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Markov Chain Monte Carlo (MCMC) methods are fundamental tools for sampling

highly complex distributions. They are crucial to Bayesian inference as posterior dis-

tributions are generally analytically intractable. In this thesis, we tackle two Bayesian

inference problems via MCMC methods, that will lie on both methodology and ap-

plication aspects.

The first part of this thesis tackles the computational challenges of Bayesian in-

ference from big data. We develop a new communication-free parallel method, the

Likelihood Inflating Sampling Algorithm (LISA), that significantly reduces compu-

tational costs by randomly splitting the dataset into smaller subsets and running

MCMC methods independently in parallel on each subset using different processors.

Each processor will be used to run an MCMC chain that samples sub-posterior dis-

tributions which are defined using an “inflated” likelihood function. We then discuss

on the approaches to combine all sub-samples from all processors to build a highly

accurate posterior distribution that is consistent with the full posterior distribution.

More importantly, we learn a strategy in combining LISA’s draws to study the full

posterior of the more complex Bayesian Additive Regression Trees (BART) model,
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which is highly important in non-parametric regression. In addition, we also success-

fully examine the consistency in performance of LISA on BART with new efficient

Metropolis-Hastings (MH) proposals introduced by Pratola (2016).

The second part of this thesis is more focused on the applied aspect of performing

Bayesian inference via MCMC methods. We study a Bayesian Geostatistical model to

analyze spatial data from the Timiskaming & Abitibi River forests in Ontario Canada,

provided by the First Resource Management Group Inc.. We implement an MCMC

algorithm to perform Bayesian inference on predicting the proportion of hardwood

trees from elevation and vegetation index. Spatial predictions are made for new sites

in the forests and results are compared with a Logistic Regression model without

a spatial effect. We study the trend of accuracy in predictions when fitting fewer

data to the model, and present useful insights on performance related to the number

of ground truth data collected, that can be costly. We further discuss a stratified

sampling approach in choosing the subsets of data that allows for potential better

predictions.
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Chapter 1

Introduction

1.1 Motivation

Nowadays we face many complicated real-world problems that require scientific un-

derstanding of data and design of its underlying model that will guide through pre-

dictions for the future. For this purpose, statistical inference has become essential in

order to satisfy our needs in better understanding the world around us. However in

such inferences, there still exist many uncertainties about the true underlying process

as there may be insufficient information available, and hence require the powerful

fundamentals of probability distributions. Bayesian inference (Bernardo and Smith

(2001); Gelman et al. (2014)) is the key subject that resolves these issues in that

matter, and is widely used in various areas of research such as artificial intelligence,

bio-informatics, finance, etc. In a Bayesian framework, we are able to apply our own

beliefs and experiences along with the use of data to describe all uncertainties using

probability distributions.

Bayesian approaches attempt to quantify uncertainties about the true underlying

model parameters θ, as a probability distribution called the posterior distribution.

1



Chapter 1. Introduction 2

They require prior distributions π(θ), that are formed from our initial beliefs about

the parameter of interest, along with the distribution of the observed data to form

the overall posterior distribution. Bayesian methods are built upon the foundations

of Bayes’ Theorem which we will describe later on in Chapter 2.

Our particular focus in this thesis will lie on the Bayesian computations aspect,

where numerical integration regarding the posterior distribution becomes intractable

for complicated models with higher parameter dimensions. There are various ap-

proaches proposed in the literature that overcome this challenge by approximating

the posterior distribution either with family of known distributions (MacKay, 2003;

Bishop, 2006; Rue et al., 2009), or by simulating samples from it. However, some

simulating methods are to some level indirect (Beaumont et al., 2002; Blum, 2010;

Drovandi et al., 2015), that is, they approximate the posterior distribution by simu-

lating data from a given prior parameter and decide through a discrepancy dependent

of summary statistics. They also require the ability to sample from the prior distribu-

tion. Although all these methods may be useful and efficient, but they are somehow

model-specific and can be less reliable or convenient given their limitations.

In this thesis, we will tackle Bayesian computations with Markov Chain Monte

Carlo (MCMC) simulation methods (Neal, 1993; Craiu and Rosenthal, 2014; Brooks

et al., 2011; Brooks, 1998). MCMC methods are fundamental tools for sampling

highly complex distributions, and are more powerful and reliable compared to their

alternatives, as they deal directly with the posterior density regardless of its complex-

ity. With the widespread adoption of Bayesian inference in science and engineering

problems, MCMC tools are vital to many applications such as statistical learning,

image processing, medical imaging and natural language processing.

Our main contribution in this thesis is to tackle two Bayesian inference problems

under the umbrella of MCMC methods. The type of problems solved in this thesis lie
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in both methodology terms and applications on real-world problems. We will describe

in detail the context and the overall order of the thesis chapters in the next section.

1.2 Overview of Thesis Chapters

We begin with reviewing some fundamentals of Bayesian modelling and MCMC meth-

ods in Chapter 2. We will explain the differences between Bayesian and Frequentist

approaches with an emphasis on Bayesian methods. We later on discuss Monte Carlo

methods and Markov chain convergence theorem that will build the foundations of

MCMC methods. At last, we will explain in detail the various MCMC methods that

will be used for the rest of this thesis.

The first half of the thesis deals with the computational challenges of Bayesian

inference via MCMC methods from big data, i.e. huge sets of data that are too big

to fit even on one computer. We develop a new method for posterior sampling, in big

data applications, that lends itself to highly parallel computation. In Chapter 3, we

introduce the Likelihood Inflating Sampling Algorithm (LISA) (Entezari et al., 2018b),

that significantly reduces computational costs by randomly partitioning the dataset

into smaller subsets and running MCMC methods independently in parallel on each

subset using different processors. Each processor will be used to run an MCMC chain

that samples from sub-posterior distributions which are defined using an “inflated”

likelihood function. The sub-samples drawn from all processors are then aggregated

in a way to build a highly accurate posterior distribution that is consistent with the

full posterior distribution. More importantly, we develop a strategy for combining

the draws from different sub-posteriors to study the full posterior of the complex

non-parametric regression model, the Bayesian Additive Regression Trees (BART).

We prove in theory and a simple application that LISA can outperform its competing
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method, the popular Consensus Monte Carlo (CMC) (Scott et al., 2013). LISA also

shows superior performance (in terms of accuracy and efficiency) compared to CMC

in BART, when tested on simulated data and a large socio-economic study.

Chapter 4 consists of the performance of LISA with a more efficient MCMC

method for BART proposed by Pratola (2016). We present results that show with

a simulated dataset, LISA’s performance is consistent with the new MCMC method

used for BART, and continues to successfully generate approximate full posterior

samples (Chkrebtii et al., 2016).

In Chapter 5, we tackle a different problem that also involves Bayesian inference

via MCMC methods. Our challenge in this chapter is to present an analysis for a

real-world problem related to spatial data from forests in Canada. As it is known, the

monetary value of forests depends on their timber values and timber values differ de-

pending on the species of the trees. Hardwood trees are worth more than softwoods,

as they provide longer lasting wood and hence can be of great asset for owners. Thus,

the problem of interest will be in predicting the proportion of hardwood trees in

different areas around forests which is highly important in determining the timber

value. The First Resource Management Group Inc. has provided us data from the

Timiskaming and Abitibi River forests in Ontario, that consists of ground truth data,

as well as remotely sensed data that was collected using their new remote sensing

technology called the “SkyForest”. However, since the collection of ground truth

data is costly and time consuming, our aim is to study this data and build up a sta-

tistical model where we can examine and analyze predictions with fewer ground truth

data collected. We build a Bayesian Geostatistical model to predict the proportion

of hardwood trees from elevation and vegetation index image data, and implement

an MCMC algorithm for posterior simulation of the model parameters. Our analysis

(Entezari et al., 2018a) shows that with fewer data fitted to the model, unbiased esti-
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mates of hardwood counts along with reasonable uncertainty quantities are achieved.

Finally, we discuss a stratified sampling approach for choosing subsets of spatial data

that will show potential improvements.

We make our overall conclusions in Chapter 6 and show results from different

simulations related to the analysis of Chapter 5, in the Appendix.



Chapter 2

Bayesian Modelling &

Computations

Statistical inference has become vital to scientists, as there are essentials and desire in

learning the underlying mechanisms of observed data. However taking into account

all possible uncertainties in predictions will be an important and challenging step

in this analysis. Hence, the common solution is constructed in a Bayesian setting,

where expert knowledge can play a significant role in exploring the distribution of

parameters. The broad and complete inference that can be derived from Bayesian

methods is the main reason that brings huge attention to this area and hence our

focus in this thesis.

In this chapter we will review all the essential fundamentals and notations of the

Bayesian modelling used in this thesis. More details on Bayesian Statistics can be

found in Bernardo and Smith (2001); Gelman et al. (2014). We will also describe

various Markov Chain Monte Carlo (MCMC) algorithms that are essential for the

remaining part of this thesis. We begin with a comparison between Bayesian and

Frequentist approaches by emphasizing the importance of Bayesian modelling in sta-

6
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tistical inference.

2.1 Bayesian vs Frequentist Approaches

Bayesian methods play important roles in statistical inference, as they quantify uncer-

tainties with probability distributions, using our prior knowledge on unknown model

parameters. More specifically, in a Bayesian framework, data are observed and as-

sumed fixed, while unknown model parameters are described by a probability dis-

tribution. In contrast, in a frequentist approach, parameters are considered to be

fixed while data are generated from a repeatable random sample process. In frequen-

tist methods, point estimations are derived along with confidence intervals, while in

Bayesian methods, a probability distribution is describing the behaviour of parame-

ters, with means or quantiles as possible candidates for estimation along with credible

intervals for uncertainties.

To illustrate this difference, let y1, ..., yn
i.i.d.∼ f(.|θ) be a set of observed data from

a specific distribution with parameter (vector) θ. The main aim is to make inference

about θ. As a frequentist, one would consider θ to be fixed and concentrate on its

estimation, for example using the Maximum Likelihood Estimate (MLE) θ̂, which is

calculated by maximizing the Likelihood function:

θ̂ = arg max
θ

L(θ|y1, ..., yn) = arg max
θ

n∏
i=1

f(yi|θ)

Hence, in a frequentist approach, all efforts are made towards point estimations of

the model parameter and confidence intervals are also constructed to represent its

variability. On the other hand, in a Bayesian approach, we consider the parameter to

be random and find a probability distribution that can best describe it. Therefore,
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in a Bayesian framework we define initial prior distributions from our intuitive be-

liefs or experiences about a particular model parameter, and update the probability

distribution of the parameter as more and more data are available. Thus using the

notation π(θ) for the prior distribution, the Bayesian probability distribution of the

model parameters, called the posterior distribution, can be calculated through Bayes’

Theorem:

π(θ|y) =
f(y|θ)π(θ)∫
θ
f(y|θ)π(θ)

∝ f(y|θ)π(θ) (2.1)

where f(y|θ) is called the likelihood function and θ is the vector of model parame-

ters. The normalizing constant Z =
∫
θ
f(y|θ)π(θ) is usually analytically tractable if

conjugate priors are considered, i.e. priors that will generate posterior distributions

with the same form of distributions. However, if the main goal is to sample θ, then

Z can be discarded from the formulations as it is independent of θ.

2.2 Posterior Simulation

In practice, the posterior distribution becomes intractable for complex problems, es-

pecially as the integration becomes complicated with higher dimensional parame-

ters. There are various methods proposed in the literature to challenge this problem.

Strictly speaking, there is great area of research done on Variational Bayesian meth-

ods (MacKay, 2003; Bishop, 2006) that mainly find simplified analytical approximates

of the posterior distribution using an optimization problem involving the Kullback–

Leibler divergence (KL-divergence) distance. Approximate Bayesian Computation

(ABC) methods (Beaumont et al., 2002; Blum, 2010; Drovandi et al., 2015) tackle in-

tractable likelihood approximations in a Bayesian framework using summary statistics

and simulation. Other approaches such as the integrated nested Laplace approxima-
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tions (INLA) (Rue et al., 2009) are also proposed to make approximate Bayesian

inference for only subset of structured additive regression models, the latent gaussian

models. However, this approach only approximates marginal posterior distributions

and lacks in approximating the joint posterior distribution. Although all these meth-

ods can be fast and computationally efficient, they are still problem-specific or are

limited to a family of known analytical distributions.

Alternatively, Markov Chain Monte Carlo (MCMC) methods attempt to approx-

imate the (joint) posterior distribution by sampling from its exact formulation, and

hence produce more accurate results. Thus in this thesis, our focus will be on using

and implementing various MCMC methods for different problems as we move further

on. However, to understand the framework of MCMC methods and how they work,

we will need to first describe the idea behind Monte Carlo Methods in the following

subsection. We will later describe the different types of MCMC methods that are

used in the remaining part of this thesis.

2.2.1 Monte Carlo Methods

Monte Carlo methods are computational algorithms that can estimate numerical val-

ues for various problems such as integrals, using repeated random sampling. Suppose

we are interested in estimating an expected value defined as:

E(f(X)) =

∫ +∞

−∞
f(x)

1√
2π
e−x

2/2dx

where X ∼ N(0, 1). Since this integral may be hard to compute, we can propose a

Monte Carlo method that can approximate E(f(X)). Thus, by generating S random

samples x1, ..., xS from the the standard normal distribution, we can calculate f(xs)
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for all s ∈ {1, ..., S} and approximate E(f(X)) with the following unbiased estimator:

E(f(X)) ≈ µ̄S =
1

S

S∑
s=1

f(xs),

where:

µ̄S
L.L.N.−−−→
S→∞

E(f(X))

by Law of Large Numbers (L.L.N.) (assuming Lebesgue integrability of f(X)).

However, in this case it is simple to draw samples from the standard normal distri-

bution, but what happens if the samples you need are from a complicated distribution

π, say a posterior distribution? The answer to this question is solved by Markov Chain

Monte Carlo (MCMC) methods which are useful tools for sampling highly complex

distributions. The basic idea is to generate a Markov Chain with stationary distribu-

tion π (which we will further explain). The theory behind the convergence of Markov

Chains, plays an important role in explaining how MCMC algorithms work. Thus we

will briefly explain this within the next section.

2.2.2 Markov Chain Convergence Theorem

A discrete-time Markov Chain is defined by a sequence of random variablesX0, X1, X2, ...

that can take possible values in the state space X with an initial distribution defined

for X0 and transition probabilities defined as:

p(x,A) = P (Xn+1 ∈ A|Xn = x), ∀ A ⊆ X

One of the fundamental properties of Markov Chains is the Markov Property, that is:

P (Xn+1 ∈ A|X0, X1, ..., Xn) = P (Xn+1 ∈ A|Xn) ∀ A ⊆ X
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In other words, the probability that the chain moves to the next state depends only

on the current state and not the previous states.

Although this thesis is not focused on the theory of MCMC algorithms and their

convergence, but we will review some definitions and theory that justifies how MCMC

methods work. A complete background on Markov Chains can be found in the book

by Rosenthal (2006).

Definition 1. Consider a Markov chain {Xi} on state space X with transition prob-

ability P (x, .). Let π(.) be a probability distribution defined on X . Then π is a

stationary distribution for the Markov chain if for x, y ∈ X :

∫
x∈X

π(dx)P (x, dy) = π(dy)

Definition 2. A Markov chain is φ-irreducible, if there exists a non-zero σ-finite

measure φ on X such that:

∀A : A ⊆ X with φ(A) > 0 & ∀x ∈ X

=⇒ ∃ n ∈ N : P n(x,A) > 0

Definition 3. A Markov chain is aperiodic, if there are no disjoint non-empty subsets

X1, ...,Xd ⊆ X for d ≥ 2, such that P (x,Xi+1) = 1 for all x ∈ Xi (1 ≤ i ≤ d − 1)

and P (x,X1) = 1 for all x ∈ Xd.

Now we will state the Markov chain convergence theorem which specifies how

MCMC algorithms work.

Theorem 1. Consider an aperiodic and φ-irreducible Markov chain defined on a state
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space X with stationary distribution π. Then for π.a.e. x ∈ X :

lim
n→∞

||P n(x, .)− π(.)|| = 0

That is limn→∞ P
n(x,A) = π(A) for all measurable A ⊆ X .

Proof. See Meyn and Tweedie (2012); Rosenthal (2006).

