 1}, ∥P∥ ≥ ∥P1∥ = 1.

For what follows, unless explicitly stated otherwise, treat P as an operator
from L2(π) to itself.

Definition (Adjoints). If T ∈ B(H), then we define T ∗ ∈ B(H) such that

⟨Tf, g⟩ = ⟨f, T ∗g⟩ ∀f, g ∈ H,

and ∥T∥ = ∥T ∗∥ to be the adjoint of T .

Theorem 7. For every bounded linear operator T ∈ B(H), there exists a unique
adjoint of T , T ∗ ∈ B(H).

Proof. Refer to [7] Theorem 12.8 and 12.9.

Definition (Self-Adjoint and Normal Operators). An operator S ∈ B(H) is called
self-adjoint if S = S∗, i.e. S equals it’s adjoint.

An operator N ∈ B(H) is normal if NN∗ = N∗N , i.e. N commutes with it’s
adjoint.

It is obvious from the definitions that self-adjoint operators are also normal
operators.

Definition (Reversibility). We say that a Markov Kernel P is reversible with
respect to a probability measure π if

P (x, dy)π(dx) = P (y, dx)π(dy), π-a.e. x, y ∈ X.
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Proposition 8. If P is a reversible Markov kernel with respect to the probability
measure π, then π is a stationary measure of P .

Proof. For x, y ∈ X, as P (y, ·) is a probability measure for every y, we have∫
x∈X

P (x, dy)π(dx) =

∫
x∈X

P (y, dx)π(dy) = π(dy).

Theorem 9. If P is a Markov kernel with stationary distribution π, then P is
reversible with respect to π if and only if P : L2(π) → L2(π) is self-adjoint.

Proof. Let f, g ∈ L2(π). Then

⟨Pf, g⟩ =
∫
x∈X

(Pf)(x)g(x)π(dx)

=

∫
x∈X

(∫
y∈X

f(y)P (x, dy)

)
g(x)π(dx)

=

∫
x∈X

∫
y∈X

f(y)g(x)P (x, dy)π(dx)

=

∫
x∈X

∫
y∈X

f(y)g(x)P (y, dx)π(dy) (by reversibility of P )

=

∫
y∈X

∫
x∈X

f(y)g(x)P (y, dx)π(dy) (by Fubini’s Theorem)

=

∫
y∈X

f(y)

(∫
x∈X

g(x)P (y, dx)

)
π(dy)

=

∫
y∈X

f(y)(Pg)(y)π(dy)

= ⟨f,Pg⟩.

So, as f, g ∈ L2(π) are arbitrary, ⟨f,Pg⟩ = ⟨f,P∗g⟩ for every f, g ∈ L2(π), so
P = P∗.
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For the converse, say P is self-adjoint. Then for any f, g ∈ L2(π),∫
x∈X

∫
y∈X

f(y)g(x)P (x, dy)π(dx)

=

∫
x∈X

(Pf)(x)g(x)π(dx)

= ⟨Pf, g⟩
= ⟨f,Pg⟩. (as P is self-adjoint)

=

∫
y∈X

f(y)(Pg)(y)π(dy)

=

∫
y∈X

∫
x∈X

f(y)g(x)P (y, dx)π(dy)

=

∫
x∈X

∫
y∈X

f(y)g(x)P (y, dx)π(dy). (by Fubini’s Theorem)

Thus by definition, for x, y ∈ X, P (x, dy)π(dx) = P (y, dx)π(dy).

It’s worth noting here that according to Mira and Geyer in [5] on page 7, there
are a lot of Markov chains whose Markov operator is not compact. This is why
we must move to a more generalized spectrum. It may be worth exploring some
of these examples to show. They cite a source.

Definition (Invertible Bounded Operators). A bounded linear operator T ∈ B(H)
is called invertible if T is bijective and it’s inverse T−1 : H → H defined as
T−1f = g where Tg = f , for every f ∈ H, is also bounded. I.e. T−1 ∈ B(H).

Note that this can be a large point of confusion, as the usual notion of inverse
is simply that the inverse map exists and is well-defined. However here, when we
talk about the inverse of a bounded operator, we not only mean that the inverse
map exists and is well-defined, but that is ALSO bounded. Similar to how a
homeomorphism between spaces is a continuous map between topological spaces
that is bijective and it’s inverse is also continuous, an invertible operator is a
bounded linear operator between Hilbert spaces (or more generally vector spaces)
that is bijective and it’s inverse is also a bounded linear operator. (Note that it
is trivial if a bounded linear operator is bijective it’s inverse is linear. The inverse
being bounded is not trivial, and requires more than being bijective).

Definition (Spectrum). For T ∈ B(H), we call σ(T ) ⊂ C such that

σ(T ) := {λ ∈ C : T − λ is not invertible},

the spectrum of T .
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Theorem 10. If T is a bounded linear operator on a Hilbert space H (T ∈ B(H)),
then

sup{|λ| : λ ∈ σ(T )} = lim
n→∞

∥T n∥1/n .

Proof. Relies on some complex analysis. Proposition 3.8 of chapter VII in Conway
[6].

Lemma 11. If T is a bounded linear operator on a Hilbert space H (T ∈ B(H)),
then for every λ ∈ σ(T ), |λ| ≤ ∥T∥.

Proof. Let n ∈ N, and let f ∈ H such that ∥f∥ = 1. Then

∥T nf∥ ≤ ∥T∥n ∥f∥ = ∥T∥n .

So by the first representation of the operator norm of lemma 4, ∥T n∥1/n ≤ ∥T∥ for
every n ∈ N.

So, by theorem 10,

sup{|λ| : λ ∈ σ(T )} = lim
n→∞

∥T n∥1/n ≤ ∥T∥ .

It is important to note the difference here between finite dimensional vector
spaces and general Hilbert spaces.

Theorem 12. If V is a finite dimensional Hilbert space and T : V → V is linear,
then T is bounded, T ∈ B(V). In particular, if T ∈ B(V) is injective, then T is
invertible.

Proof. As V is finite dimensional, let n be the dimension of V. Then there exists
an orthonormal basis for V, {ei}ni=1 ⊂ V. Let M = max {∥Tei∥ : i ∈ {1, . . . , n}}.

Let ϵ > 0, and take δ = ϵ/ (2Mn). Let v ∈ V such that ∥v∥ ≤ δ. Then
as v ∈ V, there exists α1, . . . , αn ∈ C such that v = α1e0 + · · · + αnen. Let
mv = max{|αi| : i ∈ {1, . . . , n}}. As T is linear,

∥Tv∥ = ∥T (α0e0 + · · ·+ αnen)∥
≤ |α0| ∥Te0∥+ . . . |αn| ∥Ten∥

≤ M
n∑

i=0

|αi|

≤ Mnmv.
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As ∥v∥ ≤ δ, we have |αi| ≤ ∥v∥ ≤ δ for every i ∈ {1, . . . , n}, and thus mv ≤ δ.
So, we have

∥Tv∥ ≤ M
n∑

i=1

|αi| ≤ Mnmv ≤ Mnδ ≤ ϵ/2 < ϵ.

So, T is continuous at 0 ∈ V, and thus by Lemma 5, T is bounded.
So, if T ∈ B(V) is injective, then notice {Tei}ni=1 ⊂ V is a linearly independent

set of vectors, as otherwise, if Tej =
∑

i ̸=j Tαiei for some {αi} ⊂ C, we have

0 = Tej −
∑
i ̸=j

Tαiei = T (ej −
∑
i ̸=j

αiei).

As T is injective and T0 = 0, we have ej −
∑

i ̸=j αiei = 0, i.e. ej =
∑

i ̸=j αiei,
which contradicts {ei}ni=1 being orthonormal.

So, as {Tei}ni=1 is a set of n linearly independent vectors and V has dimension
n, V = span{Tei}ni=1, and thus T is also surjective.

So, T is bijective, and thus it’s inverse T−1 exists and is also linear, and thus
by the first part of this theorem is also bounded.

This theorem highlights how in finite dimensions, the set of eigenvalues is
exactly the spectrum of the operator. In the general case however, things are not
so simple.

For E ⊂ H, we define E⊥ ⊂ H to be

E⊥ := {f ∈ H|⟨f, e⟩ = 0, ∀e ∈ E}.

Proposition 13. For every bounded operator T on a Hilbert space H, null(T ∗) =
range(T )⊥.

Proof. f ∈ H exists in null(T ∗) if and only if T ∗f = 0, if and only if ⟨T ∗f, h⟩ = 0
for every h ∈ H, if and only if ⟨f, Th⟩ = 0 for every h ∈ H, if and only if
f ∈ range(T )⊥.

Proposition 14. If T is a normal operator on the Hilbert space H, then ∥Tf∥ =
∥T ∗f∥ for every f ∈ H. Furthermore, T is injective if and only if T ∗ is injective,
so range(T ) is dense in H if and only if T is injective.

Proof. Let T ∈ B(H) be normal. Then

∥Tf∥ = ⟨Tf, Tf⟩1/2

= ⟨T ∗Tf, f⟩1/2

= ⟨TT ∗f, f⟩1/2 (as T is normal)

= ⟨T ∗f, T ∗f⟩1/2

= ∥T ∗f∥ .
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Say T is injective. Then T ∗ is injective, as if not, there exists f ∈ H,f ̸= 0,
such that T ∗f = 0. But then 0 = ∥T ∗f∥ = ∥Tf∥, so Tf = 0, which can’t happen
because T is injective. Similarly, if T ∗ is injective, then so is T .

Say T is injective. Then T ∗ is injective, so

range(T )⊥ = null(T ∗) = {0},

and thus
(
range(T )⊥

)⊥
= {0}⊥ = H.

Say range(T ) is dense in H. Then

{0} = range(T )⊥ = null(T ∗),

so T ∗ is injective, so T is injective also.

Proposition 15. Say (X, d1) and (Y, d2) metric spaces with (X, d1) complete.
Then for any continuous function f : X → Y , if

d2(f(x), f(x
′)) ≥ αd1(x, x

′)

for every x, x′ ∈ X for some α > 0, then range(f) is closed.