Assuming the goal is to sample from a complex π, MCMC methods are designed

such that a Markov chain is generated with π stationary distribution. The aperiodicity

of such Markov chains almost always hold (as there is usually positive probability of

rejection in most MCMC methods), and φ-irreducibility is also straightforward to

check and usually holds for MCMC algorithms. Hence, MCMC methods become

reliable as they are built under the foundation of Markov chains. In the following

section, we will describe most common MCMC algorithms that are also used in this

thesis.

2.3 Most common MCMC algorithms

2.3.1 Metropolis-Hastings algorithm

One of the most popular MCMC methods is the Metropolis algorithm that was first

introduced by Metropolis et al. (1953) and then extended as the Metropolis-Hastings

algorithm by Hastings (1970). Let π(x) = c g(x) be the complex distribution where

we are interested to sample from (also called the target distribution) and assume it is

only known up to a normalizing constant, i.e. g(x) is known. The steps of the more

generalized method, the Metropolis-Hastings algorithm, is described in Algorithm 1
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below. The algorithm states that by starting at x, a proposal y is accepted with

probability:

α(x, y) = min (1,
π(y)q(y, x)

π(x)q(x, y)
)

where q(x, y) is the conditional probability of proposing state y given state x.

Algorithm 1: Metropolis-Hastings Algorithm

Input: Initial value X0, burn-in iterations B, number of samples M
Output: S1, ..., SM samples

1 for n in {1, ..., (B +M)} do
2 Draw Yn ∼ Q(Xn−1, .), where Q is the proposal distribution with probability

density function q.
3 Calculate An = π(Yn)q(Yn,Xn−1)

π(Xn−1)q(Xn−1,Yn)
= g(Yn)q(Yn,Xn−1)

g(Xn−1)q(Xn−1,Yn)
.

4 Draw Un ∼ Uniform[0,1]
5 if Un < An then Xn = Yn (“accept”), else Xn = Xn−1 (“reject”)
6 end for
7 return S1 = XB+1, ..., SM = XB+M .

The Metropolis algorithm is the simplified version of Algorithm 1, with an excep-

tion in Step 2, where the proposal distribution Q is symmetric, i.e. q(Xn−1, Yn) =

q(Yn, Xn−1), hence Step 3 also simplifies to An = π(Yn)
π(Xn−1)

= g(Yn)
g(Xn−1)

.

2.3.2 Random Walk Metropolis-Hastings (RWMH)

The Random Walk Metropolis-Hastings (RWMH) algorithm is a special case of the

Metropolis-Hastings algorithm where q(x, y) = q(y − x). For example Q(x, .) ∼

Uniform[x − ε, x + ε] or Q(x, .) ∼ N(x, σ2) can be considered as possible proposal

distributions.

2.3.3 Metropolis-Hastings-within-Gibbs

The idea behind the Metropolis-Hastings-within-Gibbs algorithm is to update each

coordinate at a time when the Markov chain is high-dimensional, and hence resulting



Chapter 2. Bayesian Modelling & Computations 14

to be computationally more efficient. Assume the chain has d dimensions and denote

X−i = (X1, ..., Xi−1, Xi+1, ..., Xd) as the vector of all components except i. Then

Step 2 in the Metropolis-Hastings algorithm will instead update each component at

a time. In other words, at iteration n, the proposal Yn will be constructed such that

Yn,i ∼ Qi(Xn−1,i, .) with Yn,−i = Xn−1,−i, where Yn,i is the i-th coordinate of Yn.

2.3.4 Gibbs Sampler

The Gibbs Sampler is a special case of the Metropolis-Hastings-within-Gibbs with

proposal distribution of the i-th component being the conditional distribution of that

component with respect to the target distribution π, given the current values of all

other components. Thus, the proposal density can be written as qi(x, y) = C(x−i)π(y)

where C(x−i) is the appropriate normalizing constant and x−i = y−i. Then proposals

will always be accepted since:

α(x, y) = min
(

1,
π(y)qi(y, x)

π(x)qi(x, y)

)
= min

(
1,
π(y)C(y−i)π(x)

π(x)C(x−i)π(y)

)
= min (1, 1) = 1

The last equation holds since C(x−i) = C(y−i).

2.3.5 Langevin-Hastings algorihtm

The Langevin-Hastings algorithm is a special case of the Metropolis-Hastings algo-

rithm where the proposal is defined as Yn ∼ MVN(Xn−1 + 1
2
σ2∇ log π(Xn−1), σ

2I).

This method tries to move towards a direction where π is increasing and hence can be

computationally efficient. The theoretical background of this method can be found
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in Roberts and Tweedie (1996); Roberts and Rosenthal (1998).

2.4 Optimal Acceptance Rates

To ensure that the MCMC method is mixing well and hence converging, we need to

examine our choice of proposal distributions, as they can control the optimality in

performance. For this purpose, acceptance rates, which are the proportion of accepted

proposals to the total proposals, are useful tools to help determine such issues. The

acceptance rates can specify how much the target distribution is being explored,

that said, they should not be too low (close to 0), as this shows more rejection of

proposals and hence a chain that is stuck and is not moving much. On the other

hand, acceptance rates that are too high (close to 1) also show small movements of

the chain, as only close-by states can be accepted highly. Hence, there needs to be an

acceptance rate in between that can help the chain move more and explore the target

distribution. It is proven that under mild conditions, the optimal acceptance rates of

a d-dimensional Metropolis algorithm with a Gaussian proposal distribution is 0.234

as d → ∞ (e.g. see Roberts et al. (1997); Roberts and Rosenthal (2001)). It is also

shown that acceptance rates between 15% and 50% can still perform well (Roberts

and Rosenthal (2001)).



Chapter 3

Likelihood Inflating Sampling

Algorithm (LISA)

3.1 Introduction

Markov Chain Monte Carlo (MCMC) methods are essential for sampling highly com-

plex distributions. They are of paramount importance in Bayesian inference as pos-

terior distributions are generally difficult to characterize analytically (e.g., Brooks

et al., 2011; Craiu and Rosenthal, 2014). When the posterior distribution is based on

a massive sample of size N , posterior sampling can be computationally prohibitive

since for some widely-used samplers at least O(N) operations are needed to draw one

MCMC sample. Additional issues include memory and storage bottlenecks where

datasets are too large to be stored on one computer.

A common solution relies on parallelizing the computation task, i.e. dividing the

load among a number of parallel workers, where a worker can be a processing unit,

a computer, etc. Given the abundant availability of processing units, such strategies

can be extremely efficient as long as there is no need for frequent communication

16
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between workers. Some have discussed parallel MCMC methods (Wilkinson, 2006;

Rosenthal, 2000; Laskey and Myers, 2003) such that each worker runs on the full

dataset. However, these methods do not resolve memory overload, and can face

difficulties in assessing the number of burn-in iterations for each processor.

Alternative subsampling MCMC approaches (Maclaurin and Adams, 2014; Bar-

denet et al., 2017) propose to reduce computational costs by only evaluating the

likelihood of a subset of data at each iteration. However these methods are serial and

can still suffer from memory bottlenecks.

A truly parallel approach is to divide the dataset into smaller groups and run

parallel MCMC methods on each subset using different workers. Such techniques

benefit from not demanding space on each computer to store the full dataset. Gen-

erally, one needs to avoid frequent communication between workers, as it is time

consuming. In a typical divide and conquer strategy the data is partitioned into non-

overlapping sub-sets, called shards, and each shard is analyzed by a different worker.

For such strategies some essential MCMC-related questions are: 1) how to define the

sub-posterior distributions for each shard, and 2) how to combine the MCMC sam-

ples obtained from each sub-posterior so that we can recover the same information

that would have been obtained by sampling the full posterior distribution. Exist-

ing communication-free parallel methods proposed by Scott et al. (2013), Neiswanger

et al. (2013) and Wang and Dunson (2013) have in common the fact that the product

of the unnormalized sub-posteriors is equal to the unnormalized full posterior distribu-

tion, but differ in the strategies used to combine the samples. Specifically, Neiswanger

et al. (2013) approximate each sub-posterior using kernel density estimators, while

Wang and Dunson (2013) use the Weierstrass transformation. The popular Consen-

sus Monte Carlo (CMC) method (Scott et al., 2013) relies on a weighted averaging

approach to combine sub-posterior samples. The CMC relies on theoretical deriva-
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tions that guarantee its validity when the full-data posterior and all sub-posteriors

are Gaussian or mixtures of Gaussian.

We introduce a new communication-free parallel method, the Likelihood Inflating

Sampling Algorithm (LISA), that also relies on independent and parallel processing

of the shards by different workers to sample the sub-posterior distributions. The

latter are defined differently than in the competing approaches described above. In

this chapter, we develop techniques to combine the sub-posterior draws obtained for

LISA in the case of Bayesian Additive Regression Trees (BART) (Chipman et al.,

1998, 2010; Kapelner and Bleich, 2013) and compare the performance of our method

with CMC.

Sections 3.2 and 3.3 contain a brief review of the CMC algorithm and the de-

tailed description of LISA, respectively. Section 3.4 illustrates the potential difference

brought by LISA over CMC in a simple Bernoulli example, and includes a simple ap-

plication of LISA to linear regression models. Section 3.5 contains the justification

for a modified and improved version of LISA for BART. Numerical experiments and

the analysis of socio-economic data presented in Section 3.6 examine the computa-

tional performance of the algorithms proposed here and compare it with CMC. We

end the chapter with some ideas for future work. The Appendix contains theoretical

derivations and descriptions of the steps used when running BART.

3.2 Review of Consensus Monte Carlo

In this chapter we assume that of interest is to generate samples from π(θ|~YN), the

posterior distribution θ given the sample ~YN = {Y1, . . . , YN} of size N . The as-

sumption is that N is large enough to prohibit running a standard MCMC algorithm

in which draws from π are obtained on a single computer. We use the notation
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π(θ|~YN) ∝ f(~YN |θ)p(θ), where f(~YN |θ) is the likelihood function corresponding to

the observed data ~YN and p(θ) is the prior. Major issues with MCMC posterior sam-

pling for big data can be triggered because a) the data sample is too large to be stored

on a single computer, or b) each chain update is too costly, e.g. if π is sampled via a

Metropolis-Hastings type of algorithm each update requires N likelihood calculations.

In order to reduce the computational costs, the CMC method of Scott et al.

(2013) partitions the sample into K independent batches (i.e. ~YN = ∪Kj=1Y
(j)) and

uses the workers independently and in parallel to sample each sub-posterior. More

precisely, the j-th worker (j = 1, ..., K) will generate samples from the j-th sub-

posterior distribution defined as:

πj,CMC(θ|Y (j)) ∝ f(Y (j)|θ)p(θ)1/K .

Note that the prior for each batch is considered to be pj(θ) = [p(θ)]1/K such that

p(θ) =
∏K

j=1 pj(θ) and thus the overall full-data unnormalized posterior distribution

which we denote as πFull(θ|~YN) is equal to the product of unnormalized sub-posterior

distributions, i.e.

πFull(θ|~YN) ∝
K∏
j=1

πj,CMC(θ|Y (j)).

When the full posterior is Gaussian, the weighted averages of the sub-samples from

all batches can be used as full-data posterior draws. That is, assuming θ
(k)
1 , ..., θ

(k)
S

are S sub-samples from the kth worker then the s-th approximate full posterior draw

will be:

θs = (
∑
k

wk)
−1
∑
k

wkθ
(k)
s

where the weights wk = Σ−1k are optimal for Gaussian models with Σk = Var(θ|y(k)).

In the next section we introduce an alternative method to define the sub-posteriors
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in each batch.

3.3 Likelihood Inflating Sampling Algorithm (LISA)

LISA is an alternative to CMC that also benefits from independently processing

each batch on a different worker. Assuming that the data are i.i.d., the dataset is

randomly divided with equal probability into K batches of approximately equal size

n. We then define the sub-posterior distributions for each machine by adjusting the

likelihood function without making changes to the prior. Thus the j-th sub-posterior

distribution will be:

πj,LISA(θ|Y (j)) ∝ [f(Y (j)|θ)]Kp(θ).

Assuming the data is iid, inflating the likelihood function K-times is intuitive because

the sub-posterior from each batch of data will be a closer representation of the whole

data posterior. We expect that sub-posteriors sampled by each worker will be closer

to the full posterior thus improving the computational efficiency.

We indeed prove in a theorem below that under mild conditions, LISA’s sub-

posterior distributions are asymptotically closer to the full posterior than those pro-

duced by the CMC-type approach.

The Taylor’s series expansion for a log-posterior density log π(θ|~YN) around its

posterior mode θ̂N yields the approximation

log π(θ|~YN) ≈ log π(θ̂N |~YN)− 1

2
(θ − θ̂N)T ÎN(θ − θ̂N)

where ÎN = −∂2 log(π(θ|~YN ))
∂θ∂θT

|θ=θ̂N . Exponentiating both sides will result in

π(θ|~YN) ≈ π(θ̂N |~YN) exp

[
−1

2
(θ − θ̂N)T ÎN(θ − θ̂N)

]
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which shows asymptotic normality, i.e. Î
1/2
N (Θ − θ̂N)

D−→ N(0, I) as N → ∞ where

Θ ∼ π(.|~YN). Let θ̂
(j)
n,L and θ̂

(j)
n,C denote the j-th sub-posterior modes in LISA and

CMC, respectively. Similarly, Î
(j)
n,L and Î

(j)
n,C denote the negative second derivative of

the j-th log sub-posterior for LISA and CMC, respectively, when calculated at the

mode. Assuming K is fixed, consider the assumptions:

A1: There exist θL, θC such that if we define ε
(j)
n,L = |θ̂(j)n,L−θL| and ε

(j)
n,C = |θ̂(j)n,C−θC |,

then max
1≤j≤K

ε
(j)
n,L → 0 and max

1≤j≤K
ε
(j)
n,C → 0 w.p. 1 as n→∞.

A2: |Î(i)n,L − Î
(j)
n,L|−→ 0 and |Î(i)n,C − Î

(j)
n,C |→ 0 w.p. 1 ∀ i 6= j as n→∞.

A3: πFull, πj,LISA, and πj,CMC are unimodal distributions that have continuous

derivatives of order 2.

Theorem 2. Assume that assumptions A1 through A3 hold and if ΘFull ∼ πFull(.|~YN)

we also assume Î
1/2
N (ΘFull − θ̂N)

D−→ N(0, I) as N → ∞. If Θj,LISA ∼ πj,LISA(.|Y (j))

and Θj,CMC ∼ πj,CMC(.|Y (j)) then as N →∞

Î
1/2
N (Θj,LISA−θ̂N)

D−→ N(0, I) and Î
1/2
N (Θj,CMC−θ̂N)

D−→ N(0, KI) ∀ j ∈ {1, . . . , K}.

Proof. For simplicity, assume n = N/K is the number of observations in each batch

and consider θ to be a one-dimensional parameter. We will show Theorem 1’s state-

ments separately for LISA and CMC.

LISA: Given assumption A1, ∀ j w.p.1:

∀ ε(j)1 > 0 ∃ M1 > 0 s.t. ∀ n > M1 |θ̂(j)n,L − θL|< ε
(j)
1 (3.1)
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hence with the continuous assumption in A3, we have ∀ j w.p.1:

∀ γ(j)1 > 0 ∃ M1 > 0 s.t. ∀ n > M1

∣∣∣ log (πj,LISA(θ̂
(j)
n,L|Y

(j)))−log (πj,LISA(θL|Y (j))
∣∣∣ < γ

(j)
1

(3.2)

We know that (πFull(θ|YN))K ∝
∏K

j=1 πj,LISA(θ|Y (j)), hence:

log (πFull(θ|YN)) =
1

K

K∑
j=1

log (πj,LISA(θ|Y (j))) + c (3.3)

where c is a constant. This implies that

log (πFull(θ|YN))
∣∣∣
θ=θ̂N

=
1

K

K∑
j=1

log (πj,LISA(θ̂N |Y (j))) + c (3.4)

Since θ̂N is the full posterior mode:

[ 1

K

K∑
j=1

log (πj,LISA(θ̂N |Y (j)))
]
−
[ 1

K

K∑
j=1

log (πj,LISA(θL|Y (j)))
]
≥ 0 (3.5)

and because θ̂
(j)
n,L is the mode of πj,LISA:

1

K

K∑
j=1

log (πj,LISA(θ̂N |Y (j))) ≤ 1

K

K∑
j=1

log (πj,LISA(θ̂
(j)
n,L|Y

(j))) (3.6)

and thus from (3.5) and (3.6), we will have:

0 ≤
[ 1

K

K∑
j=1

log (πj,LISA(θ̂N |Y (j)))
]
−
[ 1

K

K∑
j=1

log (πj,LISA(θL|Y (j)))
]

≤
[ 1

K

K∑
j=1

log (πj,LISA(θ̂
(j)
n,L|Y

(j)))
]
−
[ 1

K

K∑
j=1

log (πj,LISA(θL|Y (j)))
]

(3.7)

Taking absolute values from last inequality in (3.7) and using the triangle inequality,
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we have w.p.1:

1

K

∣∣∣ K∑
j=1

[
log (πj,LISA(θ̂N |Y (j)))− log (πj,LISA(θL|Y (j)))

]∣∣∣ ≤
1

K

∣∣∣ K∑
j=1

[
log (πj,LISA(θ̂

(j)
n,L|Y

(j)))− log (πj,LISA(θL|Y (j)))
]∣∣∣ ≤

1

K

K∑
j=1

∣∣∣ log (πj,LISA(θ̂
(j)
n,L|Y

(j)))− log (πj,LISA(θL|Y (j)))
∣∣∣ ≤ 1

K

K∑
j=1

γ
(j)
1 = γ1 (3.8)

The last inequality in (3.8) is followed by (3.2). From inequality (3.8) and the fact

that the posteriors are unimodal as stated in assumption A3, we can conclude w.p.1:

|θ̂N − θL|−→ 0 as N →∞ (3.9)

From (3.9) and assumption A1, we can conclude ∀ j w.p.1:

|θ̂N − θ̂(j)n,L|−→ 0 as n→∞ (3.10)

And from (3.10) and assumption A3, wp.1, ∀ j:

∣∣∣ ∂2
∂θ2

log (πj,LISA(θ|Y (j)))
∣∣∣
θ=θ̂N

− ∂2

∂θ2
log (πj,LISA(θ|Y (j)))

∣∣∣
θ=θ̂

(j)
n,L

∣∣∣ −→ 0 as n→∞

(3.11)

In addition from (3.10), we can also conclude that for any i and j such that i 6= j:

|θ̂(i)n,L − θ̂
(j)
n,L|−→ 0 as n→∞ (3.12)

And thus benefitting from (3.11), (3.12), and the structural form of sub-posterior
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distributions in LISA (or assumption A2) for i 6= j, we have w.p.1:

∣∣∣ ∂2
∂θ2

log (πi,LISA(θ|Y (i)))
∣∣∣
θ=θ̂

(i)
n,L

− ∂2

∂θ2
log (πj,LISA(θ|Y (j)))

∣∣∣
θ=θ̂

(j)
n,L

∣∣∣ −→ 0 as n→∞

(3.13)

Now take the second derivative with respect to θ from both sides of (3.3) evaluated

at θ = θ̂N :

−ÎN :=
∂2

∂θ2
log (πFull(θ|YN))

∣∣∣
θ=θ̂N

=
1

K

K∑
j=1

∂2

∂θ2
log (πj,LISA(θ|Y (j)))

∣∣∣
θ=θ̂N

(3.14)

Denoting:

−Î(j)n,L :=
∂2

∂θ2
log (πj,LISA(θ|Y (j)))

∣∣∣
θ=θ̂

(j)
n,L

(3.15)

Using (3.11), (3.13), and (3.14), will result in:

|ÎN − Î(j)n,L|=
∣∣∣ ∂2
∂θ2

log (πj,LISA(θ|Y (j)))|
θ=θ̂

(j)
n,L
− 1

K

K∑
i=1

∂2

∂θ2
log (πi,LISA(θ|Y (i)))|θ=θ̂N

∣∣∣
≤ 1

K

∣∣∣ ∂2
∂θ2

log (πj,LISA(θ|Y (j)))|
θ=θ̂

(j)
n,L
− ∂2

∂θ2
log (πj,LISA(θ|Y (j)))|θ=θ̂N

∣∣∣+
1

K

∣∣∣∑
i 6=j

[ ∂2
∂θ2

log (πi,LISA(θ|Y (i)))|θ=θ̂N −
∂2

∂θ2
log (πj,LISA(θ|Y (j)))|

θ=θ̂
(j)
n,L

]∣∣∣ −→ 0

(3.16)

w.p.1 ∀ j.



Chapter 3. Likelihood Inflating Sampling Algorithm (LISA) 25

CMC: In CMC, since πFull(θ|YN) ∝
∏K

j=1 πj,CMC(θ|Y (j)), we will have

log (πFull(θ|YN)) =
K∑
j=1

log (πj,CMC(θ|Y (j))) + c (3.17)

where c is a constant. Thus, using A1 through A3 with a similar proof as in LISA,

we can show that w.p.1:

|θ̂N − θC |−→ 0 as N →∞ (3.18)

and hence ∀ j w.p.1:

|θ̂N − θ̂(j)n,C |−→ 0 as n→∞ (3.19)

|θ̂(i)n,C − θ̂
(j)
n,C |−→ 0 as n→∞ for i 6= j (3.20)

Similarly, from (3.19) and assumption A3, wp.1, ∀ j:

∣∣∣ ∂2
∂θ2

log (πj,CMC(θ|Y (j)))
∣∣∣
θ=θ̂N

− ∂2

∂θ2
log (πj,CMC(θ|Y (j)))

∣∣∣
θ=θ̂

(j)
n,C

∣∣∣ −→ 0 as n→∞

(3.21)

And again benefitting from (3.20), (3.21), and the structural form of sub-posterior

distributions in CMC (or assumption A2), for i 6= j, we have w.p.1:

∣∣∣ ∂2
∂θ2

log (πi,CMC(θ|Y (i)))
∣∣∣
θ=θ̂

(i)
n,C

− ∂2

∂θ2
log (πj,CMC(θ|Y (j)))

∣∣∣
θ=θ̂

(j)
n,C

∣∣∣ −→ 0 as n→∞

(3.22)

Now taking the second derivative with respect to θ from both sides of (3.17)
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evaluated at θ = θ̂N :

−ÎN :=
∂2

∂θ2
log (πFull(θ|YN))

∣∣∣
θ=θ̂N

=
K∑
j=1

∂2

∂θ2
log (πj,CMC(θ|Y (j)))

∣∣∣
θ=θ̂N

(3.23)

Denoting:

−Î(j)n,C :=
∂2

∂θ2
log (πj,CMC(θ|Y (j)))

∣∣∣
θ=θ̂

(j)
n,C

(3.24)

Using (3.21), (3.22), and (3.23), will similarly result in:

| ÎN
K
− Î(j)n,C |=

∣∣∣ ∂2
∂θ2

log (πj,CMC(θ|Y (j)))|
θ=θ̂

(j)
n,C
− 1

K

K∑
i=1

∂2

∂θ2
log (πi,CMC(θ|Y (i)))|θ=θ̂N

∣∣∣
≤ 1

K

∣∣∣ ∂2
∂θ2

log (πj,CMC(θ|Y (j)))|
θ=θ̂

(j)
n,C
− ∂2

∂θ2
log (πj,CMC(θ|Y (j)))|θ=θ̂N

∣∣∣+
1

K

∣∣∣∑
i 6=j

[ ∂2
∂θ2

log (πi,CMC(θ|Y (i)))|θ=θ̂N −
∂2

∂θ2
log (πj,CMC(θ|Y (j)))|

θ=θ̂
(j)
n,C

]∣∣∣ −→ 0

(3.25)

w.p.1 ∀ j.

Theorem 1 shows the difference between sub-posterior distributions for CMC and

LISA, with LISA’s sub-posterior distributions being asymptotically similar to the full

posterior distribution. This suggests that draws from LISA sub-posteriors can be

combined using uniform weights.

Remarks:

1. When data are iid we expect the shards to become more and more similar as

N (and thus n = N/K) increases and assumption A1 is expected to hold for
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general models.

2. Assumption A2 in Theorem 1 holds due to the structural form of sub-posteriors

in LISA and CMC.

3. The validity of using uniform weights with LISA’s sub-posterior draws is jus-

tified asymptotically, but we will see that this approximation can be exact in

some examples, e.g. for a Bernoulli model with balanced batch samples, while

in others modified weights can improve the performance of the sampler. In this

respect LISA is similar to other embarrassingly parallel strategies where one

must carefully consider the model of interest in order to find the best way to

combine the sub-posterior samples.

In the next section we will illustrate LISA in some simple examples and compare

its performance to the full-data posterior sampling as well as CMC.

3.4 Motivating Examples

In this section we examine some simple examples where theoretical derivations can

be carried out in detail. We emphasize the difference between LISA and CMC.

3.4.1 Bernoulli Random Variables

Consider y1, ..., yN to be N i.i.d. Bernoulli random variables with parameter θ. Hence,

we consider a prior p(θ) = Beta(a, b). Assuming that we know little about the size

of θ we set a = b = 1 which corresponds to a U(0, 1) prior. The resulting full-data

posterior πFull(θ|~YN) is Beta(S+a,N −S+ b) where S =
∑N

i=1 yi is the total number

of ones. Suppose we divide the data into K batches with Sj number of ones in batch

j, such that Sj = S
K
∀ j ∈ {1, .., K}, i.e. the number of 1’s are divided equally
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between batches. Then the jth sub-posterior based on batch-data of size n = N
K

for

each method will be:

CMC:

πj,CMC(θ|Y (j)) = Beta

(
Sj +

a− 1

K
+ 1, n− Sj +

b− 1

K
+ 1

)
= Beta

(
S

K
+
a− 1

K
+ 1,

N − S
K

+
b− 1

K
+ 1

)

LISA:

πj,LISA(θ|Y (j)) = Beta(SjK + a, (n− Sj)K + b)

= Beta(S + a,N − S + b)

which implies

πj,LISA(θ|Y (j)) = πFull(θ|~YN) ∀ j ∈ {1, ..., K}.

In this simple case any one of LISA ’s sub-posterior distributions is equal to the full

posterior distribution if the batches are balanced, i.e. the number of 1’s are equally

split across all batches. Thus, LISA’s sub-samples from any batch will represent

correctly the full posterior. On the other hand, the draws from the CMC sub-posterior

distributions will need to be recombined to obtain a representative sample from the

true full posterior πFull(θ|~YN).

However, when the number of ones is unequally distributed among the batches

it is not easy to pick the winner between CMC and LISA as both require a careful

weighting of each batch sub-posterior samples.

In the remaining part of this chapter, we will mainly focus on the performance of
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LISA when it is applied to the Bayesian Additive Regression Trees (BART) model.

Interestingly, we discover that using a minor modification inspired by running LISA on

the simpler Bayesian Linear Regression model we can approximate the full posterior.

The idea behind the modification is described in the next section.

3.4.2 Bayesian Linear Regression

Consider a standard linear regression model

Y = Xβ + ε (3.26)

where β ∈ Rp, X ∈ RN×p and Y, ε ∈ RN with ε ∼ NN(0, σ2IN). To simplify the

presentation we consider the improper prior

p(β, σ2) ∝ σ−2. (3.27)

Straightforward calculations show that the conditional posterior distributions for

the full data are

πFull(σ
2|Y,X) = Inv-Gamma

(
N − p

2
,
s2(N − p)

2

)
(3.28)

πFull(β|σ2, Y,X) = N(β̂, σ2(XTX)−1) (3.29)

where β̂ = (XTX)−1XTY and s2 = (Y−Xβ̂)T (Y−Xβ̂)
N−p .

A Monte Carlo sampler designed to sample from πFull(β, σ
2|Y,X) will iteratively

sample σ2 using (3.28) and then β via (3.29). If we denote βFull the r.v. with density

πFull(β|Y,X) then, using the iterative formulas for conditional mean and variance we
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obtain

E[βFull|Y,X] = (XTX)−1XTY

and

Var(βFull|Y,X) = (XTX)−1
(N − p)/2

(N − p)/2−1
s2 = (XTX)−1s2 +O(N−1). (3.30)

We examine below the statistical properties of the samples produced by LISA. If

the data are divided into K equal batches of size n = N/K, let us denote Y (j) and

X(j) the response vector and model matrix from the jth batch, respectively.

With the prior given in (3.27), the sub-posteriors produced by LISA have the

following conditional densities

πj(σ
2|Y (j), X(j)) = Inv-Gamma

(
N − p

2
,
Ks2j(n− p)

2

)
(3.31)

πj(β|σ2, Y (j), X(j)) = N(β̂j,
σ2

K
(X(j) TX(j))−1), (3.32)

where β̂j = (X(j) TX(j))−1X(j) TY (j) and s2j =
(Y (j)−X(j)β̂j)

T (Y (j)−X(j)β̂j)

n−p for all 1 ≤ j ≤

K.

Similarly, a Monte Carlo sampler designed to sample from πj(β, σ
2|Y (j), X(j)) will

iteratively sample σ2 from (3.31) and then β from (3.32). It can be shown using the

iterative formulas for conditional means and variances that

E[β|Y (j), X(j)] = β̂j

and

Var(β|Y (j), X(j)) = (X(j) TX(j))−1
s2j(n− p)/2

(N − p)/2− 1
= (X(j) TX(j))−1

s2j(n− p)
(N − p)

+O(N−1).
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In order to combine the sub-posterior samples we propose using the weighted

average

βLISA = (
K∑
j=1

Wj)
−1

K∑
j=1

Wjβj, (3.33)

where βj ∼ πj(β|Y (j), X(j)) and Wj = X(j) TX(j)

σ2 . Since
∑K

j=1X
(j) TX(j) = XTX we

get

E[βLISA|Y,X] = β̂ = (XTX)−1XTY (3.34)

and

Var(βLISA|Y,X) = (XTX)−1
n− p
N − p

[
K∑
j=1

s2j(X
(j) TX(j))

]
(XTX)−1 ≈ (XTX)−1

n− p
N − p

s2,

(3.35)

where the last approximation in (3.35) is based on the assumption that s2j ≈ s2 as

both are unbiased estimators for σ2 based on n and, respectively, N observations. It

is apparent that the variance computed in (3.35) is roughly K times smaller than the

target given in (3.30). In order to avoid underestimating the variance of the posterior

distribution we propose a modified LISA sampling algorithm which consists of the

following steps:

σ2 ∼ Inv-Gamma

(
N − p

2
,
Ks2j(n− p)

2

)
σ̃ =

√
Kσ

β̃ ∼ N(β̂j,
σ̃2

K
(X(j) TX(j))−1) = N(β̂j, σ

2(X(j) TX(j))−1).

The intermediate step simply adjusts the variance samples so that

Var(β̃|Y (j), X(j)) = (X(j) TX(j))−1
s2jK(n− p)/2
(N − p)/2− 1

= (X(j) TX(j))−1
s2jK(n− p)

(N − p)
+O(N−1).
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In turn, if we define

βmodLISA = (
K∑
j=1

Wj)
−1

K∑
j=1

Wjβ̃j, (3.36)

then E[βmodLISA|Y,X] = (XTX)−1XTY and

Var(βmodLISA|Y,X) = (XTX)−1
K(n− p)
N − p

[
K∑
j=1

s2j(X
(j) TX(j))

]
(XTX)−1 ≈ (XTX)−1

K(n− p)
N − p

s2.

(3.37)

While both (3.36) and (3.33) produce samples that have the correct mean, from

equations (3.30), (3.35) and (3.37) we can see that the weighted average of the mod-

ified LISA samples have the variance closer to the desired target.

In the next section, we will examine LISA’s performance on a more complex model,

the Bayesian Additive Regression Trees (BART). The discussion above will guide our

construction of a modified version of LISA for BART.

3.5 Bayesian Additive Regression Trees (BART)

Consider the nonparametric regression model:

yi = f(xi) + εi, εi ∼ N (0, σ2) i.i.d.

where xi = (xi1, ..., xip) is a p-dimensional vector of inputs and f is approximated by

a sum of m regression trees:

f(x) ≈
m∑
j=1

g(x;Tj,Mj)

where Tj denotes a binary tree consisting of a set of interior node decision rules and

a set of terminal nodes. Mj = {µ1j, ..., µbj} is the set of parameter values associated
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η

ηL

µ1 µ2

ηR

ηRL

µ3 µ4

µ5

X3 ≤ 2 X3 > 2

X1 ≤ 5

X2 ≤ 1 X2 > 1

X3 ≤ 7 X3 > 7

X1 > 5

Figure 3.1: A binary tree with internal nodes η, ηL, ηR, and ηRL that maps each
x = (x1, x2, x3) to one of its five terminal nodes according to the rules, and lastly
assigns parameter µi.

with the b terminal nodes of Tj. In addition, g(x;Tj,Mj) is the function that maps

each x to a µij ∈ Mj. Figure 3.1 illustrates such binary trees. The regression model

is then approximated by a sum-of-trees model

yi =
m∑
j=1

g(xi;Tj,Mj) + εi , εi
iid∼ N (0, σ2)

Let θ := ((T1,M1), ..., (Tm,Mm), σ2) denote the vector of model parameters. Below,

we briefly describe the prior specifications stated in Chipman et al. (2010) and Chip-

man et al. (1998).