Proof. Let y ∈ range(f). Then there exists (xn) ⊂ X such that limn→∞ f(xn) = y.
Thus (f(xn)) is a Cauchy sequence in Y .

We now show (xn) is a Cauchy sequence in X. Let ϵ > 0. As (f(xn)) is a
Cauchy sequence, pick N ∈ N such that for every n,m ≥ N , d2(f(xn, xm)) < ϵ/α.
Then for every n,m ≥ N ,

d1(xn, xm) ≤
d2(f(xn, xm))

α
< ϵ.

As X is complete, (xn) converges in X, say to x ∈ X. Then as f is continuous,
f(x) = limn→∞ f(xn) = y, so y ∈ range(f).

Lemma 16. If T is a normal operator, then T is invertible if there exists δ > 0
such that ∥Tf∥ ≥ δ ∥f∥ for every f ∈ H.

Note that this condition is actually an if and only if, though the other direction
uses the open mapping lemma, and isn’t required in the proof that the spectrum
of a self-adjoint operator is real.

Proof. First we notice that given the hypothesis, T is injective, as for every f ∈ H
such that f ̸= 0, ∥Tf∥ ≥ δ ∥f∥ > 0, so Tf ̸= 0. Thus, by Proposition 14, range(T )
is dense in H. Next notice that by Proposition 15, range(T ) is closed in H. So,

H = range(T ) = range(T ).

So, T is invertible.
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Lemma 17. If T is a normal operator, then σ(T ) ⊂ R.

Proof. Let λ ∈ σ(T ). Then write λ = α+ iβ, and assume for a contradiction that
β ̸= 0. Then for every f ∈ H,

∥(T − λ)f∥2 = ∥Tf − αf − iβf∥2 = ∥Tf − αf∥2 + |β|2 ∥f∥2 ,

and so ∥(T − λ)f∥ ≥ |β| ∥f∥.
So by Lemma 16, T − λ is invertible, and thus λ /∈ σ(T ).

Proposition 18. If P is a reversible Markov kernel with respect to π, then the
spectrum of the Markov operator as a function from L2(π) to L2(π), is a subset of
[−1, 1]. That is for P : L2(π) → L2(π), σ(P) ⊂ [−1, 1].

Proof. As P is reversible, by lemma 9 P is self-adjoint and thus also normal, so
by lemma 17, σ(P) ⊂ R.

By lemma 11, for every λ ∈ σ(P), |λ| ≤ ∥P∥ = 1 by proposition 6, as π is
a stationary distribution of P by proposition 8. Thus, as σ(P) ⊂ R, we have
σ(P) ⊂ [−1, 1].

Definition (Projections). An operator T ∈ B(H) is called a projection if T 2 = T .

Definition (Spectral Measure). (From Conway [6] page 256. Mira Geyer[5] call
the spectral measure the next definition, and this measure the resolution of the
identity. That is also what Rudin [7] calls it). Given a set a measurable space
(Y,M) and a Hilbert space H, a spectral measure on (Y,M,H) is a function
E : M → B(H) such that

1. for every A ∈ M, E(A) is a self-adjoint projection,

2. E(∅) = 0 and E(Y ) = 1,

3. for every A,B ∈ M, E(A ∩B) = E(A)E(B),

4. if {An}∞n=1 ⊂ M are pairwise disjoint, then E(∪∞
n=1An) =

∑∞
n=1 E(An).

Definition (Eigenmeasure). Given a spectral measure E on the space (Y,M,H),
an Eigenmeasure with respect to f, g ∈ H is a function Ef,g : M → C such that

Ef,g(B) := ⟨E(B)f, g⟩, ∀B ∈ M.

Theorem 19 (Spectral Theorem). If T is a normal bounded linear operator on
the Hilbert space H, then there is a unique spectral measure E on the Borel subsets
of σ(T ) such that

T =

∫
λ∈σ(T )

λE(dλ).
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Remark. For a discussion on the above spectral theory, see Rudin [7] chapter 12,
or Conway [6] chapter IX.2.

In our context, given a reversible Markov kernel P , P is self-adjoint and thus
also normal, so the spectral Theorem applies. So, P has a spectral decomposition,
and for every f ∈ L2(π), there exists an associated eigenmeasure. We denote the
spectral measure of a Markov operator P by EP , or just E when P is understood.
For our purposes, as the eigenmeasure will almost always be for an inner product
of the same function. For every f ∈ L2(π), we express the eigenmeasure of ⟨f,Pf⟩
as just EP , so

⟨f,Pf⟩ =
∫
λ∈σ(P)

λEP(dλ),

where EP(·) := ⟨f, E(·)f⟩, where E : Bσ(P) → B(L2(π)) is the unique spectral
measure of P implied by the spectral Theorem. In the case where we have more
than just one function in the inner product, we express the eigenmeasure as follows.
For f, g ∈ L2(π)

Ef,g,P(·) := ⟨f, E(·)g⟩.

An important fact about the eigenmeasure of the same function on both sides of
the inner product is the following.

Lemma 20. For any normal bounded linear operator T on the hilbert space H,
for any f ∈ H, the eigenmeasure of T with respect to f , ET , is a non-negative
measure.

Proof. Let A ∈ B(C). Then

ET (A) : = ⟨f, ET (A)f⟩
= ⟨f, ET (A)2f⟩ (as ET is a projection)

= ⟨ET (A)f, ET (A)f⟩ (as ET is self-adjoint)

=: ∥ET (A)f∥2 ≥ 0.

Definition (Point-Spectrum). We call σp(T ) ⊂ C such that

σp(T ) := {λ ∈ C : H ⊃ ker(T − λ) ̸= {0}},

the point spectrum of T .

Notice that σp(T ) is exactly the set of eigenvalues of T , and ker(T − λ) is
exactly the set of eigenfunctions of T with eigenvalue λ ∈ C.

We denote by HR the space of f ∈ H such that the coefficients of f are real.

13



Lemma 21. If T is a self-adjoint operator on H, then

1. the eigenvalues of T are real,

2. the eigenvalues of T have real eigenfunctions,

3. and eigenfunctions with distinct eigenvalues are orthogonal.

Proof. 1. Let λ be an eigenvalue of T . Then there exists u ̸= 0 ∈ H such that
Tu = λu. So,

λ ∥u∥2 = λ⟨u, u⟩ = ⟨Tu, u⟩ = ⟨u, Tu⟩ = λ⟨u, u⟩ = λ ∥u∥2 .

So (λ− λ) ∥u∥2 = 0. As u ̸= 0, ∥u∥2 ̸= 0, thus λ = λ, so λ ∈ R.
2. Let λ be an eigenvalue of T . Then there exists u ̸= 0 ∈ H such that

Tu = λu. As u ∈ H, there exists a, b ∈ HR such that u = a+ ib. So,

Ta+ iT b = T (a+ ib) = Tu = λu = λa+ iλb.

Furthermore, as u ̸= 0, a ̸= 0 or b ̸= 0. So either a ̸= 0 or b ̸= 0, and is thus a real
eigenfunction of T with eigenvalue λ.

3. Let λ1, λ2 be distinct eigenvalues of T with eigenfunctions u1 and u2 respec-
tively. Then as T is self-adjoint and λ1, λ2 ∈ R by (1), so

(λ1 − λ2)⟨u1, u2⟩ = ⟨Tu1, u2⟩ − ⟨u1, Tu2⟩ = ⟨Tu1, u2⟩ − ⟨Tu1, u2⟩ = 0.

As λ1 and λ2 are disjoint, (λ1 − λ2) ̸= 0, so ⟨u1, u2⟩ = 0.

Proposition 22. If P is a reversible Markov kernel, then

1. the eigenvalues of P are real,

2. the eigenvalues of P have real eigenfunctions,

3. and eigenfunctions with distinct eigenvalues are orthogonal.

Proof. As P is reversible, by lemma 9, P is self-adjoint. Lemma 21 completes
it.

We now discuss the eigenvalue 1 of a Markov operator.

Proposition 23. If P is a Markov kernel (not necessarily reversible), then 1 is
an eigenvalue of P. Furthermore, any π-almost everywhere constant function is
an eigenfunction of P with eigenvalue 1, where π is a stationary distribution of P .
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Proof. Let c : X → R (or C) where c ≡ K ∈ R (or C), π-almost everywhere.
Then for any x ∈ X, (as we are considering c ∈ L2(π), we can take c ≡ K
everywhere),

Pc(x) :=

∫
y∈X

KP (y, dx) = K = c(x).

Definition. We now define the subspace

L2
0(π) := {f ∈ L2(π) : f ⊥ 1} ⊂ L2(π),

where 1 ∈ L2(π) is the function identically equal to 1 π-almost everywhere.

Remark. Another more probibalistic interpretation is that L2
0(π) = {f ∈ L2(π) :

Eπ(f) = 0}, as
Eπ(f) :=

∫
x∈X

f(x)π(dx) = ⟨f, 1⟩.

Lemma 24. If P is a Markov kernel (not necessarily reversible) with π as a
stationary distribution, then P restricted to L2

0(π), maps back to L2
0(π). I.e.

range(P|L2
0(π)

) ⊂ L2
0(π).

Proof. Let f ∈ L2
0(π). Then

⟨Pf, 1⟩ :=
∫
x∈X

Pf(x)π(dx)

=

∫
x∈X

∫
y∈X

f(y)P (x, dy)π(dx)

=

∫
y∈X

f(y)

∫
x∈X

P (x, dy)π(dx) (by Fubini’s Theorem)

=

∫
y∈X

f(y)π(dy) (as P is stationary wrt π)

=⟨f, 1⟩
=0. (as f ∈ L2

0(π))

So Pf ∈ L2
0(π).

We just showed that for a Markov kernel P with stationary distribution π,
P is a well-defined map from L2

0(π) → L2
0(π). From here on out, unless stated

otherwise, we restrict ourselves to the subspace L2
0(π) of L

2(π).