Prior Specifications:

1. Prior Independence and Symmetry:

p((T1,M1), ..., (Tm,Mm), σ) = [
∏
j

p(Mj|Tj)p(Tj)]p(σ)
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where p(Mj|Tj) =
∏

i p(µij|Tj).

2. Recommended number of trees: m=200 (Chipman et al., 2010) and m=50

(Kapelner and Bleich, 2013)

3. Tree prior p(Tj), is characterised by three aspects:

a. The probability that a node at depth d = 0, 1, ... is non-terminal, which

is assumed to have the form α(1 + d)−β, where α ∈ (0, 1) and β ≥ 0.

(recommended values are α = 0.95 and β = 2)

b. The distribution on the splitting variable assignments at each interior node

which is recommended to have a uniform distribution.

c. The distribution on the splitting rule assignment in each interior node,

conditional on the splitting variable which is also recommended to have a

uniform distribution.

4. The conditional prior for µij is N (µµ, σ
2
µ) such that:

 mµµ − k
√
mσµ = ymin

mµµ + k
√
mσµ = ymax

with k = 2 recommended.

5. The prior for σ2 is Inv-Gamma(ν
2
, νλ

2
) where ν = 3 is recommended and λ is

chosen such that p(σ < σ̂) = q with recommended q = 0.9 and sample variance

σ̂.
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Hence the posterior distribution will have the form:

π(θ) = π(θ|Y,X) ∝
{

(σ2)
−n

2 e−
1

2σ2

∑n
i=1 (yi−

∑m
j=1 g(xi;Mj ,Tj))

2
}

︸ ︷︷ ︸
Likelihood

×

{
(σ2)

− ν
2
−1
e−

νλ
2σ2︸ ︷︷ ︸

Prior of σ2

[ m∏
j=1

σ−bjµ (2π)−
bj
2 e
− 1

2σ2µ

∑bj
k=1 (µkj−µµ)

2

p(Tj)
]}

︸ ︷︷ ︸
Prior

. (3.38)

Gibbs Sampling is used to sample from this posterior distribution. The algorithm

iterates between the following steps:

1. σ2 | (T1,M1), ..., (Tm,Mm), Y,X ∝ Inv-Gamma(ρ, γ)

where ρ = ν+n
2

and γ = 1
2

[
∑n

i=1 (yi −
∑m

j=1 g(xi;Mj, Tj))
2

+ λν ].

2. (Tj,Mj) | T(j),M(j), σ, Y,X which is the same as drawing from the conditional

(Tj,Mj) | Rj, σ where T(j) denotes all trees except the j-th tree, and residual

Rj is defined as:

Rj = g(x; ,Mj, Tj) + ε = y −
∑
k 6=j

g(x;Mk, Tk).

The sampling of (Tj,Mj) is performed in two steps:

a. Tj | Rj, σ and

b. Mj | Tj, Rj, σ.

Step b involves sampling from each component of Mj using

µij | Tj, Rj, σ ∼ N

 σ2

σ2
µ
µµ + niR̄j(i)

σ2

σ2
µ

+ ni
,

σ2

σ2

σ2
µ

+ ni


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where R̄j(i) denotes the average residual (computed without tree j) at terminal

node i with total number of observations ni. The conditional density of Tj in

step a can be expressed as:

p(Tj | Rj, σ) ∝ p(Tj)

∫
p(Rj | Mj, Tj, σ) p(Mj | Tj, σ) dMj. (3.39)

The Metropolis-Hastings (MH) algorithm is then applied to draw Tj from (4.1) with

four different proposal moves on trees:

• GROW: growing a terminal node (with probability 0.25);

• PRUNE: pruning a pair of terminal nodes (with probability 0.25);

• CHANGE: changing a non-terminal rule (with probability 0.4) (Kapelner and

Bleich, 2013, change rules only for parent nodes with terminal children);

• SWAP: swapping a rule between parent and child (with probability 0.1) (This

proposal move was removed by Kapelner and Bleich, 2013).

Detailed derivations involving the Metropolis-Hastings acceptance ratios are described

in section 3.8.

Two existing packages in R, “BayesTree” and “bartMachine”, can be used to run

BART on any dataset, but as the sample size increases, these packages tend to run

slower. In these situations we expect methods such as LISA or CMC to become

useful, and for a fair illustration of the advantages gained we have used our own R

implementation of BART and applied the same structure to implement LISA and

CMC algorithm for BART. The Metropolis-Hastings acceptance ratios for LISA and

CMC are also reported in the Appendix.
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As discussed by Scott et al. (2013), the approximation to the posterior produced

by the CMC algorithm can be poor. Thus, for comparison reasons, we applied both

LISA and CMC to BART using a simulated dataset (described further) with K = 30

batches. Given Theorem 1, since LISA’s sub-posterior distributions are asymptot-

ically equivalent to the full posterior distribution, we examined its performance by

uniformly taking sub-samples from all its batches as an approximation to full poste-

rior samples. We will see further that LISA with uniform weights produces higher

prediction accuracy compared to CMC. However, they both perform poorly in ap-

proximating the posterior samples as they generate larger trees and under-estimate

σ2, which results in over-dispersed posterior distributions.

The following sub-section discusses a modified version of LISA for BART which

will have significant improvement in performance.

3.5.1 Modified LISA for BART

The under estimation of σ2 when applying LISA to BART is similar to the problem

encountered when using LISA for the linear regression model discussed in Section

3.4.2. This is not a coincidence since BART is also a linear regression model, albeit one

where the set of independent variables is determined through a highly sophisticated

process. We will show below that when applying a similar variance adjustment to the

one discussed in Section 3.4.2, the Modified LISA (modLISA) for BART will exhibit

superior computational and statistical efficiency compared to either LISA or CMC.

Just like in the regression model we “correct” the sampling algorithm by adjust-

ing the residual variance. We start with the conditional distribution of tree j from
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expression (4.1) which takes the form

p(Tj | Rj, σ) ∝ p(Tj)

∫
p(Rj | Mj, Tj, σ) p(Mj | Tj, σ) dMj.

Note that only the conditional distribution of the residuals, Rj | Mj, Tj, σ is affected

by the modifications brought by LISA. The Metropolis-Hastings acceptance ratios

for tree proposals contain three parts: the transition ratio, the likelihood ratio and

the tree structure ratio. The modifications brought by LISA will influence only the

likelihood ratio which is constructed from the conditional distributions of residuals.

Consider the likelihood ratio for GROW proposal in LISA (full details are presented

in the Appendix)

P (R | T∗, σ2)

P (R | T, σ2)
=

√
σ2(σ2 +Knlσ2

µ)

(σ2 +KnlLσ
2
µ)(σ2 +KnlRσ

2
µ)
×

exp
{K2σ2

µ

2σ2

[(
∑nlL

i=1RlL,i)
2

σ2 +KnlLσ
2
µ

+
(
∑nlR

i=1 RlR,i)
2

σ2 +KnlRσ
2
µ

− (
∑nl

i=1Rl,i)
2

σ2 +Knlσ2
µ

]}
(3.40)

where nl is the total number of observations from batch-data that end up in terminal

node l. The newly grown tree, T∗, splits terminal node l into two terminal nodes (chil-

dren) lL and lR, which will also divide nl to nlL and nlR which are the corresponding

number of observations in each new terminal node. By factoring out K in (3.40), we
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can rewrite it as

P (R | T∗, σ2)

P (R | T, σ2)
=

√√√√ σ2

K
(σ

2

K
+ nlσ2

µ)

(σ
2

K
+ nlLσ

2
µ)(σ

2

K
+ nlRσ

2
µ)
×

exp
{ σ2

µ

2σ
2

K

[(
∑nlL

i=1RlL,i)
2

σ2

K
+ nlLσ

2
µ

+
(
∑nlR

i=1 RlR,i)
2

σ2

K
+ nlRσ

2
µ

− (
∑nl

i=1Rl,i)
2

σ2

K
+ nlσ2

µ

]}
. (3.41)

Expression (3.41) shows a similar residual variance that is K times smaller in each

batch, and hence following the discussion in Section 3.4.2, to achieve similar variance,

we need to modify LISA for BART by adding the intermediate step σ̃2 = Kσ2 when

updating trees in each batch, and then taking a weighted average combination of sub-

samples (similar to Bayesian linear regression). As in Section 3.4.2, we don’t apply

any changes when updating σ2. All our numerical experiments show that modLISA

also generates accurate predictions in BART, since the modification corrects the bias

in the posterior draws of σ2 and properly calibrates the size of the trees.

The BART algorithm will split the covariate space into disjoint subsets and on

each subset a regression with only an intercept is fitted. Therefore, as suggested

by the discussion in 3.4.2 the weight assigned to each batch will be proportional to

the inverse sample variance in that batch. In the following sections we examine the

improvement brought by modLISA when compared to LISA and CMC.
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3.6 Numerical Experiments

3.6.1 The Friedman’s function

We have simulated data of size N = 20, 000 from Friedman’s test function (Friedman,

1991)

f(x) = 10 sin(πx1x2) + 20(x3 − 0.5)2 + 10x4 + 5x5,

where the covariates x = (x1, . . . , x10) are simulated independently from a U(0, 1)

and y ∼ N (f(x), σ2) with σ2 = 9. Note that five of the ten covariates are unrelated

to the response variable. We have also generated test data containing 5000 cases.

We apply BART to this simulated dataset using the default hyperparameters stated

in Section 3.5 with m = 50 to generate posterior draws of (T,M, σ2) that, in turn,

yield posterior draws for f(x) using the approximation f̂(x) ≈
∑m

j=1 g(x; T̂j, M̂j)

for each x = (x1, . . . , x10). Since in this case the true f is known, one can com-

pute the root mean squared error (RMSE) using average posterior draws of f̂(x)

for each x (i.e. f̂(x)), as an estimate to measure its performance, i.e. RMSE

=

√
1
N

∑N
i=1 (f(xi)− f̂(xi))2. It is known that SingleMachine BART may mix poorly

when it is run on an extremely large dataset with small residual variance. However

since the data simulated is of reasonable size and σ is not very small the SingleMa-

chine BART is expected to be a good benchmark for comparison (see discussion in

Pratola, 2016).

Comparison of modLISA with Competing Methods

We have implemented modLISA, LISA, and CMC for BART with K = 30 batches

on the simulated data for 5000 iterations (and 4000 burn-in) with a total of 1000 pos-

terior draws. Table 3.1 shows results from all methods including the SingleMachine
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which runs BART on the full dataset using only one machine. Results are averaged

over three different realizations of train and test data, and include the Train and Test

RMSE for each method, along with tree sizes (average maximum tree size from all

machines), σ2 estimates and their 95% Credible Intervals (CI). The summaries pre-

sented in Table 3.1 show that although LISA has better prediction performance than

CMC, it does a terrible job at estimating σ2, its estimate being orders of magnitude

smaller than the one produced by CMC. CMC and LISA both generate larger trees

compared to SingleMachine, with CMC generating trees that are ten times larger

than LISA’s. One can see that modLISA with weighted averages dominates both

CMC and LISA across all performance indicators since it yields the smallest RMSE,

the smallest tree size, and less biased σ2 estimates. Generally, modLISA generates

results that are by far the closest to the ones produced by SingleMachine.

Table 3.1: Comparing Train & Test RMSE, tree sizes, and average post burn-in σ̂2

with 95% CI in each method for K = 30 to SingleMachine BART (all results are
averaged over three different realizations of data).

Method TrainRMSE TestRMSE Tree Nodes Avg σ̂2 95% CI for σ2

CMC 2.73 2.94 602 1.91 [1.45 , 2.88]
LISA (unif wgh) 1.18 1.19 55 0.001 [0.0009 , 0.0011]

modLISA (wgh avg) 0.57 0.59 7 7.97 [7.87 , 8.08]
SingleMachine 0.55 0.56 7 9.04 [8.85 , 9.21]

Table 3.2: Average acceptance rates of tree proposal moves.

Method GROW PRUNE CHANGE

CMC 21% 0.03% 34%
LISA 1.8% 0.5% 1.6%

modLISA 20% 26% 19%
SingleMachine 9% 10% 6%

The size of trees produced by each method is in sync with the average acceptance
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rates of each tree proposal move shown in Table 3.2. It is noticeable the difference

between CMC and LISA ’s average acceptance rates between growing a tree and

pruning one. However, the prior plays an important role in determining the tree sizes

and since in CMC the prior is weakened by a power of 1/K, this difference may become

more apparent as observed in Table 3.2. On the other hand, modLISA has overall

larger acceptance rates with the smallest relative absolute difference between growing

and pruning probabilities compared to LISA and CMC (6/26 = 23.1% for modLISA,

99.9% for CMC, and 72.2% for LISA) and is closest to SingleMachine (10%). Overall,

modLISA induced a significant reduction in tree sizes by preserving a balance between

growing and pruning trees which also improves exploring the posterior distribution.

Table 3.3: Average coverage for 95% credible intervals constructed for training (Train-
CredCov) and test (TestCredCov) data and 95% prediction intervals constructed for
training (TrainPredCov) and test (TestPredCov) data. The prediction interval cov-
erage is estimated based on 1000 iid samples, N = 20, 000 and K = 30. All results
are averaged over three different realizations of data.

Method TrainPredCov TestPredCov TrainCredCov TestCredCov

CMC 45.71 % 47.83 % 81.95 % 99.99 %
LISA (unif wgh) 1.54 % 1.54 % 100 % 100 %

modLISA (wgh avg) 92.93 % 92.91 % 60.88 % 58.45 %
SingleMachine 94.67 % 94.65 % 71.58 % 71.54 %

For a more clear comparison of the methods, Table 3.3 shows the average coverage

of 95% credible intervals (CI) for predictors f(x) and 95% prediction intervals (PI)

for future responses y. The calculations are made for the values of y and f(x) in the

training and test data sets.

The coverage for CI is given by the averaging for all training or test data of

#{f(xi) ∈ Îf(xi) : 1 ≤ i ≤ N}
N
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where Îf (xi) is the CI for f(xi) estimated based on the MCMC draws from π.

The coverage of the PI corresponding to a pair (yi, f(xi)) is given by the proportion

of 1000 iid samples generated from the true generative model N(f(xi), σ
2) that fall

between its limits, i.e. the average over training or test data of

#{ỹj ∈ Ĵyi : ỹj
iid∼ N(f(xi), σ

2)1 ≤ j ≤ 1000}
1000

,

where Ĵyi is the PI for yi. The PI coverage in modLISA and SingleMachine are very

close to nominal and vastly outperform the PI’s produced using LISA or CMC.

One can see that coverages of the CI built via CMC and LISA are high, which

is not surprising since both algorithms produce over-dispersed approximations to

the conditional distributions of f(x). Our observation is that the CI for LISA and

CMC are too wide to be practically useful. Also, modLISA and SingleMachine have

much lower CI coverage than nominal which is also expected due to the systematic

bias induced by the discrepancy between the functional forms of the true predictor

(continuous) and of the one fitted by BART (piecewise constant). Thus, the CI for

f(x) will exhibit poor coverage as they are centered around a biased estimate of f(x).

In order to verify that this is indeed the case we have generated a dataset of size

20,000 from the piecewise constant function:

f(x) = 1[0,0.2)(x1) + 2 · 1[0.2,0.4)(x1) + 3 · 1[0.4,0.6)(x1) + 4 · 1[0.6,0.8)(x1) + 5 · 1[0.8,1)(x1)

where 1[a,b)(x) = 1 if x ∈ [a, b) and 0 otherwise, x = (x1, . . . , x10) ∈ (0, 1)10 is a ten-

dimensional input vector, with xi ∼ Uniform(0, 1), and y ∼ N (f(x), 9). Additional

5000 data have also been simulated as test cases. Table 3.4 summarizes the analysis

with K = 30 and confirms a sharp decrease in RMSEs even though the noise has the
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same variance σ2 = 9. We note that the coverages of CI build under modLISA and

SingleMachine are much higher than with Friedman’s function.

Table 3.4: Comparing test data RMSE and coverage of 95% credible intervals for
piecewise f(x) with N = 20, 000 and K = 30.

Method TestRMSE TestCredCov

CMC 1.35 100 %
LISA (unif wgh) 0.94 100 %

modLISA (wgh avg) 0.24 90.16 %
SingleMachine 0.15 98.76 %

Comparison with SingleMachine BART

In order to investigate the closeness of posterior samples in each method to the Sin-

gleMachine BART, we have plotted in Figure 3.2 the empirical distribution functions

of f̂(x) generated from each algorithm for two pairs of observations in the training

and test dataset. One can see that the empirical distribution functions in LISA and

CMC don’t match the ones from SingleMachine, and look over-dispersed. However,

the empirical distribution functions in modLISA weighted average look much closer

to SingleMachine with a slight shift in location.

In order to assess the performance of the sampling procedures considered, we use

the Cramér-von Mises distance to assess the difference between empirical distribution

functions. This distance is defined to be ω2 =
∫∞
−∞(Fn(x)−F (x))2dF (x) where in our

case we assume F (x) = FBART (x) to be the empirical distribution function generated

from posterior samples in SingleMachine BART and Fn(x) is similarly computed for

the alternative method that is considered for comparison.

Using a set of T = 1000 equispaced points, we compute the average squared

difference between the single machine and all other alternative methods for each



Chapter 3. Likelihood Inflating Sampling Algorithm (LISA) 45

0 10 20 30

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

x

Fn
(x

)

SingleMachine
modLISA (wgh avg)
LISA (unif wgh)
CMC

−10 0 10 20 30

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

x
Fn

(x
)

SingleMachine
modLISA (wgh avg)
LISA (unif wgh)
CMC

0 5 10 15 20 25 30 35

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

x

Fn
(x

)

SingleMachine
modLISA (wgh avg)
LISA (unif wgh)
CMC

0 5 10 15 20

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

x

Fn
(x

)

SingleMachine
modLISA (wgh avg)
LISA (unif wgh)
CMC

Figure 3.2: Empirical distribution functions of f̂(x) obtained from MCMC samples
produced by modLISA (red line), LISA (green line), CMC (blue line), and SingleMa-
chine BART (black line) for two different pairs of training and test data. In this
example K = 30. Top left: Test x∗ = 2000, f(x∗) = 14.4. Top right: Test x∗ = 2000,
f(x∗) = 14.4. Bottom left: Training x = 999, f(x) = 19.8. Bottom right: Training
x = 2001, f(x) = 11.2.
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Figure 3.3: Fitted polynomial trends (for both train and test data) of average squared
difference between empirical distribution functions of SingleMachine and the follow-
ing: (a) CMC for training (blue solid line) and test (blue dot dashed line) data (top left
panel), (b) LISA with uniform weights for training (green solid line) and test (green
dot dashed line) data (top right panel) and (c) modLISA with weighted average for
training (red solid line) and test (red dot dashed line) data (bottom panel). The
difference is plotted against the mean prediction f̂(x) produced by SingleMachine.
Grey areas represent the 95% credible intervals constructed from 100 independent
replicates.
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observation in the dataset. To illustrate, for LISA we estimate ω using ω̂2
LISA =

1
T

∑T
j=1(FLISA(tj)− FBART (tj))

2.

Figure 3.3 is comparing the fitted polynomial trends of ω̂2 (in each method) versus

mean predicted f̂(x) in SingleMachine with their corresponding 95% credible regions

(for both train and test data). Clearly in LISA and modLISA, there are small varia-

tions around the trends with not much changes seen in values of ω̂2 among different

mean predicted f̂(x), which specifies consistency within different train or test ob-

servations. In addition, the gap between trends from train and test data indicate

that the average distance between LISA/modLISA and SingleMachine’s distributions

are smaller for test data compared to train data. Furthermore, there are still small

variations seen around CMC’s trends, but with slight changes in values of ω̂2 among

different mean predicted f̂(x), especially for the test dataset which indicates incon-

sistency within different observations.

To emphasize the difference in performance between modLISA and its competitors,

Figure 3.4 shows all the fitted polynomial trends without their credible regions for

the train and test data. One can see that there is a large gap between ω̂2 values in

modLISA weighted average and other alternative methods (for both train and test

data), with modLISA having the lowest value. Thus the weighted average of samples

produced by modLISA yields the closest results to SingleMachine. This can also be

justified by comparing average ω̂2 over all train observations for each trend which

is calculated to be 0.013 for modLISA that is significantly smaller than 0.059, 0.048

for CMC, and LISA, respectively. Similarly, the average ω̂2 over test data are 0.008,

0.047, and 0.031 for modLISA, CMC, and LISA respectively, which again the smallest

value is seen in modLISA. We conclude that modLISA weighted average sample yields

the closest representation of the BART posterior and exhibits the best performance

compared to alternative methods.
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Figure 3.4: Comparing fitted polynomial trends of average squared difference in em-
pirical distribution functions of each method and SingleMachine, as functions of mean
predicted f̂(x) in SingleMachine for train (left panel) and test data (right panel).
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At last we compare run time per iteration for each method so we can draw some

conclusions regarding the overall efficiency.

Run Time Comparisons

The main goal of methods such as LISA and CMC was to reduce run times regarding

big data applications. Here we have compared average run times per iteration (from

one processor) for each method using our implementation of BART. All computations

were conducted on a cluster of Intelr Xeonr CPUs (@ 3.20GHz).

Table 3.5: Running times for CMC, LISA, modLISA and SingleMachine when K =
30.

Method Avg Time per iteration (Secs) Speed-up

CMC 11.99 31%
LISA 5.04 71%

modLISA 1.81 90%
SingleMachine 17.28 —–

As it is seen in Table 3.5, modLISA, LISA and CMC with K = 30 are all faster

compared to SingleMachine since they are influenced by the smaller subsets of data

used. However, since LISA and CMC generate much larger trees, they become slower

compared to modLISA which is the fastest method. We have also reported the speed-

up percentages with respect to SingleMachine, which is defined to be (1− t/17.28)×

100% where t is the average time per iteration in each method. Clearly, CMC shows

the smallest speed-up (31%) while modLISA has the highest (90%).
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3.6.2 Additional Considerations

Effect of N (number of training data) on Posterior Accuracy

To see how the number of training data (N) can effect the posterior accuracy, we

have examined the performance of all methods when N is increased to 60,000 while

we keep the same number of batches K = 30. Tables 3.6 shows the results of 1000

posterior samples generated from fitting the BART model to the training set with

additional 5000 data considered as test cases.

Table 3.6: Tree sizes, estimates and 95% credible intervals for σ2, RMSE for training
data (TrainRMSE) of size N = 60, 000 and for test data (TestRMSE) of size 5, 000
for each method run with K = 30.

Method TrainRMSE TestRMSE Tree Nodes Avg σ̂2 95% CI for σ2

CMC 2.85 5.56 983 0.48 [0.30 , 0.66]
LISA (unif wgh) 1.17 1.19 125 0.0003 [0.00031 , 0.00035]

modLISA (wgh avg) 0.41 0.42 7 8.82 [8.79 , 8.86]
SingleMachine 0.41 0.41 11 9.04 [8.94 , 9.16]

Table 3.7: Average coverage for 95% credible intervals constructed for training (Train-
CredCov) and test (TestCredCov) data and 95% prediction intervals constructed for
training (TrainPredCov) and test (TestPredCov) data. The prediction interval cov-
erage is estimated based on 1000 iid samples, N = 60, 000 and K = 30.

Method TrainPredCov TestPredCov TrainCredCov TestCredCov

CMC 25.74 % 17.28 % 51.37 % 85.92 %
LISA (unif wgh) 0.84 % 0.84 % 100 % 100 %

modLISA (wgh avg) 94.54 % 94.53 % 53.68 % 52.68 %
SingleMachine 94.83 % 94.84 % 57.79 % 58.90 %

Unsurprisingly, Tables 3.1 and 3.6 show that the RMSE for training and test data

in LISA, modLISA, and SingleMachine decrease as N increases. More importantly,

while LISA and CMC estimates for σ2 get worse, modLISA generates more accurate

estimates of σ2 with a larger N .
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Trees have a stable size in modLISA, but tend to grow larger in CMC and LISA,

as N increases. Note that tree size has remained unchanged for modLISA while for

SingleMachine it has slightly increased; this is reasonable for two possible reasons,

one that the tree sizes are averaged over all machines and hence error can be present

and other is that modLISA is running on a much smaller dataset compared to Sin-

gleMachine which indicates better mixing of the chain and hence more balanced trees.

Table 3.7 shows that coverage of PI decreases in CMC and LISA, but increases in

modLISA and SingleMachine for larger training data. We find it particularly promis-

ing that modLISA competes with SingleMachine for larger N . Note that, coverage

of CI in LISA and CMC are still unreliable because of their over-dispersion, while in

modLISA and SingleMachine they decrease as N increases, which is reasonable since

larger sample size creates narrow CI that are around a biased f(x) estimate, as dis-

cussed in the previous section. Overall, as N increases, modLISA seems to be a more

reliable method as it shows a better performance compared to all other alternatives.

Effect of K (number of batches) on Posterior Accuracy

To examine the effect of K on posterior accuracy, we have generated 1000 posterior

draws for training data of size N = 20, 000 and K = 10. The test data sample is of

size 5,000. The results are shown in Table 3.8.

Table 3.8: Tree sizes, estimates and 95% credible intervals for σ2, RMSE for training
data (TrainRMSE) of size N = 20, 000 and for test data (TestRMSE) of size 5, 000
for each method run with K = 10.

Method TrainRMSE TestRMSE Tree Nodes Avg σ̂2 95% CI for σ2

CMC 2.92 3.18 951 0.73 [0.57 , 0.90]
LISA (unif wgh) 1.70 1.78 131 0.001 [0.0010 , 0.0012]

modLISA (wgh avg) 0.46 0.47 7 8.69 [8.61 , 8.77]
SingleMachine 0.55 0.56 7 9.04 [8.85 , 9.21]
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Table 3.9: Average coverage for 95% credible intervals constructed for training (Train-
CredCov) and test (TestCredCov) data and 95% prediction intervals constructed for
training (TrainPredCov) and test (TestPredCov) data. The prediction interval cov-
erage is estimated based on 1000 iid samples, N = 20, 000 and K = 10.

Method TrainPredCov TestPredCov TrainCredCov TestCredCov

CMC 31.08 % 29.83 % 48.18 % 99.80 %
LISA (unif wgh) 1.44 % 1.43 % 99.98 % 99.96 %

modLISA (wgh avg) 94.30 % 94.29 % 71.08 % 70.32 %
SingleMachine 94.67 % 94.65 % 71.58 % 71.54 %

As K decreases, the performance of LISA and CMC drops while modLISA gener-

ates stronger results, which is intuitively expected as each batch is larger and closer

to the full sample when K is smaller. We also note the improvement of modLISA

over SingleMachine in terms of RMSE. In addition, Table 3.9 shows that the PI and

CI coverages for modLISA and SingleMachine are very close.

3.6.3 Varying the Underlying Model – Different f(x)

Consistency in performance of modLISA can also be seen when the underlying model

is changed. For instance, we also considered a sample of size 20,000 using

f(x) = 3
√
x1 − 2x2

2 + 5x3x4, (3.42)

where x = (x1, . . . , x4) is a four-dimensional input vector that is simulated indepen-

dently from a U(0, 1) and y ∼ N (f(x), σ2) with σ2 = 1. Additional 5000 data have

also been simulated as test cases. Similarly, by fitting this newly simulated dataset

to each method with K = 30, we have generated 1000 posterior samples with results

averaged across three different realizations of data shown in Tables 3.10 and 3.11.

Again modLISA outperforms all alternative methods, and its performance is clos-

est to SingleMachine. This confirms the previous simulation results and allows us
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Table 3.10: Tree sizes, estimates and 95% credible intervals for σ2, RMSE for train-
ing data (TrainRMSE) of size N = 20, 000 generated from (3.42) and for test data
(TestRMSE) of size 5, 000 for each method run with K = 30. Results are averaged
over three different data replications.

Method TrainRMSE TestRMSE Tree Nodes Avg σ̂2 95% CI for σ2

CMC 0.89 0.76 614 0.21 [0.18 , 0.34]
LISA (unif wgh) 0.32 0.33 57 0.0001 [0.000083 , 0.000103]

modLISA (wgh avg) 0.11 0.11 7 0.88 [0.87 , 0.89]
SingleMachine 0.14 0.14 7 1.00 [0.99 , 1.03]

Table 3.11: Average coverage for 95% credible intervals constructed for training
(TrainCredCov) and test (TestCredCov) data and 95% prediction intervals con-
structed for training (TrainPredCov) and test (TestPredCov) data generated from
(3.42). The prediction interval coverage is estimated based on 1000 iid samples,
N = 20, 000 and K = 30. Results are averaged over three different data replications.

Method TrainPredCov TestPredCov TrainCredCov TestCredCov

CMC 49.74 % 52.97 % 84.16 % 100 %
LISA (unif wgh) 1.50 % 1.49 % 100 % 100 %

modLISA (wgh avg) 93.07 % 93.18 % 82.88 % 83.50 %
SingleMachine 94.82 % 94.81 % 79.13 % 78.47 %

to conclude that modLISA is a more reliable method for BART models with large

datasets.

In the next section we will apply modLISA weighted average BART to a large

socio-economic study.

3.6.4 Real Data Analysis

The American Community Survey (ACS) is a growing survey from the US Census Bu-

reau and the Public Use Microdata Sample (PUMS) is a sample of responses to ACS

which consists of various variables related to people and housing units (see US Bureau

of Census, 2013). Considering the person-level data from PUMS 2013, we would like

to predict a person’s total income based on variables such as sex, age, education, class
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of worker, living state, and citizenship status. We have collected information related

to people who are employed and have total income of at least $5000 with education

level of either Bachelor’s degree, Master’s degree, or a PhD which resulted in 437, 297

observations. We randomly divided the dataset into approximately 80% training and

20% testing sets, with K = 100 batches considered for splitting the training data to

apply modLISA. Computations were performed on the GPC supercomputer at the

SciNet HPC Consortium (Loken et al., 2010) using 100 cores, each running on 3, 500

observations. Considering the logarithm of total income for each person as the re-

sponse variable, we ran modLISA with weighted average and SingleMachine BART

on this dataset for 1500 iterations (since SingleMachine is very slow) and discarded

the first 1000 draws which resulted in 500 posterior samples. Table 3.12 contains the

results of Test RMSE as well as average post burn-in σ2 estimates and tree sizes.

Table 3.12: Perfomance summaries computed from 1000 posterior samples generated
from modLISA with K = 100 and SingleMachine BART on PUMS 2013 test data.

Method TestRMSE Avg σ̂2 Tree Nodes Speed-up

modLISA (wgh avg) 0.71 0.488 7 90%
SingleMachine 0.70 0.485 23 –

Table 3.13: Average acceptance rates of tree proposal moves.

Method GROW PRUNE CHANGE

modLISA 10 % 11 % 14 %
SingleMachine 8% 7% 7%

One can see that Test RMSE in modLISA is similar to the one from SingleMa-

chine, but with a 90% speed-up of modLISA over SingleMachine. The speed-up

can be explained by the larger acceptance probabilities and by the smaller tree sizes
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reported in Tables 3.13 and 3.12, respectively. The 90% speedup is important for ap-

plications like the one considered here, as it takes more than a day to simulate 1, 500

samples from the posterior using SingleMachine. The result indicate the potential

of the proposed method for reducing computational costs while producing accurate

predictions.

3.7 Discussion

The challenge of using MCMC algorithms to sample posterior distributions obtained

from a massive sample of observations is a serious one.

In this chapter, we introduced a new method based on the idea of randomly

dividing the data into batches and drawing samples from each of the resulting sub-

posteriors independently and in parallel on different machines. We proposed a novel

way to define the sub-posteriors and theoretically justified our reasoning behind the

chosen sub-posteriors. We showed for a Bernoulli distributed data, LISA with uniform

weights outperforms its competing method, CMC. However, we developed a different

strategy to combine the samples produced by each batch analysis for the important

class of Bayesian Additive Regression Trees (BART) models. We examined LISA on

BART with both simulated and real datasets. Our proposed methodology for BART

generates approximate exact samples as the full posterior samples and outperforms

CMC with reduction in computation time that are as high as 90%.