Definition (φ-Irreducibility). A Markov kernel P on (X,F) is φ-irreducible if
there exists a non-zero σ-finite measure φ on (X,F) such that for every E ∈ F
such that φ(E) > 0, for every x ∈ X there exists n ∈ N such that P n(x,E) > 0.
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The reason we restrict ourselves to this subspace, is on this subspace, if P is
φ-irreducible, then 1 is not an eigenvalue of P on L2

0(π). We prove this result here.

Lemma 25. If P is a φ-irreducible (not necessarily reversible) Markov kernel
with stationary distribution π, then 1 is NOT an eigenvalue of P when restricted
to L2

0(π).

Proof. We provide only a very rough sketch of this proof, as the full proof is very
involved, and uses facts about martingales, a stochastic process not included in
this paper. We follow the same proof as in [11].

As P is φ-irreducible with stationary distribution π, it follows that π is the
unique stationary distribution for P . (As by Proposition 10.1.1 of [12] P is recur-
rent, so Theorem 10.0.1 of [12] proves it).

We then see that if f ∈ L2(π) is an eigenvector of P with eigenvalue 1, then
we must have f(x) = Eπ(f) for π-almost every x ∈ X, and thus f is a constant
function. As f is an eigenvector, f(x) ̸= 0 for π-almost every x ∈ X, so Eπ(f) ̸= 0.
And thus f /∈ L2

0(π), as ⟨f, 1⟩ = Eπ(f) ̸= 0.
(The above is a rough sketch of the proof of Proposition 22.1.2 of [13]. The full

proof uses the fact that for every n ∈ N, where Xn : X → X is random variable
that equals the state space of the Markov chain with Markov kernel P at time n
started from the stationary distribution π,

Eπ(f(Xn)) =

∫
x∈X

Pnf(x)π(dx) = Eπ(f),

so {f(Xn) : n ∈ N} is a martingale.)

Remark. Note that the above is NOT saying that 1 /∈ σ(P) when P : L2
0(π) →

L2
0(π), but that 1 is not an eigenvalue, so there doesn’t exist f ∈ L2

0(π) such that
Pf = f .

Lemma 26. If T ∈ B(H) is a normal bounded linear operator, with spectral
decomposition T =

∫
λ∈σ(T )

λET (dλ), then if λ ∈ σ(T ) is not an eigenvalue of T ,

then for every f ∈ H, Ef,T ({λ}) = 0.

Proof. By Theorem 12.29 (b) of [7], as λ ∈ σ(T ) is not an eigenvalue of T ,
ET ({λ}) = 0. So for every f ∈ H,

Ef,T ({λ}) := ⟨f, ET ({λ})f⟩ = ⟨f, 0⟩ = 0.

Proposition 27. If P is a φ-irreducible (not necessarily reversible) Markov kernel
with stationary distribution π, then for every f ∈ L2

0(π), EP({1}) = 0.
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Proof. By lemma 25, 1 is not an eigenvalue of P . So if 1 ∈ σ(P), then by lemma
26 for any f ∈ L2

0(π), EP({1}) = 0. If 1 /∈ σ(P) then for every f ∈ L2
0(π),

EP({1}) = 0 trivially.

(From [6] page 264.) We now define what we mean when we take a function of
an operator. For every Borel measureable bounded function ϕ : σ(P) → C where
P is a self adjoint operator,

ϕ(P) :=

∫
λ∈σ(P)

ϕ(λ)EP(dλ),

where P =
∫
λ∈σ(P)

λEP(dλ) is the spectral decomposition of P . As a consequence

⟨f, ϕ(P)f⟩ =
∫
λ∈σ(P)

ϕ(λ)EP(dλ).

An important function is P 7→ Pk for nonnegative k. Notice that as σ(P) ⊂
[−1, 1], as [−1, 1] is compact and ·k is continuous, it is bounded by it’s maximum
and minimum. It is also Borel measureable being continuous. Furthermore, notice
for any x ∈ X,

(Pkf)(x) = Pk−1 ◦ (Pf)(x)

= Pk−1 ◦
∫
x1∈X

f(x1)P (x, dx1)

= Pk−2 ◦ P
(∫

x1∈X
f(x1)P (x, dx1)

)
= Pk−2 ◦

∫
x2∈X

∫
x1∈X

f(x1)P (x2, dx1)P (x, dx2)

...

=

∫
xk∈X

· · ·
∫
x1∈X

f(x1)P (x2, dx1) · · ·P (x, dxk)

=:

∫
y∈X

f(y)P k(x, dy).

3 Relation to Asymptotic Variance

Definition (Asymptotic Variance). Given a Markov kernel P with stationary dis-
tribution π and f ∈ L2(π), we define the asymptotic variance as

v(f, P ) := lim
N→∞

[
1

N
Var

(
N∑

n=1

f(Xn)

)]
,
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where {Xn}∞n=0 is the Markov chain with Markov kernel P started from stationarity
(X0 chosen wrt π).

Lemma 28. For every f ∈ L2
0(π) and for every N ∈ N,

1

N
Var

(
N∑

n=1

f(Xn)

)
= ⟨f, f⟩+ 2

N∑
k=1

(
N − k

N

)
⟨f,Pkf⟩.

Proof. Notice that

1

N
Var

(
N∑

n=1

f(Xn)

)
=

1

N
Eπ,P

( N∑
n=1

f(Xn)

)2
− 1

N
Eπ,P

[
N∑

n=1

f(Xn)

]2
.

But by the linearity of E, we have

Eπ,P

[
N∑

n=1

f(Xn)

]
=

N∑
n=1

Eπ,P [f(Xn)]

=
N∑

n=1

Eπ[f ]

= 0. (as f ∈ L2
0(π))

Now by expanding the square and using the linearity of E,

Eπ,P

( N∑
n=1

f(Xn)

)2
 = Eπ,P

[(
N∑

n=1

f(Xn)
2

)
+ 2

N∑
n=1

k−1∑
i=1

f(Xn)f(Xi)

]

=
N∑

n=1

Eπ,P [f(Xn)
2] + 2

N∑
n=1

k−1∑
i=1

Eπ,P [f(Xn)f(Xi)]

= NEπ(f
2) + 2

N∑
n=1

k−1∑
i=1

Eπ,P [f(Xn)f(Xi)].

We can rewrite this second sum, using n = i+ k, as

2
N∑
k=1

N−k∑
i=1

Eπ,P [f(Xi+k)f(Xi)].

As π is a stationary distribution and P is assumed to be time-homogeneous, this
is equivalent to

2
N∑
k=1

(N − k)Eπ,P [f(Xk)f(X0)].
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As Eπ(f
2) =

∫
x∈X f(x)2π(dx) = ⟨f, f⟩, and

Eπ,P (f(Xk)f(X0)) =

∫
x∈X

∫
y∈X

f(x)f(y)π(dx)P k(x, dy)

=

∫
x∈X

f(x)(Pkf)(x)π(dx)

= ⟨f,Pkf⟩,

we have proved the result.

Theorem 29. If P is a φ-irreducible reversible Markov kernel with stationary
distribution π, then for every f ∈ L2

0(π),

v(f, P ) =

∫
λ∈σ(P)

1 + λ

1− λ
EP(dλ).

Note however, that this may still diverge to ∞.

Proof. Let f ∈ L2
0(π). Then by lemma 27, EP({1}) = 0, so by lemma 28 and the

spectral Theorem,

v(f, P ) = lim
N→∞

[
1

N
Var

(
N∑

n=1

f(Xn)

)]

= lim
N→∞

[
∥f∥2 + 2

N∑
k=1

(
N − k

N

)
⟨f,Pkf⟩

]

= ∥f∥2 + 2 lim
N→∞

[∫
λ∈σ(P)

N∑
k=1

(
N − k

N

)
λkEP(dλ)

]

= ∥f∥2 + 2 lim
N→∞

[∫
λ∈[−1,1)

∞∑
k=1

1k≤N(k)

(
N − k

N

)
λkEP(dλ)

]
. (1)

Notice that as for every N ∈ N and for every fixed λ ∈ (−1, 1),

∞∑
k=1

∣∣∣∣1k≤N(k)

(
N − k

N

)
λk

∣∣∣∣ ≤ ∞∑
k=1

∣∣λk
∣∣ = |λ|

1− |λ|
< ∞,

lim
N→∞

∞∑
k=1

1k≤N(k)

(
N − k

N

)
λk =

∞∑
k=1

lim
N→∞

1k≤N(k)

(
N − k

N

)
λk

=
∞∑
k=1

λk

=
λ

1− λ
. (2)
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So, letting h+
N : (0, 1) → R such that h+

N(λ) =
∑∞

k=1 1k≤N(k)
(
N−k
N

)
λk for

every λ ∈ (0, 1), and letting h+ : (0, 1) → R such that h+(λ) = λ
1−λ

for every

λ ∈ (0, 1), by equation 2, h+
N → h+ as N → ∞. Furthermore, h+

N ≤ h+
N+1 for

every λ ∈ (0, 1), for every N ∈ N, thus as h+
N and h+ are continuous and thus

Borel measurable for every N ∈ N, by the Monotone Convergence Theorem ([2]
Theorem 2.14),

lim
N→∞

[∫
λ∈(0,1)

∞∑
k=1

1k≤N(k)

(
N − k

N

)
λkEP(dλ)

]
=

∫
λ∈(0,1)

λ

1− λ
EP(dλ). (3)

Simlarly, letting h−
N : (−1, 0] → R such that h−

N(λ) =
∑∞

k=1 1k≤N(k)
(
N−k
N

)
λk

for every λ ∈ (−1, 0], and letting h− : (−1, 0] → R such that h−(λ) = λ
1−λ

for

every λ ∈ (−1, 0], by equation 2, h−
N → h− as N → ∞. Furthermore, as |h−

N | ≤ 2
for every N ∈ N, thus as h−

N and h− are continuous and thus Borel measurable
for every N ∈ N, by the Dominated Convergence Theorem ([2] Theorem 2.24),

lim
N→∞

[∫
λ∈(−1,0]