In future work one can find a procedure for combining the sub-posterior samples

that will make LISA easy to adapt to a wide variety of models.
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3.8 Derivations of Metropolis-Hastings (MH) Ac-

ceptance Ratios

3.8.1 MH Acceptance ratios for BART

In this section we will use a similar explanation and notation given by Kapelner

and Bleich (2013) to derive the acceptance ratios of the Metropolis-Hastings step

in updating trees of BART. We will further extend these calculations for LISA and

CMC.

The Metropolis-Hastings algorithm is used to draw samples from conditional dis-

tribution given in equation (14)

p(T | R, σ) ∝ p(T )

∫
p(R | M,T, σ) p(M | T, σ) dM

Assume we propose T∗, then the acceptance ratio will be:

r =
P (T∗ → T )

P (T → T∗)︸ ︷︷ ︸
transition ratio

× P (R | T∗, σ2)

P (R | T, σ2)︸ ︷︷ ︸
likelihood ratio

× P (T∗)

P (T )︸ ︷︷ ︸
tree structure ratio

We will calculate r for each possible proposal:

GROW Proposal:

• Transition ratio: Consider growing one of the b terminal nodes of tree T , say
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node η, to two children nodes. Then we will have:

P (T → T∗) = P (GROW ) P (choosing η) P (choosing a predictor to split on)×

P (choosing a splitting value)

= P (GROW )
1

b

1

p(η)

1

np(η)

where p(η) denotes the number of predictors left available to split on at node

η (there must be at least two unique values in each predictor to consider),

and np(η) denotes the number of unique splitting values left in the chosen pth

attribute.

In addition, we have:

P (T∗ → T ) = P (PRUNE) P (choosing η to prune) = P (PRUNE)
1

w∗

where w∗ is the number of nodes with two terminal nodes in the new tree T∗.

Hence the transition ratio will be:

P (T∗ → T )

P (T → T∗)
=
P (PRUNE)

P (GROW )

b p(η) np(η)

w∗

• Likelihood ratio: For computing the likelihood ratio, we have:

P (R1, ..., Rn | T, σ2) =
b∏
l=1

P (Rl1 , ..., Rlnl
| σ2)

since the data are partitioned across all b terminal nodes of tree T . Rlj denotes

the j-th data (residual) in the l-th terminal node and nl is the number of ob-

servations in the l-th terminal node. From BART we know that µl ∼ N(0, σ2
µ),
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hence we will have:

P (Rl1 , ..., Rlnl
| σ2) =

∫
R

P (Rl1 , ..., Rlnl
| µl, σ2) P (µl;σ

2
µ) dµl.

By completion of the square this will equal to:

P (Rl1 , ..., Rlnl
| σ2) =

1

(2πσ2)nl/2

√
σ2

σ2 + nlσ2
µ

exp
(
− 1

2σ2

[ nl∑
i=1

(Rli − R̄l)
2 − R̄l

2
nl

2

nl + σ2

σ2
µ

+ nlR̄l
2
])
,

(3.43)

where R̄l is the average residual at terminal node l. Note that the likelihood

is specified by all terminal nodes, and since T differs from T∗ only at its l-th

terminal node which splits into two terminal children lL and lR, the probability

terms from other terminal nodes will be canceled in the likelihood ratio which

results in (using (3.43)):

P (R | T∗, σ2)

P (R | T, σ2)
=

√
σ2(σ2 + nlσ2

µ)

(σ2 + nlLσ
2
µ)(σ2 + nlRσ

2
µ)
×

exp
( σ2

µ

2σ2

[(
∑nlL

i=1RlL,i)
2

σ2 + nlLσ
2
µ

+
(
∑nlR

i=1 RlR,i)
2

σ2 + nlRσ
2
µ

− (
∑nl

i=1Rl,i)
2

σ2 + nlσ2
µ

])
, (3.44)

where RlL and RlR are residuals in the left and right child (respectively) with

corresponding number of observations nlL and nlR .

• Tree Structure ratio: Recall the descriptions given in BART related to the
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probability that node η at depth dη is non-terminal:

PSplit(η) =
α

(1 + dη)β

with probability of assigning a rule given as:

PRule(η) =
1

p(η)

1

np(η)

Hence, the prior on each tree will be:

P (T ) =
∏

η ∈ non-terminal nodes

PSplit(η) PRule(η) ×
∏

η ∈ terminal nodes

(1− PSplit(η))

which will result in the following tree structure ratio:

P (T∗)

P (T )
= α

(1− α
(2+dη)β

)2

((1 + dη)β − α) p(η) np(η)
. (3.45)

PRUNE Proposal:

• Transition ratio: A similar description as in the GROW step will lead to:

P (T∗ → T )

P (T → T∗)
=

P (GROW )

P (PRUNE)

w

(b− 1) p(η∗) np(η∗)

where w is the number of nodes with two terminal nodes in tree T . Note that

tree T∗ has one less terminal nodes (b− 1).

• Likelihood ratio: This is the inverse of the likelihood ratio in the GROW

proposal.
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• Tree Structure ratio: This is also the inverse of the tree structure in the

GROW proposal.

CHANGE Proposal:

• Transition ratio: As described by Kapelner and Bleich (2013), for simplicity,

we will only change the rule assignments for nodes with two terminal children.

Hence:

P (T → T∗) = P (CHANGE) P (choosing η) P (choosing a predictor to split on)×

P (choosing a splitting value)

with the first three terms canceling in the transition ratio given as:

P (T∗ → T )

P (T → T∗)
=
np∗(η∗)

np(η)
.

• Likelihood ratio: T∗ differs from T only from the two terminal children ef-

fected by the changed rules from their parents. Hence, by canceling the proba-

bilities from other terminal nodes, we will achieve the likelihood ratio:

P (R | T∗, σ2)

P (R | T, σ2)
=

√√√√( σ
2

σ2
µ

+ n1)(
σ2

σ2
µ

+ n2)

( σ
2

σ2
µ

+ n∗1)(
σ2

σ2
µ

+ n∗2)
×

exp
( 1

2σ2

[(
∑n1∗

i=1R1∗,i)
2

σ2

σ2
µ

+ n∗1
+

(
∑n2∗

i=1R2∗,i)
2

σ2

σ2
µ

+ n∗2
− (
∑n1

i=1R1,i)
2

σ2

σ2
µ

+ n1

− (
∑n2

i=1R2,i)
2

σ2

σ2
µ

+ n2

])
,

(3.46)

where subscripts 1 and 2 denote the two terminal children, while the asterisk
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refers to the proposed tree T∗.

• Tree Structure ratio: Following the definition of P (T ), we will have:

P (T∗)

P (T )
=

np(η)

np∗(η∗)
.

Note that:

P (T∗ → T )

P (T → T∗)
× P (T∗)

P (T )
= 1.

3.8.2 MH Acceptance ratios of LISA for BART

GROW Proposal:

• Transition ratio: No change.

• Likelihood ratio: Equation (3.43) changes to:

P (Rl1 , ..., Rlnl
| σ2) =

1

(2πσ2)nl/2

√
σ2

σ2 +Knlσ2
µ

exp
(
− K

2σ2

[ nl∑
i=1

(Rli − R̄l)
2 − KR̄l

2
nl

2

Knl + σ2

σ2
µ

+ nlR̄l
2
])
.

(3.47)
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Thus the likelihood ratio will change to:

P (R | T∗, σ2)

P (R | T, σ2)
=

√
σ2(σ2 +Knlσ2

µ)

(σ2 +KnlLσ
2
µ)(σ2 +KnlRσ

2
µ)
×

exp
(K2σ2

µ

2σ2

[(
∑nlL

i=1RlL,i)
2

σ2 +KnlLσ
2
µ

+
(
∑nlR

i=1 RlR,i)
2

σ2 +KnlRσ
2
µ

− (
∑nl

i=1Rl,i)
2

σ2 +Knlσ2
µ

])
. (3.48)

• Tree Structure ratio: No change.

PRUNE Proposal:

• Transition ratio: No change.

• Likelihood ratio: This is the inverse of the likelihood ratio in the GROW

proposal.

• Tree Structure ratio: No change.

CHANGE Proposal:

• Transition ratio: No change.

• Likelihood ratio:

P (R | T∗, σ2)

P (R | T, σ2)
=

√√√√( σ
2

σ2
µ

+Kn1)(
σ2

σ2
µ

+Kn2)

( σ
2

σ2
µ

+Kn∗1)(
σ2

σ2
µ

+Kn∗2)
×

exp
(K2

2σ2

[(
∑n1∗

i=1R1∗,i)
2

σ2

σ2
µ

+Kn∗1
+

(
∑n2∗

i=1R2∗,i)
2

σ2

σ2
µ

+Kn∗2
− (
∑n1

i=1R1,i)
2

σ2

σ2
µ

+Kn1

− (
∑n2

i=1R2,i)
2

σ2

σ2
µ

+Kn2

])
.

(3.49)
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• Tree Structure ratio: No change.

The conditional posterior of σ2 and Mj changes to:

• σ2 | (T1,M1), ..., (Tm,Mm), Y,X ∝ Inv −Gamma(ρ, γ)

where ρ = ν+Kn
2

and γ = 1
2

[ K
∑n

i=1 (yi −
∑m

j=1 g(xi;Mj, Tj))
2

+ λν ].

• For the conditional posterior Mj | Tj, Rj, σ, we have:

µij | Tj, Rj, σ ∼ N

 σ2

σ2
µ
µµ + KniR̄j(i)

σ2

σ2
µ

+ Kni
,

σ2

σ2

σ2
µ

+ Kni

 ,

where R̄j(i) denotes the average residual (computed without tree j) at terminal

node i with total number of data ni. Note that we can consider µµ = 0.

3.8.3 MH Acceptance ratios of CMC for BART

GROW Proposal:

• Transition ratio: No change.

• Likelihood ratio: Equation (3.43) changes to:

P (Rl1 , ..., Rlnl
| σ2) =

1

(2πσ2)nl/2

(√
2πσ2

µ

)1− 1
K

√
σ2

σ2

K
+ nlσ2

µ

×

exp
(
− 1

2σ2

[ nl∑
i=1

(Rli − R̄l)
2 − R̄l

2
nl

2

nl + σ2

Kσ2
µ

+ nlR̄l
2
])

(3.50)
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Thus the likelihood ratio will change to:

P (R | T∗, σ2)

P (R | T, σ2)
= (
√

2πσ2
µ)1−

1
K

√√√√ σ2(σ
2

K
+ nlσ2

µ)

(σ
2

K
+ nlLσ

2
µ)(σ

2

K
+ nlRσ

2
µ)
×

exp
( σ2

µ

2σ2

[(
∑nlL

i=1RlL,i)
2

σ2

K
+ nlLσ

2
µ

+
(
∑nlR

i=1 RlR,i)
2

σ2

K
+ nlRσ

2
µ

− (
∑nl

i=1Rl,i)
2

σ2

K
+ nlσ2

µ

])
(3.51)

• Tree Structure ratio: The tree structure ratio will be raised to the power

1/K: [P (T∗)

P (T )

] 1
K
.

PRUNE Proposal:

• Transition ratio: No change.

• Likelihood ratio: This is the inverse of the likelihood ratio in the GROW

proposal.

• Tree Structure ratio: This is also the inverse of the tree structure ratio in

the GROW proposal.

CHANGE Proposal:

• Transition ratio: No change.
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• Likelihood ratio:

P (R | T∗, σ2)

P (R | T, σ2)
=

√√√√( σ2

Kσ2
µ

+ n1)(
σ2

Kσ2
µ

+ n2)

( σ2

Kσ2
µ

+ n∗1)(
σ2

Kσ2
µ

+ n∗2)
×

exp
( 1

2σ2

[(
∑n1∗

i=1R1∗,i)
2

σ2

Kσ2
µ

+ n∗1
+

(
∑n2∗

i=1R2∗,i)
2

σ2

Kσ2
µ

+ n∗2
− (
∑n1

i=1R1,i)
2

σ2

Kσ2
µ

+ n1

− (
∑n2

i=1R2,i)
2

σ2

Kσ2
µ

+ n2

])
.

(3.52)

• Tree Structure ratio: The tree structure ratio will be raised to the power

1/K.

Now the product of transition ratio and tree structure ratio is not 1 anymore:

P (T∗ → T )

P (T → T∗)
× P (T∗)

P (T )
= np(η)

1
K
−1 np∗(η∗)1−

1
K .

The conditional posterior of σ2 and Mj changes to:

• σ2 | (T1,M1), ..., (Tm,Mm), Y,X ∝ Inv −Gamma(ρ, γ)

where ρ = ν+2+K(n−2)
2K

and γ = 1
2

[
∑n

i=1 (yi −
∑m

j=1 g(xi;Mj, Tj))
2

+ λν
K

].

• For the conditional posterior Mj | Tj, Rj, σ, we have:

µij | Tj, Rj, σ ∼ N (

σ2

Kσ2
µ
µµ + niR̄j(i)

σ2

Kσ2
µ

+ ni
,

σ2

σ2

Kσ2
µ

+ ni
)

where we can consider µµ = 0.



Chapter 4

Application of LISA to BART with

efficient MH proposals

4.1 Introduction

Regression tree models (Chipman et al., 1998) have become popular in many ap-

plications as they are powerful tools for describing complex nonlinear relationships.

They are efficient, simple to interpret and flexible in managing many nonlinear prob-

lems. Moreover, a Bayesian framework for the regression tree models (Chipman et al.,

2002) is also of high importance as the complex nonlinear relationships are explained

through all possible uncertainties. More specifically, the Bayesian Additive Regression

Tree (BART) model (Chipman et al., 2010; Kapelner and Bleich, 2013) has become

one of the most popular ensemble methods that perform significantly better compared

to the single-tree models.

The most common approach for inference on BART models use Markov Chain

Monte Carlo (MCMC) methods. However, existing Metropolis-Hastings (MH) pro-

posals for trees in this model can suffer from poor mixing of the MCMC (Wu et al.,

66
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2007), and hence result in overfitting issues. To overcome this problem, Pratola (2016)

has introduced two new proposal moves for trees that can efficiently discover the tree

space and hence improve the mixing of the MCMC.

On the other hand, BART models are often used to analyze large datasets and

this can pose serious challenges as the run time can be prohibitively slow. In the

previous chapter, we introduced the Likelihood Inflating Sampling Algorithm (LISA)

(Entezari et al., 2018b) which is a new communication-free parallel method for pos-

terior sampling of big datasets, with specific application on the BART model. In this

chapter, we will examine the performance of LISA for BART with new tree proposals

introduced by Matthew Pratola (henceforth, MP) (Pratola, 2016) and hence present

consistency in LISA’s performance. We discuss the use of MP’s novel algorithm to-

gether with LISA to sample from posterior distributions arising from datasets which

are too large to fit into a single machine’s memory.

This chapter is organized as following. Section 4.2 describes the previous and new

tree proposals proposed by MP for sampling trees from the BART model. Section

4.3 presents the results achieved from applying LISA to the BART model with the

new MH proposals. Finally, section 4.4 closes the chapter with a brief summary.

4.2 Tree Proposals

Previously in chapter 3, we discussed the Bayesian framework performed for the

BART model via MCMC. One of the main steps of the MCMC was to draw tree Tj

using a Metropolis-Hastings (MH) algorithm from the conditional distribution:

p(Tj | Rj, σ) ∝ p(Tj)

∫
p(Rj | Mj, Tj, σ) p(Mj | Tj, σ) dMj. (4.1)
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Recall the four proposal moves for trees introduced by Chipman et al. (1998, 2010,

2002):

• GROW: Randomly choose a terminal node and split into two new nodes with

splitting rules defined from the prior.

• PRUNE: Randomly choose a parent node with two terminal children nodes,

and turn it into a terminal node by removing its children.

• CHANGE: Randomly select an internal node and reassign a splitting rule used

in the prior.

• SWAP: Randomly select parent-child pair internal nodes and swap their split-

ting rules unless the other child has the identical rule, in which case the splitting

rule of the parent is swapped with both children.

In chapter 3, we implemented LISA on BART using only the first three proposal

moves for trees (ignoring SWAP) similar to the suggestions made by Kapelner and

Bleich (2013). However, Pratola (2016) studies the issue of poor mixing of the MCMC

with these tree proposals and hence introduces two new proposal moves that he

suggests to be considered along with the GROW and PRUNE proposals. MP discusses

that the only previous proposals that changed the dimensionality of the trees were

the GROW and PRUNE moves, where the alterations only happened at the bottom

of trees and thus preventing the MCMC to search in a broader space of trees. For

this purpose, he has developed a novel ROTATION proposal that will change the

dimension of the tree and explore the tree space more efficiently. On the other hand,

the original CHANGE proposal chooses the variable and cutpoints from a uniform

distribution such that no empty nodes will be created, which requires propagating the

data through the tree to check this restriction, hence resulting to be computationally
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expensive. To overcome this issue, MP has introduced an enhanced version to select

the cutpoints and variables to split on in two separate moves called PERTURB and

PERTURB within CHANGE-of-VARIABLE, which we will describe briefly below.

• ROTATION: Randomly select an internal node ηi. If it is the left child of its

parent p(ηi), a right-rotation will be applied (similarly for right child, a left-

rotation). For a right-rotation, rules of node ηi will be swapped with its parent

p(ηi), and a new node will be added as the right child for the parent, r(p(ηi)),

with the same rule previously in p(ηi). At the same time, the sub-tree in the

right child of ηi, r(ηi), is moved to be a sub-tree at l(r(p(ηi))). In addition,

in the new tree, sub-trees in r(r(p(ηi)) and r(l(p(ηi)) will be duplicates of Ts,

where Ts is the sub-tree in r(p(ηi)) from the original tree. The splitting rules

are then updated accordingly.

• PERTURB: For node i, let Cvi
p(i) be the collection of cutpoints for all nodes

ancestral of node i that split on variable vi. The ancestral nodes can be parti-

tioned into left and right ancestors of node i, i.e. Cvi
p(i) = {Cvi

pl(i)
, Cvi

pr(i)
}, where a

left ancestor is an ancestor of node i such that node i is on the right sub-branch

of the ancestor node (similarly for right ancestor). Also let Cvi
l(i) (similarly Cvi

r(i))

be the collection of cutpoints for all nodes in the left (similarly right) sub-tree

of node i that split on variable vi. Then a cutpoint for variable vi is uniformly

drawn from the interval (avii , b
vi
i ) where:

avii = max(0,max(Cvi
pl(i)

),max(Cvi
l(i))); bvii = min(1,min(Cvi

pr(i)
),min(Cvi

r(i)))

Note that the cutpoint proposal does not directly depend on data and hence it

is efficient to calculate.
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• PERTURB within CHANGE-of-VARIABLE: This change-of-variable pro-

posal takes into account the fact that high correlation between two variables

will result in the same partition of the observations throughout the tree struc-

ture. Thus MP proposes a transition from variable vk to vj with probability

proportional to:
|Cor(Xk, Xj)|×I(avji ,b

vj
i )6={}∑

l |Cor(Xk, Xl)| × I(avli ,bvli )6={}

where Cor(., .) is a function that measures the relatedness level between vari-

ables.

In the next section, we will discuss the performance of LISA on BART using the new

tree proposals in the MCMC.

4.3 Divide and Conquer Analysis via BART and

LISA

In order to apply LISA, the data is divided into K batches and for each batch j we

compute the partial posterior πj(θ|~x(j)) ∝ p(θ)[L(θ|~x(j))]K where p(θ) is the model’s

prior and L(θ|~x(j)) is the likelihood for the data in the jth batch. Samples obtained

from each partial posterior are combined to perform inference about π(θ), the full

data posterior.

Previously, Entezari et al. (2018b) applied LISA to BART using the methods

proposed in Chipman et al. (2010, 1998), and Kapelner and Bleich (2013), and con-

cluded that by taking a weighted average of batch-draws that were generated with a

minor modification to LISA (modLISA), one can produce indistinguishable posterior

distributions from the full posterior distribution of BART.
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In this chapter, we will apply modLISA to BART using the tree proposals pre-

sented by Pratola (2016) to examine consistency in results and time savings.

We consider the Friedman’s test function (Friedman, 1991):

f(x) = 10 sin(πx1x2) + 20(x3 − 0.5)2 + 10x4 + 5x5,

and simulate 20,000 observations y ∼ N(f(x), σ2) where σ = 0.1, and x = (x1, . . . , x10)

are uniformly drawn from (0, 1). The sample size is chosen so that we can still run

MP’s algorithm to sample the full-data posterior in reasonable time. We have used

the implementation of BART by Pratola (2016) to apply modLISA to this dataset

with K = 30 batches.

Table 4.1 is comparing the results of 1000 posterior samples generated from mod-

LISA after 1000 burn-in iterations, to the SingleMachine which ran MP’s algorithm

on the full dataset on one single machine. Note that we also simulated an additional

5000 observations as test data to fully compare the methods. Table 4.1 contains root

mean squared error (RMSE) of f(x) for both train and test data as well as the mean

σ estimate. Both methods were performed with 30% rotate proposals without any

adaptation. As seen in Table 4.1 the parallel algorithm produces results that are very

similar to the ones produced by SingleMachine. This is in line with the findings in

Entezari et al. (2018b). Table 4.2 shows, for each algorithm, the empirical test data

coverage of the 90% credible interval for f(x), average tree depth, total run time (real

world time in seconds) and the inverse product of Test RMSE and running time which

can be thought of as a measure of computational efficiency. Interestingly, modLISA

has higher coverage and lower average tree depth than SingleMachine. Total run time

is more than 10 times faster for modLISA.

Figure 4.1 compares the empirical distribution functions of f̂(x) in modLISA to
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Table 4.1: Results of training data RMSE, test data RMSE and mean post burn-in
σ̂ from each method with 30% rotate proposals. There are K = 30 batches in total.

Method Train RMSE Test RMSE Mean σ̂

modLISA 0.137 0.147 0.176
SingleMachine 0.075 0.087 0.123

Table 4.2: Computational efficiency comparison between modLISA and SingleMa-
chine

Method Test Coverage Avg tree depth Total Run Time (secs) 1/(Test RMSE × Time)

modLISA 70.8 % 1.01 121.6 0.056
SingleMachine 63.7 % 2.07 1585.5 0.007

SingleMachine for two different observations in the test data. As it is seen, the two

empirical distribution functions are indistinguishable.
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Figure 4.1: Comparing empirical distribution functions of f̂(x) in modLISA weighted
average with K = 30 to SingleMachine BART for two different test observations.
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4.4 Discussion

In this chapter we examined the performance of LISA on BART with efficient Metropolis-

Hastings proposals for trees introduced by MP. We applied LISA (modLISA) on

BART using a simulated dataset from the Friedman’s test function with σ = 0.1

where poor mixing was observed with the original MH proposals as discussed by

Pratola (2016). By applying the new ROTATION and PERTURB tree proposals in-

troduced by MP along with the original GROW and PRUNE proposals, we were able

to show that modLISA still generates accurate prediction results with much faster

run time compared to the SingleMachine for large datasets. More importantly, mod-

LISA generated higher test coverage with approximately similar empirical distribution

function as the SingleMachine.

Overall, modLISA for BART showed consistent results with the ones found in

Entezari et al. (2018b), which illustrates the ability of modLISA to effectively sample

from posterior distributions when the datasets are too large and need to be divided

into K batches before proceeding. It is also important to note that poor mixing of

the MCMC on BART can still take place when large datasets are fitted to the model,

whereas with modLISA this issue does not occur as the dataset is partitioned into

smaller sets. Thus modLISA on BART along with efficient MH proposals can create

a powerful combination that will prevent poor mixing of MCMC with BART.



Chapter 5

Bayesian Spatial Analysis of

Hardwood Tree Counts

5.1 Introduction

5.1.1 The forest inventory problem

The forest industry has a significant impact on the economy of countries such as

Canada, making forests an important financial asset. The monetary value of forest

assets is mainly determined by their timber, the value of which depends on different

features of trees such as size, species, age, defects, etc. Tree species have different

types of wood with different qualities, and hence influence the timber value.

Tree species have two main categories, hardwood (deciduous) trees and softwood

(coniferous) trees, with hardwood trees generally having wider leaves that are lost an-

nually, while softwood trees have smaller leaves and retain their leaves throughout the

year. Hardwood trees provide much longer lasting wood compared to softwood trees,

with slower growth rates which makes them more expensive compared to softwood.

74
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Hence, knowing the number of hardwood trees in a forest is valuable information. Col-

lecting data on forests requires hiring workers to travel to different sites around the

forests and measure the quantities needed, which can be costly and time consuming.

Remote sensing technologies can overcome this issue. Although they are cheap

and efficient and can cover a wide range of geographical areas, they can suffer from

lack of accuracy. Geostatistical models are powerful tools for analyzing and predicting

such spatial data, and can be used to calibrate remotely sensed data (see Curran and

Atkinson, 1998). Existing literatures by Giorgi et al. (2017); Shaby and Reich (2012);

Abellan et al. (2007) are examples of the importance of statistical models for spatial

analysis. The focus of this chapter will also be to take advantage of statistical tools

to predict the number of hardwood trees using geostatistical models that take into

account the spatial factor.

5.1.2 Model-based geostatistics

In the past few decades, spatial statistics has become an established field of statis-

tics with well developed models applied to many real-world problems. Conventional

geostatistical models for Gaussian spatial data were first popularized by Matheron

(1962) and later on built upon by Cressie (1993). The generalization of these models

for non-Gaussian data were introduced by Diggle et al. (1998).

Let Yi be the observed spatial data at location si, with arbitrary distribution f that

has mean λ and possible additional parameters γ. Consider X(si) as the covariates

at location si. Modelling this data with the Generalized Linear Geostatistical Model

(GLGM) described in Diggle et al. (1998) and Diggle and Ribeiro (2007), will be as

following:
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Yi|U(si) ∼ f [λ(si), γ]

g[λ(si)] = µ+ βX(si) + U(si)

(5.1)

where g(.) is the link function (i.e. logit or log). Here U(s) is a Gaussian random

field U evaluated at location s, which is characterized by the joint multivariate normal

distribution:

[U(s1), ..., U(sN)]T ∼MVN(0,Σ)

where the elements of Σ are defined by a spatial correlation function ρ as

Σij = cov[U(si), U(sj)] = σ2ρ(||si − sj||/φ, ν)

where φ is a range parameter and ν is a vector of other possible parameters. The

range parameter φ controls the rate at which the correlation decreases with distance.

There are many possible parametric functions for ρ, with Matérn correlation function

(see Stein, 1999) being the most commonly used. The Matérn correlation is defined

as:

ρ(h;φ, κ) =
1

2κ−1Γ(κ)

( ||h||
φ

)κ
Kκ

( ||h||
φ

)
, (5.2)

where Γ(.) is the gamma function and Kκ(.) is the modified Bessel function of the

second kind of order κ > 0 (κ being a shape parameter). This function is particularly

interesting, as it is flexible in the differentiability of the Gaussian process U(s) by

adjusting κ (Stein, 1999).
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In the case where the data is Gaussian, Maximum Likelihood Estimates (MLEs)

can be used as point estimates for the model parameters. However, when the data is

non-Gaussian, because of the unobserved latent variables U present in the model, the

likelihood function becomes intractable and it is difficult to calculate the MLEs. Per-

forming Bayesian inference on these models via Markov Chain Monte Carlo (MCMC)

methods (Brooks et al., 2011; Craiu and Rosenthal, 2014) has many advantages (as

discussed in Diggle et al. (1998)). The Integrated Nested Laplace Approximation

(INLA) algorithm introduced by Rue et al. (2009), is an alternative to MCMC for

Bayesian Inference on latent Gaussian models. However this method has some draw-

backs as it approximates marginal posterior distributions rather than joint posterior

distributions. There are facilities in the R-INLA software for producing approximate

joint posterior samples, but the properties of these samples have yet to be explored.

In this chapter, we will analyze the spatial hardwood tree count data collected

from the Timiskaming & Abitibi River forests in Ontario, Canada. Our analysis is

constructed in a Bayesian framework for a binomial geostatistical model to predict the

proportion of hardwood trees from remotely sensed elevation and vegetation data. For

posterior simulations, we implement an MCMC method using the Langevin-Hastings

(see Roberts and Rosenthal, 1998) and the Random-Walk Metropolis Hastings (see

Roberts et al., 1997; Roberts and Rosenthal, 2001) algorithms. By reducing the

amount of training data fitted to the model, and predicting for the same validation

set, we are able to answer questions related to the accuracy of predictions given small

amounts of ground truth data collected. We will show that with training data size as

small as 10 spatial locations, despite the increase in uncertainty, the true number of

hardwood trees lies within a 95% prediction interval. This conclusion is very valuable

as it will significantly reduce costs of collecting ground truth data. We will also

compare our results with the logistic regression model where there is no spatial effect.
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Furthermore, we explore a stratified sampling approach in choosing the training data

that will show a potential improvement in predictions.

The chapter is organized as follows. The spatial data from the Timiskaming

& Abitibi River Forests are described in section 5.1.3. Section 5.2 describes the

geostatistical model used for our data and the MCMC algorithm applied to perform

Bayesian Inference. In addition, we explain our stratified approach and describe the

measurements we will use to compare and assess predictions. Section 5.3 discusses

the numerical results from fitting the data, where comparisons are also made with the

Logistic Regression. At last, we summarize our results in Section 5.4. The Appendix

includes results from different simulations.
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(b) Proportions of hardwood trees

Figure 5.1: Locations of 162 forest plots in the Timiskaming and Abitibi River Forests.

5.1.3 Description of Data

The Timiskaming and Abitibi River forests are geographically located next to one-

another in northern Ontario, Canada. The First Resource Management Group Inc.

has provided detailed data from 162 individual forest plots inside these adjacent
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forests. Each forest plot is 11.28m in radius to provide a 400m2 surface. The geo-

graphical locations of these 162 sites are shown in Figure 5.1.

The data from each site consists of information on the total number of trees,

whether each tree is living or dead, and the species of each tree. Figure 5.1b shows

the proportion of live trees which are hardwood from the 162 sites. As can be seen,

many sites have no hardwood trees and such sites are scattered throughout the forests.
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(b) SkyForestTM vegetation index

Figure 5.2: Elevation & Vegetation index around the Timiskaming and Abitibi River
Forests (Background c©Stamen Design).

The remotely sensed data considered includes elevation values from satellite data

provided by the SRTM program (Figure 5.2a). A measure of forest vegetation was

provided by the First Resource Management Group Inc. using the proprietary remote

sensing technology “SkyForestTM”, which is shown in Figure 5.2b. This vegetation

measure is predicted by SkyForestTM across the forest landscape by selecting an arith-

metic transformation of spectral bands (ATSB) from a candidate list of ATSBs. The

ATSBs are constructed similarly to well known vegetation indices such as the Normal-

ized Difference Vegetation Index (NDVI), with some of them being multi-temporal.

It is thus expected that hardwood trees are located where this measure is high.

http://stamen.com
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In the next section, we will describe the geostatistical model for our dataset, along

with the steps taken to perform a Bayesian analysis.

5.2 Methods

5.2.1 Logistic Regression

Before describing the full geostatistical model for our data, a simple Logistic Regres-

sion model with binomial response will be outlined. Consider Yi to be the count

of hardwood trees in forest plot i, and write Yi ∼ Binom(ni, pi), where ni is the

total number of live trees at site i (si) and pi is the probability of a tree in plot i

being hardwood. Elevation and the SkyForestTM index are covariates in the model.