∞∑
k=1

1k≤N(k)

(
N − k

N

)
λkEP(dλ)

]
=

∫
λ∈(−1,0]

λ

1− λ
EP(dλ). (4)

As seen in [14], notice that for every N ∈ N,

∞∑
k=1

1k≤N(k)
N − k

N
(−1)kEP({−1})

=
N∑
k=1

N − k

N
(−1)kEP({−1})

=

(
EP({−1})

N

) N∑
k=1

(N − k)(−1)k

=

(
EP({−1})

N

) N∑
k=1

[1even(k)(N − k) + 1odd(k)(−N + k)]

=

(
EP({−1})

N

) ⌊N/2⌋∑
m=1

[(N − 2m) + (−N + 2m− 1)]

=

(
EP({−1})

N

) ⌊N/2⌋∑
m=1

−1

=

(
⌊−N/2⌋

N

)
EP({−1}).
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Also, as −1/2 = limN→∞
(−N−1)/2

N
≤ limN→∞

⌊−N/2⌋
N

≤ limN→∞
−N/2
N

≤ −1/2,

limN→∞
⌊−N/2⌋

N
= −1/2. So,

lim
N→∞

∞∑
k=1

1k≤N(k)

(
N − k

N

)
EP({−1}) =

(
−1

2

)
EP({−1}). (5)

By equations 4 and 5, we know that∣∣∣∣∣ limN→∞

∫
λ∈(−1,0]

∞∑
k=1

1k≤N(k)

(
N − k

N

)
λkEP(dλ)

∣∣∣∣∣ =
∣∣∣∣∫

λ∈(−1,0]

λ

1− λ
EP(dλ)

∣∣∣∣ < ∞∣∣∣∣∣ limN→∞

∞∑
k=1

1k≤N(k)

(
N − k

N

)
EP({−1})

∣∣∣∣∣ =
∣∣∣∣(−1

2

)
EP({−1})

∣∣∣∣ < ∞,

so comining equations 3, 4 and 5,

lim
N→∞

[∫
λ∈[−1,1)

∞∑
k=1

1k≤N(k)

(
N − k

N

)
λkEP(dλ)

]
=

∫
λ∈[−1,1)

λ

1− λ
EP(dλ).

Plugging this into 1, and as EP({1}) = 0 by lemma 27, we have

v(f, P ) = ∥f∥2 + 2 lim
N→∞

[∫
λ∈[−1,1)

∞∑
k=1

1k≤N(k)

(
N − k

N

)
λkEP(dλ)

]

= ∥f∥2 + 2

∫
λ∈[−1,1)

λ

1− λ
EP(dλ)

=

∫
λ∈σ(P)

EP(dλ) + 2

∫
λ∈σ(P)

λ

1− λ
EP(dλ)

=

∫
λ∈σ(P)

1 + λ

1− λ
EP(dλ).

Notice that this integral may very well diverge to infinity. From the above
proof, we notice that it is in deriving equation 3 that this integral may diverge.

Note that during the above proof, we also prove another useful characterization
of the asymptotic variance for a reversible Markov chain. We note it here as a
Proposition.

Definition (Periodicity). A Markov kernel P with stationary distribution π is
periodic if there exists d ∈ N, d ≥ 2 and {Xk}dk=1 ⊂ F such that P (x,Xk+1) = 1
for π-a.e. x ∈ Xk for k ∈ {1, . . . , d− 1} and P (x,X1) = 1 for π-a.e. x ∈ Xd. If P
is periodic, it’s period is the largest such d such that the above holds.

If P is not periodic, then P is called aperiodic.
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Lemma 30. If P is a reversible aperiodic Markov kernel reversible with respect to
π, then −1 is not an eigenvalue of P : L2

0(π) → L2
0(π).

Proof. Assume for a contradiction that −1 is an eigenvalue of P . Let f ∈ L2
0(π)

be an eigenvector of P with eigenvalue −1 such that ∥f∥ = 1. By lemma 22 we
can further assume that f is real valued. Take d = 2 and let X1 = {x ∈ X :
f(x) > 0} = f−1((0,∞)) and X2 = {x ∈ X : f(x) < 0} = f−1((−∞, 0)). As f is
(F ,B(R))-measureable, X1,X2 ∈ F .

Notice that π(X1), π(X2) > 0 by definition of X1 and X2 as f ̸= 0, as f is an
eigenvector, and as

0 = Eπ(f) =

∫
X

f(x)π(dx) =

∫
X1

f(x)π(dx) +

∫
X2

f(x)π(dx),

as f ∈ L2
0(π).

So, as Pf = −f , for π-a.e. x ∈ X,
∫
X
f(y)P (x, dy) = −f(x), so∫

X1

f(y)P (x, dy) = −f(x)−
∫
X2

f(y)P (x, dy).

Thus as P is reversible with respect to π and
∫
X1

f(x)π(dx) = −
∫
X2

f(x)π(dx),∫
x∈X2

∫
y∈X1

f(y)P (x, dy)π(dx) =

∫
x∈X2

[
−f(x)−

∫
y∈X2

f(y)P (x, dy)

]
π(dx)∫

x∈X2

∫
y∈X1

f(y)P (y, dx)π(dy) = −
∫
x∈X2

f(x)π(dx)−
∫∫

x,y∈X2

f(y)P (y, dx)π(dy)∫
y∈X1

f(y)P (y,X2)π(dy) = −
∫
x∈X2

f(x)π(dx)−
∫
y∈X2

f(y)P (y,X2)π(dy)∫
x∈X1

f(x)P (x,X2)π(dx) = −
∫
x∈X2

f(x)π(dx)−
∫
x∈X2

f(x)P (x,X2)π(dx)∫
x∈X

f(x)P (x,X2)π(dx) = −
∫
x∈X2

f(x)π(dx)∫
x∈X

f(x)P (x,X2)π(dx) =

∫
x∈X1

f(x)π(dx).

Similarly,
∫
X
f(x)P (x,X1)π(dx) =

∫
X2

f(x)π(dx).
So assume for a contradiction that there exists E ∈ F such that π(E) > 0,
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E ⊂ X1 and for every x ∈ E, P (x,X2) < 1. Then by definition of X2,∫
X

f(x)P (x,X2)π(dx) =

∫
X1

f(x)π(dx)

>

∫
X1

f(x)P (x,X2)π(dx)

≥
∫
X

f(x)P (x,X2)π(dx).

So for π-a.e. x ∈ X1, P (x,X2) = 1. Similarly, for π-a.e. x ∈ X2, P (x,X1) = 1.
So, P is periodic with period d ≥ 2, which contradicts the assumption that P

is aperiodic.

Proposition 31. If P is an aperiodic φ-irreducible reversible Markov kernel, re-
versible with respect to π, then for every f ∈ L2

0(π),

v(f, P ) = ∥f∥2 + 2
∞∑
k=1

⟨f,Pkf⟩

(
= γ0 + 2

∞∑
k=1

γk

)
.

Proof. Let f ∈ L2
0(π). Then by lemma 30, −1 is not an eigenvalue of P , so by

lemma 26, EP({−1}) = 0. So by theorem 29,

v(f, P ) =

∫
λ∈σ(P)

1 + λ

1− λ
EP(dλ)

=

∫
λ∈σ(P)

EP(dλ) + 2

∫
λ∈σ(P)

λ

1− λ
EP(dλ)

= ∥f∥2 + 2

∫
λ∈(−1,1)

λ

1− λ
EP(dλ). (1)

Let h+ : [0, 1) → R such that h+(λ) = λ
1−λ

for every λ ∈ [0, 1), and let

h+
N : [0, 1) → R such that h+

N(λ) =
∑N

k=1 λ
k for every λ ∈ [0, 1). Then for

every λ ∈ [0, 1), h+
N(λ) → h(λ), and as h+

N ≤ h+
N+1 for every N ∈ N, as h+

N is
Borel-measureable for every N (as it is continuous), by the Monotone Convergence
Theorem ([2] Theorem 2.14),∫

λ∈[0,1)

λ

1− λ
EP(dλ) =

∞∑
k=1

∫
λ∈[0,1)

λkEP(dλ).

Let h− : (−1, 0) → R such that h−(λ) = λ
1−λ

for every λ ∈ (−1, 0), and let

h−
N : (−1, 0) → R such that h−

N(λ) =
∑N

k=1 λ
k for every λ ∈ (−1, 0). Then for

every λ ∈ (−1, 0), h−
N(λ) → h(λ), and as

∣∣h−
N

∣∣ ≤ 2 for every N ∈ N, as h−
N is
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Borel-measureable for everyN (as it is continuous), by the Dominated Convergence
Theorem ([2] Theorem 2.24),∫

λ∈(−1,0)

λ

1− λ
EP(dλ) =

∞∑
k=1

∫
λ∈(−1,0)

λkEP(dλ).

So equation 1 becomes

v(f, P ) = ∥f∥2 + 2

∫
λ∈(−1,1)

λ

1− λ
EP(dλ)

= ∥f∥2 + 2
∞∑
k=1

∫
λ∈(−1,1)

λkEP(dλ)

= ∥f∥2 + 2
∞∑
k=1

∫
λ∈σ(P)

λkEP(dλ)

= ∥f∥2 + 2
∞∑
k=1

⟨f,Pkf⟩.

We define here the identity operator I : L2
0(π) → L2

0(π) such that If = f for
every f ∈ L2

0(π).

Proposition 32. For a φ-irreducible reversible Markov kernel P reversible with
respect to π, for every f ∈ L2

0(π),

v(f, P ) = ∥f∥2 + 2⟨f,P(I − P)−1f⟩.

Note however that in many cases (I − P)−1 /∈ B(L2
0(π)), i.e. (I − P)−1 is NOT

a bounded operator. This is true whenever 1 ∈ σ(P).

Proof. By theorem 29, we have

v(f, P ) =

∫
λ∈σ(P)

1 + λ

1− λ
EP(dλ)

=

∫
λ∈σ(P)

EP(dλ) + 2

∫
λ∈σ(P)

λ

1− λ
EP(dλ)

= ∥f∥2 + 2⟨f,P(I − P)−1f⟩,

as P(I − P)−1 =
∫
λ∈σ(P)

λ
1−λ

EP(dλ).

Remark. Note however that in many cases (I −P)−1 /∈ B(L2
0(π)), i.e. (I −P)−1

is NOT a bounded operator. This is true whenever 1 ∈ σ(P).
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4 Inverse Inequalities, Lemma 6 of Neal Paper

Lemma 33. If X, Y , and Z are bounded linear operators on a Hilbert space H such
that ⟨f,Xf⟩ ≤ ⟨f, Y f⟩ for every f ∈ H, and Z is self-adjoint, then ⟨f, ZXZf⟩ ≤
⟨f, ZY Zf⟩ for every f ∈ H.

Proof. For every f ∈ H, Zf ∈ H, so

⟨f, ZXZf⟩ = ⟨Zf,XZf⟩ ≤ ⟨Zf, Y Zf⟩ = ⟨f, ZY Zf⟩.

In the finite state space case, L2
0(π) is a finite dimensional vector space, and

thus in order to prove that ⟨f, Tf⟩ ≤ ⟨f,Nf⟩ for every f ∈ V if and only if
⟨f, T−1f⟩ ≥ ⟨f,N−1f⟩ for every f ∈ V, when T and N are self-adjoint operators,
the only additional assumption needed is that T and N are strictly positive (next
definition). This is presented by Rosenthal and Neal in [1], section 8. However, in
the general case, as L2

0(π) may not be finite dimensional, T and N being strictly
positive is not enough. So, we must use a slightly stronger assumption, which in
the finite case, is equivalent to being strictly positive.

Definition (Positive Operators). We say a bounded linear self-adjoint operator T
on a Hilbert space H is (strictly) positive, denoted T > 0 (T ≥ 0), if for every
f ∈ H, f ̸= 0,

⟨f, Tf⟩ > 0, (⟨f, Tf⟩ ≥ 0) .

If T is strictly positive, or even just positive, then no negative numbers will be
in it’s spectrum.

Lemma 34. If T is a positive bounded linear self-adjoint operator on a Hilbert
space H, then σ(T ) ⊂ [0,∞).

Proof. If λ < 0, then for every f ∈ H such that f ̸= 0,

|⟨(T − λ)f, f⟩| = |⟨Tf, f⟩ − λ ∥f∥2 |
≥ ⟨Tf, f⟩+ |λ| ∥f∥2 (as λ < 0 and T ≥ 0)

≥ |λ| ∥f∥2 . (as T ≥ 0)

Furthermore, by the Cauchy-Schwarz inequality,

|⟨(T − λ)f, f⟩| ≤ ∥(T − λ)f∥ ∥f∥ .

Thus, as λ ̸= 0, we have

0 < |λ| ∥f∥ ≤ ∥(T − λ)f∥ .

So, by lemma 16, T − λ is invertible, and λ ̸∈ σ(T ) by definition.
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Lemma 35. If V is a finite dimensional vector space and T ∈ B(V) is self-adjoint
and strictly positive, then T is invertible. I.e. 0 /∈ σ(T ).

Proof. Let f ∈ V such that f ̸= 0. Then by the Cauchy-Schwartz inequality, as
T is strictly positive,

0 < ⟨f, Tf⟩ ≤ ∥Tf∥ ∥f∥ .

So, ∥Tf∥ ≠ 0, and thus Tf ̸= 0. So, ker(T ) = {0}, and thus T is injective. So as
V is a finite vector space, by theorem 12, T is invertible.

In general however, being strictly positive doesn’t mean that T is invertible.
Although the spectrum won’t have any negative numbers, 0 may still exist in the
spectrum even if it is strictly positive. This is why we must assume something
stronger, which in the finite case is equivalent to being strictly positive.

What we assume is that T ∈ B(H) is self-adjoint such that σ(T ) ⊂ (0,∞). As
0 /∈ σ(T ), T is invertible, and as T =

∫
σ(T )

λE(dλ) is the spectral decomposition

of T , for every f ∈ H,

⟨f, Tf⟩ =
∫
σ(T )

λET,f (dλ) =

∫
(0,∞)

λET,f (dλ) > 0.

(NOTE: This lemma is also proved in section 5 using the open-mapping theorem,
as that is the justification Rudin gave for it in [7]. We prove it more directly here.)

Lemma 36. If T is a normal bounded linear operator on a Hilbert space H, then
there exists δ > 0 such that δ ∥f∥ ≤ ∥Tf∥ for every f ∈ H if and only if T is
invertible.

Remark. The forward implication is lemma 16.

Proof. We’ve already done the only if direction in lemma 16. I copy and paste it
here:

First we notice that given the hypothesis, T is injective, as for every f ∈ H
such that f ̸= 0, ∥Tf∥ ≥ δ ∥f∥ > 0, so Tf ̸= 0. Thus, by Proposition 14, range(T )
is dense in H. Next notice that by Proposition 15, range(T ) is closed in H. So,

H = range(T ) = range(T ).

So, T is invertible.
For the converse, say T is invertible. Then let δ = ∥T−1∥−1

. Then for every
f ∈ H,

∥f∥ =
∥∥T−1Tf

∥∥ ≤
∥∥T−1

∥∥ ∥Tf∥ ,
and the result follows.
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Lemma 37. If T and N are self-adjoint bounded linear operators on a Hilbert
space H, such that σ(T ), σ(N) ⊂ (0,∞), then ⟨f, Tf⟩ ≤ ⟨f,Nf⟩ for every f ∈ H,
if and only if ⟨f, T−1f⟩ ≥ ⟨f,N−1f⟩, for ever f ∈ H.

Proof. Say ⟨f, Tf⟩ ≤ ⟨f,Nf⟩ for every f ∈ H.
As 0 /∈ σ(N), N is invertible, and so

N−1/2 :=

∫
λ∈σ(N−1)

λ1/2EN−1(dλ) =

∫
λ∈σ(N)

λ−1/2EN(dλ)

is a well defined bounded self-adjoint linear operator. Similarly,
T 1/2 =

∫
λ∈σ(T )

λ1/2ET (dλ) is a well defined bounded self-adjoint linear operator.

So, for every f ∈ H, we have

⟨f,N−1/2TN−1/2f⟩ = ⟨T 1/2N−1/2f, T 1/2N−1/2f⟩ =
∥∥T 1/2N−1/2f

∥∥2 ≥ 0.

Furthermore, as σ(T ) ⊂ (0,∞), T is invertible, so by lemma 36 there exists
δT > 0 such that ∥Tf∥ ≥ δT ∥f∥ for every f ∈ H. Also, notice that σ(N−1/2) ⊂
(0,∞), thus by lemma 36, there exists δ1 > 0 such that

∥∥N−1/2f
∥∥ ≥ δ1 ∥f∥ for

every f ∈ H. So, for every f ∈ H,∥∥N−1/2TN−1/2f
∥∥ ≥ δ1

∥∥TN−1/2f
∥∥ ≥ δ1δT

∥∥N−1/2f
∥∥ ≥ δ1δT δ1 ∥f∥ ,

so by lemma 36, N−1/2TN−1/2 is invertible, and thus 0 ̸∈ σ(N−1/2TN−1/2).
By using lemma 33 with X = T , Y = N and Z = N−1/2, for every f ∈ H,

⟨f,N−1/2TN−1/2f⟩ ≤ ⟨f,N−1/2NN−1/2f⟩ = ∥f∥2 .

So if λ > 1, for any f ∈ H, as 0 ≤ ⟨N−1/2TN−1/2f, f⟩ ≤ ∥f∥2, by the Cauchy-
Schwartz inequality,∥∥(N−1/2TN−1/2 − λ)f

∥∥ ∥f∥ ≥ |⟨(N−1/2TN−1/2 − λ)f, f⟩|
= |⟨N−1/2TN−1/2f, f⟩ − λ ∥f∥2 |
≥ |1− λ| ∥f∥2 ,

so
∥∥(N−1/2TN−1/2 − λ)f

∥∥ ≥ |1 − λ| ∥f∥, and as |1 − λ| > 0, by lemma 36,

(N−1/2TN−1/2 − λ) is invertible, so λ ̸∈ σ(N−1/2TN−1/2).
Thus we have σ(N−1/2TN−1/2) ⊂ (0, 1].
As 0 ̸∈ σ(N−1/2TN−1/2), N−1/2TN−1/2 is invertible. Let K denote the inverse.

I.e. let K = (N−1/2TN−1/2)−1. Furthermore, we have σ(K) ⊂ [1,∞). So for every
f ∈ H, ∥f∥2 ≤ ⟨f,Kf⟩.
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So by using lemma 33, with X = I, Y = K and Z = N−1/2, for every f ∈ H,

⟨f,N−1f⟩ = ⟨f,N−1/2IN−1/2f⟩
≤ ⟨f,N−1/2KN−1/2f⟩
= ⟨f,N−1/2(N−1/2TN−1/2)−1N−1/2f⟩
= ⟨f,N−1/2N1/2T−1N1/2N−1/2f⟩ (same as finite case)

= ⟨f, T−1f⟩.

For the other direction, replace N with T−1 and T with N−1.

5 *Understanding the Open Mapping Theorem

Recalling lemma 36, Rudin uses an important Theorem in functional analysis, the
open mapping Theorem, to complete the only if direction. To understand the
open mapping Theorem, we need the following results and definitions. There are
competing definitions, one is given in Rudin’s Functional Analysis, [7], the other
is given in Munkres’ Topology, [9]. I present both versions here for completeness,
though they are equivalent. The first definition can be found in Rudin’s book [7].

Definition (First and Second Category Sets). Given a topological space (X, T ),
a subset A ⊂ X is said to be of the first category if it is the countable union of
nowhere dense sets, sets whose closure has empty interior. Sets not of the first
category are of the second category.

A perhaps easier to understand, though (I think) lesser known equivalent def-
inition is that of Baire spaces, as seen in Munkres’ book, [9].

Definition (Baire Spaces). A topological space (X, T ) is a Baire space if given
any countable collection of dense open sets of X, {Un} ⊂ T such that Un = X for
every n ∈ N, their intersection is also dense in X, i.e.

∩Un = X.

Note that Baire spaces are of the second category. Thus,

Theorem 38 (Baire’s Theorem). If X is a complete metric space, then X is a
Baire space, or X is of the second category.

Proof. Half of Theorem 48.2 of [9].

Now we can understand the open-mapping theorem. Though it is much more
general than this, I present a version more direct for our purpose.
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Definition (Open Map). A function f : X → Y , where X and Y are topological
spaces, is an open map if for every open set U ⊂ X, f(U) ⊂ Y is open.

Theorem 39 (Open Mapping Theorem). If T : H → H is a bounded linear
operator on a Hilber space H, then T is an open mapping if T (H) is a Baire
space.

Proof. A simplified version of Theorem 2.11 of [7].

Now we are able to prove the converse of lemma 16, the only if direction of
lemma 36, with the open mapping Theorem.

Lemma 40 (Lemma 36 again). If T is a normal bounded linear operator on a
Hilbert space H, then there exists δ > 0 such that δ ∥f∥ ≤ ∥Tf∥ for f ∈ H if and
only if T is invertible.

Proof. We’ve already done the only if direction in lemma 16. I copy and paste it
here: First we notice that given the hypothesis, T is injective, as for every f ∈ H
such that f ̸= 0, ∥Tf∥ ≥ δ ∥f∥ > 0, so Tf ̸= 0. Thus, by Proposition 14, range(T )
is dense in H. Next notice that by Proposition 15, range(T ) is closed in H. So,

H = range(T ) = range(T ).

So, T is invertible.
Say T is invertible. Then as T is bounded, it is continuous by lemma 5.

Furthermore, by definition of a Hilbert space, H is a complete metric space. Thus,
by Baire’s theorem, theorem 38, H is a Baire space.

So, as T is invertible, it is surjective. Thus, T (H) = H, and T (H) is a Baire
space. So by the open mapping theorem, theorem 39, T is an open map.

Thus T−1 is a continuous map, and thus is bounded by lemma 5, so for any
f ∈ H,

∥f∥ =
∥∥T−1Tf

∥∥ ≤
∥∥T−1

∥∥ ∥Tf∥ .

6 Efficiency Dominance

Definition (Efficiency Dominance). Given two Markov kernels P and Q on (X,F)
with stationary distribution π, we say that P efficiency-dominates Q if for every
f ∈ L2(π),

v(f, P ) ≤ v(f,Q).
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Theorem 41. If P and Q are φ-irreducible reversible Markov kernels, reversible
with respect to π, then P efficiency dominates Q if and only if for every f ∈ L2

0(π),

⟨f,Pf⟩ ≤ ⟨f,Qf⟩.

Proof. Say ⟨f,Pf⟩ ≤ ⟨f,Qf⟩ for every f ∈ L2
0(π). For every η ∈ [0, 1), let

TP,η = I−ηP and TQ,η = I−ηQ. Then as ∥P∥ , ∥Q∥ ≤ 1, for every f ∈ L2
0(π), by

the Cauchy-Schwartz inequality, |⟨f,Pf⟩| ≤ ∥Pf∥ ∥f∥ ≤ ∥P∥ ∥f∥2 ≤ ∥f∥2, and
similarly |⟨f,Qf⟩| ≤ ∥f∥2, so again by the Cauchy-Schwartz inequality,

∥TP,ηf∥ ∥f∥ ≥ |⟨TP,ηf, f⟩|
=
∣∣∥f∥2 − η⟨f,Pf⟩

∣∣
≥ |1− η| ∥f∥2 ,

so ∥TP,ηf∥ ≥ |1− η| ∥f∥ for every f ∈ L2
0(π), and similarly ∥TQ,ηf∥ ≥ |1− η| ∥f∥

for every f ∈ L2
0(π). As η ∈ [0, 1), |1− η| > 0, so by lemma 16, TP,η and TQ,η are

both invertible, so 0 /∈ σ(TP,η), σ(TQ,η).
So, as σ(P), σ(Q) ⊂ [−1, 1], σ(TP,η), σ(TQ,η) ⊂ (0, 2) ⊂ (0,∞) for every η ∈

[0, 1).
So for every η ∈ [0, 1), as TP,η and TQ,η are both self-adjoint, and for every

f ∈ L2
0(π),

⟨f, TQ,ηf⟩ = ∥f∥2 − η⟨f,Qf⟩ ≤ ∥f∥2 − η⟨f,Pf⟩ = ⟨f, TP,ηf⟩,

by lemma 37, for every f ∈ L2
0(π), ⟨f, T−1

Q,ηf⟩ ≥ ⟨f, T−1
P,ηf⟩.

So, for every f ∈ L2
0(π),

∥f∥2 + η⟨f,P (I − ηP)−1 f⟩ = ⟨f, T−1
P,ηf⟩

≤ ⟨f, T−1
Q,ηf⟩

= ∥f∥2 + η⟨f,Q (I − ηQ)−1 f⟩,

so for every f ∈ L2
0(π), ⟨f,P (I − ηP)−1 f⟩ ≤ ⟨f,Q (I − ηQ)−1 f⟩.

Let f ∈ L2
0(π). For every η ∈ [0, 1) let h+

η : [0, 1) → R such that h+
η (λ) =

λ
1−ηλ

for every λ ∈ [0, 1). Then let h+ : [0, 1) → R such that h+(λ) = λ
1−λ

for every
λ ∈ [0, 1). Then as h+

η1
≤ h+

η2
whenever η1 ≤ η2, and h+

η → h+ as η → 1−, by the
Monotone Convergence Theorem ([2] Theorem 2.14),

lim
η→1−

∫
[0,1)

λ

1− ηλ
EP(dλ) =

∫
[0,1)

λ

1− λ
EP(dλ)

and

lim
η→1−

∫
[0,1)

λ

1− ηλ
EQ(dλ) =

∫
[0,1)

λ

1− λ
EQ(dλ).

30



Similarly, for every η ∈ [0, 1) let h−
η : [−1, 0) → R such that h−

η (λ) =
λ

1−ηλ
for

every λ ∈ [−1, 0). Then let h− : [−1, 0) → R such that h−(λ) = λ
1−λ

for every
λ ∈ [−1, 0). Then as |h−

η | ≤ 1 for every η ∈ [0, 1), and h−
η → h− as η → 1−, by

the Dominated Convergence Theorem ([2] Theorem 2.24),

lim
η→1−

∫
[−1,0)

λ

1− ηλ
EP(dλ) =

∫
[−1,0)

λ

1− λ
EP(dλ)

and

lim
η→1−

∫
[−1,0)

λ

1− ηλ
EQ(dλ) =

∫
[−1,0)

λ

1− λ
EQ(dλ).

So, as P is φ-irreducible, by proposition 27, EP({1}) = 0. So, by theorem 29,

v(f, P ) =

∫
σ(P)

1 + λ

1− λ
EP(dλ)

= ∥f∥2 + 2

∫
σ(P)

λ

1− λ
EP(dλ)

= ∥f∥2 + 2

∫
[−1,1)

λ

1− λ
EP(dλ)

= ∥f∥2 + 2

∫
[−1,0)

λ

1− λ
EP(dλ) + 2

∫
[0,1)

λ

1− λ
EP(dλ)

= ∥f∥2 + 2 lim
η→1−

∫
[−1,0)

λ

1− ηλ
EP(dλ) + 2 lim

η→1−

∫
[0,1)

λ

1− ηλ
EP(dλ)

= ∥f∥2 + 2 lim
η→1−

∫
[−1,1)

λ

1− ηλ
EP(dλ)

= ∥f∥2 + 2 lim
η→1−

⟨f,P (I − ηP)−1 f⟩

≤ ∥f∥2 + 2 lim
η→1−

⟨f,Q (I − ηQ)−1 f⟩

= ∥f∥2 + 2 lim
η→1−

∫
[−1,1)

λ

1− ηλ
EQ(dλ)

= ∥f∥2 + 2

∫
[−1,1)

λ

1− λ
EQ(dλ)

=

∫
σ(P)

1 + λ

1− λ
EP(dλ)

= v(f,Q).
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For the converse, just as above, for every f ∈ L2
0(π),

∥f∥2 + 2 lim
η→1−

⟨f,P (I − ηP)−1 f⟩ = v(f, P )

≤ v(f,Q)

= ∥f∥2 + 2 lim
η→1−

⟨f,Q (I − ηQ)−1 f⟩.

So, for every f ∈ L2
0(π),

lim
η→1−

⟨f, T−1
P,ηf⟩ = ∥f∥2 + lim

η→1−
η⟨f,P (I − ηP)−1 f⟩

≤ ∥f∥2 + lim
η→1−

η⟨f,Q (I − ηQ)−1 f⟩

= lim
η→1−

⟨f, T−1
Q,ηf⟩.

So by lemma 37, for every f ∈ L2
0(π),

⟨f, (I − P) f⟩ = lim
η→1−

⟨f, TP,ηf⟩ ≥ lim
η→1−

⟨f, TQ,ηf⟩ = ⟨f, (I − Q) f⟩,

and thus for every f ∈ L2
0(π),

⟨f,Pf⟩ ≤ ⟨f,Qf⟩.

Furthermore, for any f ∈ L2(π), f0 := f − Eπ(f) ∈ L2
0(π) by the linearity of

the expected value functional, and notice that

v(f, P ) = lim
N→∞

[
1

N
Var

(
N∑

n=1

f(Xn)

)]

= lim
N→∞

[
1

N
Var

(
N∑

n=1

f0(Xn) +NEπ(f)

)]

= lim
N→∞

[
1

N
Var

(
N∑

n=1

f0(Xn)

)]
= v(f0, P ),

and similarly v(f,Q) = v(f0, Q). Thus v(f0, P ) ≤ v(f0, Q) for every f0 ∈ L2
0(π) if

and only if v(f, P ) ≤ v(f,Q) for every f ∈ L2(π).

Lemma 42. If T is a bounded self-adjoint linear operator on a Hilbert space H,
then ⟨f, Tf⟩ ≥ 0 for every f ∈ H if and only if σ(T ) ⊂ [0,∞).
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Proof. The only if direction is the same as lemma 34:
If λ < 0, then for every f ∈ H such that f ̸= 0, by the Cauchy-Schwartz

inequality,

∥(T − λ)f∥ ∥f∥ ≥ |⟨(T − λ)f, f⟩|
= |⟨Tf, f⟩ − λ ∥f∥2 |
≥ ⟨Tf, f⟩+ |λ| ∥f∥2 (as λ < 0 and T ≥ 0)

≥ |λ| ∥f∥2 . (as T ≥ 0)

Thus as f ̸= 0 and λ ̸= 0,

∥(T − λ)f∥ ≥ |λ| ∥f∥ > 0.

So, by lemma 16, T − λ is invertible, and thus λ ̸∈ σ(T ) by definition.
If σ(T ) ⊂ [0,∞), then for every f ∈ H,

⟨f, Tf⟩ =
∫
λ∈σ(T )

λET (dλ)

=

∫
λ∈[0,∞)

λET (dλ)

≥
∫
λ∈[0,∞)

ET (dλ)

≥ 0,

as ET is a positive measure by lemma 20.

Theorem 43. If P and Q are φ-irreducible reversible Markov kernels reversible
with respect to π, then P efficiency dominates Q if and only if σ(Q−P) ⊂ [0,∞).

Proof. By theorem 41, P efficiency-dominates Q if and only if ⟨f,Pf⟩ ≤ ⟨f,Qf⟩
for every f ∈ L2

0(π). This is equivalent to

⟨f, (Q−P)f⟩ ≥ 0, for every f ∈ L2
0(π),

as −∞ < ⟨f,Pf⟩, ⟨f,Qf⟩ < ∞ as P ,Q ∈ B(L2
0(π)).

Thus as Q − P is a bounded self-adjoint linear operator on L2
0(π), by lemma

42, ⟨f, (Q−P)f⟩ ≥ 0 for every f ∈ L2
0(π) if and only if σ(Q−P) ⊂ [0,∞).

Theorem 44. Efficiency dominance is a partial order on φ-irreducible reversible
Markov kernels with the same reversible distribution. (As shown in [5].)
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Proof. Reflexivity is trivial.
Suppose P and Q are φ-irreducible reversible Markov kernels reversible with

respect to π such that P efficiency dominates Q and Q efficiency dominates P .
Then by theorem 41, for every f ∈ L2

0(π),

⟨f,Pf⟩ ≤ ⟨f,Qf⟩ and ⟨f,Pf⟩ ≥ ⟨f,Qf⟩,

so ⟨f,Pf⟩ = ⟨f,Qf⟩ for every f ∈ L2
0(π). Thus ⟨f, (Q − P)f⟩ = 0 for every

f ∈ L2
0(π). So for every g, h ∈ L2

0(π), as Q and P are self-adjoint by theorem 9,

0 = ⟨g + h, (Q−P)(g + h)⟩
= ⟨g, (Q−P)g⟩+ ⟨h, (Q−P)h⟩+ 2⟨g, (Q−P)h⟩
= 2⟨g, (Q−P)h⟩.

So for every g, h ∈ L2
0(π), ⟨g, (Q − P)h⟩ = 0. Thus Q − P = 0, so P = Q, and

thus P = Q. So the relation is antisymmetric.
Suppose P,Q and R are φ-irreducible reversible Markov kernels reversible with

respect to π, such that P efficiency dominates Q and Q efficiency dominates R.
Then by theorem 43, σ(Q − P), σ(R − Q) ⊂ [0,∞), so by lemma 42, for every
f ∈ L2

0(π), ⟨f, (R−Q)f⟩ ≥ 0 and ⟨f, (Q−P)f⟩ ≥ 0. So, for every f ∈ L2
0(π),

⟨f, (R−P)f⟩ = ⟨f, (R−Q)f⟩+ ⟨f, (Q−P)f⟩ ≥ 0.

And thus by lemma 42 followed by theorem 43, we have P efficiency dominates R,
so the relation is transitive.

7 Mixing Kernels

Lemma 45. If P is a φ-irreducible Markov kernel, then for every Markov kernel
R and for every α ∈ (0, 1], αP + (1− α)R is an irreducible Markov kernel.

Proof. Obviously αP + (1− α)R is a Markov kernel. As P is φ-irreducible, there
exists a σ-finite measure φ on (X,F) such that the definition of φ-irreducibility
holds for P . So, for every E ∈ F such that φ(E) > 0, for every x ∈ X, there exists
n ∈ N such that

(αP + (1− α)R)n (x,E) ≥ αnP n(x,E) > 0.

So αP + (1− α)R satisfies the definition of φ-irreducibility with the same σ-finite
measure φ.
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Theorem 46. Let P and Q be φ-irreducible reversible Markov kernels, reversible
with respect to π, and let R be a reversible Markov kernel, also reversible with
respect to π. Then for every α ∈ (0, 1), P efficiency dominates Q if and only if
αP + (1− α)R efficiency dominates αQ+ (1− α)R.

Proof. By theorem 41, P efficiency dominates Q if and only if for every f ∈ L2
0(π),

⟨f,Pf⟩ ≤ ⟨f,Qf⟩.

Notice that for every f ∈ L2
0(π),

⟨f, (αP + (1− α)R) f⟩ = α⟨f,Pf⟩+ (1− α)⟨f,Rf⟩,

and
⟨f, (αQ+ (1− α)R) f⟩ = α⟨f,Qf⟩+ (1− α)⟨f,Rf⟩,

so this is equivalent to

⟨f, (αP + (1− α)R) f⟩ ≤ ⟨f, (αQ+ (1− α)R) f⟩

for every f ∈ L2
0(π).

By lemma 45, αP + (1 − α)R and αQ + (1 − α)R are also φ-irreducible.
Thus as they are also reversible with respect to π, by theorem 41, αP + (1 −
α)R efficiency dominates αQ + (1 − α)R if and only if ⟨f, (αP + (1− α)R) f⟩ ≤
⟨f, (αQ+ (1− α)R) f⟩ for every f ∈ L2

0(π).

Theorem 47. Let P1, . . . , Pl and Q1, . . . , Ql be Markov kernels reversible with
respect to π. Let α1, . . . , αl be mixing probabilities, i.e. αk ≥ 0 for every k, and∑

αk = 1. Assume P =
∑

αkPk and Q =
∑

αkQk are φ-irreducible. Then if
σ(Qk − Pk) ⊂ [0,∞) for every k, then P efficiency dominates Q.

Proof. By lemma 42, for every k we have for every f ∈ L2
0(π)

⟨f, (Qk − Pk) f⟩ ≥ 0.

So, for every f ∈ L2
0(π),

⟨f, (Q−P) f⟩ =
∑

αk⟨f, (Qk − Pk) f⟩ ≥ 0.

So by lemma 42, σ(Q − P) ⊂ [0,∞), so by theorem 43, P effieciency dominates
Q.
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8 Peskun Dominance

Definition (Peskun-Dominance). For two Markov kernels P and Q with station-
ary distribution π, P Peskun-dominates Q (or P dominates Q off the diagonal) if
for π-almost every x ∈ X,

P (x,E − {x}) ≥ Q(x,E − {x}), ∀E ∈ F .

Lemma 48. (As seen in [10]) If P and Q are Markov kernels reversible wrt π,
such that P Peskun-dominates Q, then Q−P is a positive operator.

Proof. Let f ∈ L2
0(π). Then

⟨f, (Q−P)f⟩ =
∫
x∈X

∫
y∈X

f(x)f(y)(Q(x, dy)− P (x, dy))π(dx)

=
1

2

∫
x∈X

f(x)2π(dx)− 1

2

∫
y∈X

f(y)2π(dy)

+

∫
x∈X

∫
y∈X

f(x)f(y)(Q(x, dy)− P (x, dy))π(dx)

=
1

2

[∫
x∈X

f(x)2π(dx)−
∫
y∈X

f(y)2π(dy)

−2

∫
x∈X

∫
y∈X

f(x)f(y)(δx(dy) + P (x, dy)−Q(x, dy))π(dx)

+2

∫
y∈X

f(y)2π(dy)

]
=

1

2

[∫
x∈X

∫
y∈X

f(x)2 (δx(dy) + P (x, dy)−Q(x, dy)) π(dx)

−2

∫
x∈X

∫
y∈X

f(x)f(y) (δx(dy) + P (x, dy)−Q(x, dy))π(dx)

+

∫
x∈X

∫
y∈X

f(y)2(δx(dy) + P (x, dy)−Q(x, dy))π(dx)

]
=

1

2

∫
x∈X

∫
y∈X

(f(x)− f(y))2 (δx(dy) + P (x, dy)−Q(x, dy))π(dx).

Notice that (δx(·) + P (x, ·)−Q(x, ·)) is a positive measure for π-almost every
x ∈ X, as for every π-almost every x ∈ X, for every E ∈ F , if x ∈ E, then as P
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Peskun-dominates Q,

δx(E) + P (x,E)−Q(x,E) = 1 + P (x,E − {x})−Q(x,E − {x})
+ P (x, {x})−Q(x, {x})

≥ 1 +Q(x,E − {x})−Q(x,E − {x})
+ P (x, {x})−Q(x, {x})

≥ 1 + P (x, {x})−Q(x, {x})
≥ P (x, {x})
≥ 0,

and if x /∈ E, then similarly

δx(E) + P (x,E)−Q(x,E) = P (x,E − {x})−Q(x,E − {x}) ≥ 0.

Theorem 49. If P and Q are φ-irreducible reversible Markov kernels reversible
with respect to π, if P Peskun-dominates Q, then P efficiency dominates Q.

Proof. For every f ∈ L2
0(π), by lemma 48, ⟨f, (Q−P)f⟩ ≥ 0, so ⟨f,Pf⟩ ≤ ⟨f,Qf⟩.

Thus by theorem 41, P efficiency dominates Q.

9 Non φ-Irreducible Kernels

In this section, we look at efficiency dominance for kernels that may not be φ-
irreducible.

Lemma 50. If P is a reversible Markov kernel reversible with respect to π, then
null(P − I) ⊂ L2

0(π) is closed.

Proof. Let f ∈ null(P − I). Then there exists {fn} ⊂ null(P − I) such that
fn → f in the L2

0(π) norm, i.e. ∥fn − f∥ → 0. So, as Pfn = fn for every n ∈ N,
we have

∥Pf − f∥ = ∥Pf − Pfn + fn − f∥ ≤ ∥P(f − fn)∥+ ∥fn − f∥ ≤ 2 ∥fn − f∥ → 0,

so ∥Pf − f∥ = 0, and thus Pf = f (as the equivalence class of functions equal
π-almost everywhere), and f ∈ null(P − I).

Lemma 51. If P and Q are reversible Markov kernels reversible with respect to π
such that ⟨f,Pf⟩ ≤ ⟨f,Qf⟩ for every f ∈ L2

0(π), then null(P − I) ⊂ null(Q−I).
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Proof. Let g ∈ null(P − I). As Pg = g and ∥Q∥ ≤ 1, by our hypothesis and the
Cauchy-Schwartz inequality (Theorem 12.2 (1) in [7]),

∥g∥2 = ⟨g,Pg⟩ ≤ ⟨g,Qg⟩ ≤ ∥Qg∥ ∥g∥ ≤ ∥Q∥ ∥g∥2 ≤ ∥g∥2 ,

so ∥Qg∥ = ∥g∥.
Thus as Q is self-adjoint,

∥Qg − g∥2 = ∥Qg∥2 − 2⟨g,Qg⟩+ ∥g∥2

≤ ∥Qg∥2 − 2⟨g,Pg⟩+ ∥g∥2

= ∥g∥2 − 2⟨g, g⟩+ ∥g∥2

= ∥g∥2 − 2 ∥g∥2 + ∥g∥2

= 0,

so Qg = g.

Theorem 52. If P and Q are reversible Markov kernels reversible with respect to
π, such that for every f ∈ L2

0(π), ⟨f,Pf⟩ ≤ ⟨f,Qf⟩, then P efficiency dominates
Q.

Proof. Let f ∈ L2
0(π). For every η ∈ [0, 1), let TP,η = I − ηP and TQ,η = I − ηQ.

Then just as in theorem 41, σ(TP,η), σ(TQ,η) ⊂ (0,∞). Furthermore, notice that
as ⟨f,Pf⟩ ≤ ⟨f,Qf⟩ for every f ∈ L2

0(π),

⟨f, TP,ηf⟩ ≥ ⟨f, TQ,ηf⟩, ∀f ∈ L2
0(π).

So by lemma 37,

⟨f, T−1
P,ηf⟩ ≤ ⟨f, T−1

Q,ηf⟩, ∀f ∈ L2
0(π).

Notice that as

T−1
P,η = (I − ηP)−1

= ηP (I − ηP)−1 + (I − ηP) (I − ηP)−1

= ηP (I − ηP)−1 + I,

and similarly T−1
Q,η = ηQ (I − ηQ)−1 + I, we have

⟨f,P (I − ηP)−1 f⟩ ≤ ⟨f,Q (I − ηQ)−1 f⟩, ∀f ∈ L2
0(π).
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If Ef,P({1}) = 0, then as η ∈ [0, 1) was arbitrary, by theorem 29, just as in
theorem 41,

v(f, P ) =

∫
λ∈σ(P)

1 + λ

1− λ
Ef,P(dλ)

=

∫
λ∈[−1,1)

1 + λ

1− λ
Ef,P(dλ)

= lim
η→1−

∫
λ∈[−1,1)

1 + λ

1− ηλ
Ef,P(dλ)

= ∥f∥2 + 2 lim
η→1−

⟨f,P (I − ηP)−1 f⟩

≤ ∥f∥2 + 2 lim
η→1−

⟨f,Q (I − ηQ)−1 f⟩

= lim
η→1−

∫
λ∈[−1,1)

1 + λ

1− ηλ
Ef,Q(dλ)

=

∫
λ∈σ(Q)

1 + λ

1− λ
Ef,Q(dλ)

= v(f,Q).

(assuming Ef,Q({1}) ̸= 0, as otherwise trivial).
If Ef,P({1}) ̸= 0, then by Theorem 12.29 (b) in [7], 1 is an eigenvalue of P . As

null(P − I) is a closed subspace by lemma 50 (proved above for this specific case,
but more is true. The null space of every bounded operator is closed), we have by
Theorem 12.4 in [7],

L2
0(π) = null(P − I)

⊕
null(P − I)⊥.

So, there exists g ∈ null(P − I) and f0 ∈ null(P − I)⊥ such that f = f0 + g.
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As g ∈ null(P − I), g ∈ null(Q− I) by lemma 51. So by lemma 28, we have

v(f,Q) = ∥f∥2 + 2 lim
N→∞

[
N∑
k=1

(
N − k

N

)
⟨f,Qkf⟩

]

= ∥f∥2 + 2 lim
N→∞

[
N∑
k=1

(
N − k

N

)
⟨f0 + g,Qk(f0 + g)⟩

]

= ∥f∥2 + 2 lim
N→∞

[
N∑
k=1

(
N − k

N

)(
⟨f0,Qkf0⟩+ 2⟨f0,Qkg⟩+ ⟨g,Qkg⟩

)]

= ∥f∥2 + 2 lim
N→∞

[
N∑
k=1

(
N − k

N

)(
⟨f0,Qkf0⟩+ 2⟨f0, g⟩+ ⟨g, g⟩

)]

= ∥f∥2 + 2 lim
N→∞

[
N∑
k=1

(
N − k

N

)(
⟨f0,Qkf0⟩+ ∥g∥2

)]
.

Note now that for every N ∈ N, as Q is self-adjoint, by the Cauchy-Schwartz
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inequality,

N∑
k=1

(
N − k

N

)
⟨f0,Qkf0⟩

=

(
N − 1

N

)
⟨f0,Qf0⟩

+

⌊N⌋∑
m=1

[(
N − 2m

N

)
⟨f0,Q2mf0⟩+

(
N − (2m+ 1)

N

)
⟨f0,Q2m+1f0⟩

]
=

(
N − 1

N

)
⟨f0,Qf0⟩

+

⌊N⌋∑
m=1

[(
N − 2m

N

)
∥Qmf0∥2 +

(
N − (2m+ 1)

N

)
⟨Qmf0,Qm+1f0⟩

]
≥
(
N − 1

N

)
⟨f0,Qf0⟩

+

⌊N⌋∑
m=1

[(
N − 2m

N

)
∥Qmf0∥2 −

(
N − (2m+ 1)

N

)
∥Qmf0∥

∥∥Qm+1f0
∥∥]

≥
(
N − 1

N

)
⟨f0,Qf0⟩

+

⌊N⌋∑
m=1

[(
N − 2m

N

)
∥Qmf0∥2 −

(
N − (2m+ 1)

N

)
∥Q∥ ∥Qmf0∥ ∥Qmf0∥

]
≥
(
N − 1

N

)
⟨f0,Qf0⟩

+

⌊N⌋∑
m=1

[(
N − 2m

N

)
∥Qmf0∥2 −

(
N − (2m+ 1)

N

)
∥Qmf0∥2

]

≥
(
N − 1

N

)
⟨f0,Qf0⟩+

⌊N⌋∑
m=1

[(
1

N

)
∥Qmf0∥2

]
.
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So, plugging this into what we had earlier,

v(f,Q) = ∥f∥2 + 2 lim
N→∞

[
N∑
k=1

(
N − k

N

)(
⟨f0,Qkf0⟩+ ∥g∥2

)]

≥ 2 lim
N→∞

(N − 1

N

)
⟨f0,Qf0⟩+

⌊N⌋∑
m=1

[(
1

N

)
∥Qmf0∥2

]

+
N∑
k=1

(
N − k

N

)
∥g∥2


≥ 2 lim

N→∞

[(
N − 1

N

)
⟨f0,Qf0⟩+

N∑
k=1

(
N − k

N

)
∥g∥2

]

= 2 lim
N→∞

(
N − 1

N

)
⟨f0,Qf0⟩+ 2 lim

N→∞

N∑
k=1

(
N − k

N

)
∥g∥2

= 2⟨f0,Qf0⟩+ 2 lim
N→∞

N∑
k=1

(
N − k

N

)
∥g∥2 .

Finally, notice that as limN→∞
∑N

k=1

(
N−k
N

)
∥g∥2 = ∞, we have v(f,Q) = ∞,

so v(f, P ) ≤ ∞ = v(f,Q).

With theorem 52, we can establish many of the same results on efficiency
dominance for more general kernels just as we did in previous sections for φ-
irreducible kernels.

List of Results that carry over for (not necessarily φ-irreducibe) reversible
kernels:

� proposition 31

� if direction of theorem 41, possibly converse as well

� if direction of theorem 43, possibly converse as well

� theorem 44 if converse of theorem 52 is true, if not then it is false (I think,
doubt the antisymmetric)

� theorem 47

� theorem 49 (as seen in [10])
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Notes

� Not many Markov Chains have compact Markov operators. This is said in
[5], bottom of page 7. They cite a source for this. It may be worth showing
some examples.

� [5] cite a source that identifies the set of minimal variance operators when
in matrix form.
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