The SkyForestTM covariate is treated as a linear effect with change point at 0.3 (ap-

proximately its average value), giving some additional flexibility to this covariate in

the regression model. The elevation values are also centered at the average value of

about 320. For computational reasons, we normalize the covariates by dividing by

the standard deviation. The model is:

Yi ∼ Binom(ni, pi) i = 1, ..., 162

log
( pi

1− pi

)
= X(si)β

(5.3)
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WritingA(s) as the SRTM-measured altitude at location s and V (s) as the SkyForestTM

vegetation index, the normalized vector of covariates X(s) is constructed by:

X1(s) = 1

X2(s) =
A(s)− 320

50

X3(s) =
min(V (s)− 0.3, 0)

0.05

X4(s) =
max(V (s)− 0.3, 0)

0.05

5.2.2 The geostatistical model

Spatial dependence in the prevalence of hardwood trees should be expected as sites

in the forests close to one another may benefit from the same soil, weather, etc,

and hence may have similar tree types. Thus we expect a geographical effect to

play an important role in explaining such data with a more sophisticated model such

as the Generalized Linear Geostatistical Model (GLGM). A geostatistical model for

our spatial data will have an extra spatial term U(s) and an independent term Z

compared to the model in (5.3), resulting:

Yi ∼ Binom(ni, pi) i = 1, ..., 162

log
( pi

1− pi

)
= ti = X(si)β + U(si) + Zi (5.4)

where

Zi
i.i.d.∼ N(0, τ 2),

U(s) ∼ N(0, σ2),
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cov(U(s+ h), U(s)) = σ2ρ(||h||;φ, κ)

This model is equivalent to (5.1) where f is Binomial and g is a logit link function.

5.2.3 Random Sampling vs Stratified Sampling

For our analysis, we explore reducing the size of the training data fitted to the model,

to observe and examine the trade-off between prediction accuracy and costs of col-

lecting ground truth data. More specifically, if we were only given data from 25 or 10

plots on the ground, could useful predictions still be made? To answer this question,

the 162 plots in the dataset were divided into 100 training and 62 validations sets.

Keeping the 62 validation set fixed, we examine the performance of results generated

by fitting 100, 25, and 10 training data to the model. For this purpose, we can do

this by two different approaches, 1) choosing random subsets of data and 2) choosing

stratified subsets of data. Since the spatial data is correlated, choosing the subset

of data with a stratified approach should be expected to improve the results, as it

can force the training plots to be as scattered as possible. Both elevation and vege-

tation covariates are taken into account for choosing the 25 and 10 dataset from the

100. Hence, we begin by looking at the elevation from all the 100 training data (first

simulation) as shown in Figure 5.3a.

The 100 plots are stratified into three groups as shown in Figure 5.3b, and both

location of the points as well as elevation values are taken into account equally.

Keeping the proportion of the data from each strata constant, we systematically

sample 25 plots from the 100 by sorting the vegetation index in each strata and

taking every j − th element depending on the number of data needed (similarly for

the 10 data points from the 25). The Results section will explore how stratified

sampling can (potentially) improve prediction accuracy with smaller training data
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(a) Elevation for 100 training data
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(b) Stratified regions

Figure 5.3: Plots of elevation from 100 training data, along with the plot of stratified
regions.

fitted to the model, compared to random sampling.

5.2.4 Inference

We will apply a Bayesian approach to the model in (5.4), and this methodology will be

referred to as the Bayesian Generalized Linear Geostatistical Model (BGLGM). Let

βT = (β0, β1, β2, β3), θ
T = (σ2, φ, τ), and tT = (t1, ..., tn) with ti = X(si)β+U(si)+Zi,

be the three sets of parameters. We treat κ as fixed at 1.5, since it is not of direct

interest and according to Zhang (2004), not all the parameters (σ2, φ, and κ) are

consistently estimable. We define priors for each parameter as

θ ∼ π1(.) & β|θ ∼ π2(.) = N(µ, σ2Ω) & t|β, θ ∼ π3(.) = MVN(Xβ,Σ(θ))
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with joint posterior distribution given as:

π(β, θ, t|y) ∝ π1(θ)π2(β|θ)π3(t|β, θ)f(y|t) (5.5)

where f(y|t) =
∏n

i=1 f(yi|ti) is the likelihood function. Here Σ(θ) is the covariance

matrix with diagonal elements equal to σ2 +τ 2 and off-diagonal elements of σ2ρ(||si−

sj||;φ, κ) where ρ is the Matérn correlation function. We consider Exponential(0.5)

priors for σ and τ , and a Gamma(3,35) prior for φ.

There are a number of R packages available for posterior estimation of the BGLGM.

The geostatsp package by Brown (2015) uses INLA to approximate the marginal pos-

terior distributions, while the recent PrevMap package (Giorgi and Diggle, 2017)

uses an MCMC method to generate joint posterior draws. In this chapter, our focus

will be on using MCMC methods to generate joint posterior samples of BGLGM.

However, PrevMap performed poorly with this dataset when the number of data

points was very small, and a bespoke MCMC algorithm was developed as a result.

As reparamterization and standardization help reduce correlation between vari-

ables, they will be play an important role in improving the mixing and convergence

of MCMC algorithms. The transformations applied to all the model parameters in

(5.5) follow the recommendations of Christensen et al. (2006).

Let Λ(t) be a diagonal matrix with elements −∂2/∂t2i log f(yi|ti) for i = 1, ..., n,

and denote t̂i = arg max f(yi|ti). Assuming a prior N(µ,Ω) for β, let Σ̃ = (Σ−1 +

Λ(t̂))−1 and Ω̃ = (Ω−1 +XT (Σ−1−Σ−1Σ̃Σ−1)X)−1. Then by factorizing the posterior

distribution in (5.5) into two parts: π(β, θ, t|y) ∝ π1(θ)f(t, β|θ, y), we will be able to
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simplify the second factor f(t, β|θ, y) as following:

log f(t, β|θ, y) ≈ −0.5(t− t̂)TΛ(t̂)(t− t̂)− 0.5(t−Xβ)TΣ−1(t−Xβ)− 0.5(β − µ)TΩ−1(β − µ)

= −0.5(t− Σ̃(Λ(t̂)t̂+ Σ−1Xβ))T Σ̃−1(t− Σ̃(Λ(t̂)t̂+ Σ−1Xβ))

− 0.5(β − Ω̃(XTΣ−1Σ̃Λ(t̂)t̂+ Ω−1µ))T Ω̃−1(β − Ω̃(XTΣ−1Σ̃Λ(t̂)t̂+ Ω−1µ))

(5.6)

where the first expression −0.5(t− t̂)TΛ(t̂)(t− t̂) is derived from the Taylor expansion

of log f(y|t) around t̂. From equation (5.6), we can simply use the transformations:

t̃ = (Σ̃1/2)−1(t− Σ̃(Λ(t̂)t̂+ Σ−1Xβ)) (5.7)

β̃ = (Ω̃1/2)−1(β − Ω̃(XTΣ−1Σ̃Λ(t̂)t̂+ Ω−1µ)) (5.8)

where t̃1, ..., t̃n and β̃1, ..., β̃p are now approximately uncorrelated with mean zero and

variance one. These parameters are also uncorrelated with θ and hence there will

be no posterior dependence between t̃, β̃, and θ. However, according to Christensen

et al. (2006) and Giorgi and Diggle (2017), there is posterior dependence within

the parameters of θT = (θ1, θ2, θ3) = (σ2, φ, τ), and hence a reparameterization is

proposed as following:

θ̃ = (θ̃1, θ̃2, θ̃3) = (log σ, log σ2/φ2κ, log τ 2)

In general, using these transformations will help facilitate the choice of proposal

densities as well as reducing the correlation between variables that will significantly

improve mixing and convergence of the MCMC algorithm.

Using these reparameterizations, we have implemented a Metropolis-Hastings-

within-Gibbs sampling method that updates each blocks of θ̃, β̃, and t̃ at a time.
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However, for high-dimensional parameters, it is more suitable to use the Langevin-

Hastings algorithm as they will have much faster convergence rates (Roberts and

Rosenthal, 1998; Roberts and Tweedie, 1996; Møller et al., 1998). For our model and

data, t̃ has the highest dimension, hence we will use Langevin-Hastings algorithm to

update t̃. For the remaining blocks we will use the Random-Walk Metropolis Hastings

(RWMH) algorithm. The summary of the steps used to run the MCMC algorithm is

shown in the diagram below.

Algorithm 2: MCMC algorithm

1 Initialize θ, β, and t

2 Transform to θ̃, β̃, and t̃

3 Update θ̃1, θ̃2 and θ̃3 using a RWMH, each with standard deviation si
calculated iteratively as:

si = si−1 + c1i
−c2(αi − 0.45)

where c1 > 0 and c2 ∈ (0, 1] are constants, and αi is the acceptance probability
up to i− th iteration with optimal acceptance probability of 0.45.

4 Update β̃ using a RWMH

5 Update t̃ with a Langevin-Hastings algorithm, i.e.

t̃′ ∼MVN(t̃+ 0.5h∇ log π(t̃), hI) where h is recommended to be 1.652/n1/3.
6 Repeat steps 3-5 until the desired number of samples are collected.

7 Transform samples of θ̃, β̃, and t̃ back to θ, β, and t.

5.2.5 Prediction & Assessment

After running our MCMC algorithm on the BGLGM, we will combine the posterior

samples for each parameter to generate posterior distributions for hardwood proba-

bilities at each of the 62 validation locations. We will then emphasize on assessing

the predictions from the number of hardwood counts rather than proportions, since

the observed proportions are often 0 or 1, while predictions are 0 < p < 1. Below we

describe the various assessments we have considered:
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1. Coverage Probability : For each of the 62 validation points, we generate poste-

rior samples of hardwood counts from the corresponding posterior probability

samples, then examine whether the true hardwood count is inside the (say) 95%

posterior interval. The coverage probability will be the proportion of 62 points

that are inside their posterior intervals, i.e.:

#(true hardwood count ∈ posterior interval of hardwood counts)/62

2. RMSE (root mean squared error): We will also compare RMSE of hardwood

probabilities from both BGLGM and GLM (Logistic Regression), calculated as:

RMSE =

√√√√ 1

62

62∑
j=1

(p̂j − pj)2

where pj is the true proportion of hardwoods in plot i (often 0 or 1) and p̂j is

the predicted hardwood probability in GLM and posterior mean in BGLGM.

3. Total hardwood count distribution: We also consider the distribution of the total

number of hardwoods in all 62 validation sites and examine whether the true

total hardwood counts is covered within the 95% posterior interval. Unlike the

posterior distributions of hardwood counts in each of the 62 plot, the total count

has a reasonably symmetric distribution. In addition, we have compared this

to the corresponding distribution generated from GLM via bootstrapping.

5.3 Results

For the main analysis we have run the MCMC algorithm for 2,000,000 iterations with

1,000,000 burnin and 100 thinning. Runs consist of fitting 100, 25, and 10 sites as
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training data, both via random and stratified sampling, with predictions made for

the 62 validation data. We have repeated this procedure for five different simulations

by randomly choosing five different validation sets of size 62.
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Figure 5.4: Comparing trace plots of β0 and β1 from the bespoke MCMC implemen-
tation and the PrevMap package.

5.3.1 MCMC Convergence and Mixing

Figure 5.4 is showing the trace plots of posterior samples for β generated from the

bespoke MCMC implementation from section 5.2.4 versus PrevMap package, using

10 training sites. The bespoke MCMC mixes well and has converged, while PrevMap

trace plots have not converged although they have been ran for the same number of

iterations. Different tuning parameters for running PrevMap were considered without
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the chains being improved. Thus we will be using the bespoke MCMC implementation

for the rest of the analysis in this chapter.
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Figure 5.5: Trace plots of 10,000 MCMC posterior samples for τ (simulation 1).

Figures 5.5a, 5.5b, and 5.5c show the MCMC trace plots for only the τ parameter

with 100, 25, and 10 data fitted to the model respectively. All trace plots show that

the MCMC is mixing well and thus, the chains have converged. In addition, the trace

plots show larger variability with less training data fitted. The remaining trace plots

for other parameters as well as other simulations are included in the appendix.

For quantitively verifying this variability between different training data size, we

have compared the numerical values of posterior mean, 2.5 %, and 97.5 % quantiles

of all model parameters in Table 5.1. While the posterior means remain almost

unchanged, the 95% posterior intervals for each model parameter (except φ), become
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Table 5.1: Comparison of posterior mean, 2.5 %, and 97.5 % quantiles of model
parameters, for different sizes of training data. These results are from only the first
of five training samples.

Parameters # of training Mean 2.5% quantile 97.5% quantile

100 -3.47 -4.33 -2.65
Intercept - β0 25 -3.54 -5.67 -1.66

10 -2.37 -6.38 1.31

100 0.53 0.07 0.99
Elevation - β1 25 0.12 -1.03 1.13

10 2.16 -0.96 6.38

100 2.89 1.19 4.87
SkyF<0.3 - β2 25 2.09 -0.50 5.26

10 3.38 -1.39 10.42

100 2.61 2.10 3.17
SkyF>0.3 - β3 25 3.02 1.86 4.44

10 4.20 1.85 7.70

100 0.04 0.02 0.11
Spatial sd - σ 25 0.04 0.02 0.12

10 0.06 0.02 0.17

100 1.98 1.52 2.55
Indep. sd - τ 25 2.38 1.36 4.05

10 3.09 1.04 7.23

100 104.94 21.89 255.14
Range(km) - φ 25 105.42 22.00 252.93

10 105.06 21.30 255.27

wider with less training data fitted to the model, indicating more uncertainty in

parameter estimation.

5.3.2 Parameter posteriors & spatial surfaces

The prior and posterior densities of model parameters from the first simulation are

shown in Figures 5.6 and 5.7. From these figures we can ascertain that with fewer

training data, posterior densities become wider and hence result in more uncertainty
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of predictions. The posterior distributions of σ suggest small spatial random effects for

this dataset, as they have modes concentrated at smaller values. Posterior densities

of φ are all similar and remain unchanged for different training data, as small σ causes

weak spatial signal which can’t identify φ.

One surprising feature of Figure 5.7b, is the posterior density with 10 training

data points does not resemble the prior. Even the smallest training dataset considered

provides clear evidence that there is more variation in the observed counts than the

covariates predict, which is manifest in the results as τ has a posterior distribution

concentrated away from zero. There is also evidence that this extra variation is not

spatially structured, since σ is clearly much smaller than τ .

The main goal is to predict the composition of trees at unmeasured sites in the

forests via simulating posterior samples of U(gl) for new locations gl : l = 1, ..., L, con-

ditional on MCMC posteriors {U(si) + Z(si) : i = 1, ..., n}. Considering a 100× 100

grid with L = 10, 000 cells inside the forests as our new locations, we can simulate

U(gl) using the RFsimulate function in the “RandomFields” package and make pre-

dictions for hardwood probabilities p(gl) for each cell. The RandomFields package

has very efficient algorithms for simulating from conditional distributions of spatial

processes without using the full variance matrix. Thus assuming we have grid cells

g1, ..., gL, we simulate [U(g1), ..., U(gL)|Y ] and independent Z1, ..., ZL along with the

use of other posterior samples to generate [p(g1), ..., p(gL)|Y ].

Figure 5.8 shows images of three different posterior samples along with posterior

means (in each row) generated from fitting different training data sizes. With fewer

training data the posterior rasters appear to become smoother, possibly indicating

less precise predictions.

The 62 validation sites with their ground truth number of hardwood trees are

used to evaluate predictions by summarizing results over all corresponding sites. The
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Figure 5.6: Prior and posterior distributions of parameters from the first simulation.

number of hardwood trees in each validation site is predicted and their coverage

probabilities calculated from posterior intervals of hardwood counts. Table 5.2 shows

the corresponding coverage probabilities of 95%, 80%, and 50% Posterior Credible

Intervals (CI) for different training data size, averaged over five different simulations.

Note that many observed proportions are 0 or 1, and the hardwood count posteriors
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Figure 5.7: Priors and posteriors from the first simulation.

will not be symmetric. To illustrate this, Figure 5.9 shows the histograms of hardwood

count posteriors for two validation plots where in one all are hardwoods and in the

other none. We calculate the narrowest credible intervals for each validation plot,

and compute their average coverages and widths as shown in Table 5.2.

The empirical coverage probabilities tend to exceed their theoretical values, mean-
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Figure 5.8: Three posterior samples of the hardwood proportion surface p(s∗) along
with their posterior means from different training data sizes (Background c©Stamen
Design).
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Table 5.2: Empirical Coverage of Posterior Credible Intervals and their Average
Width. All results are averaged over 5 different simulations.

Empirical Coverage of CI Average CI Width
#ofTrain 95 % 80 % 50 % 95 % 80 % 50 %

100 Sites 97 % 87 % 59 % 19.98 11.42 4.41
25 Sites 96 % 86 % 55 % 21.91 12.12 4.49
10 Sites 95 % 78 % 55 % 26.64 13.71 4.35
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Figure 5.9: Posterior distributions of hardwood counts from two validation plots.

ing the intervals provided are on the conservative side. Overall, coverage probabilities

are all at a desirable value. Table 5.2 also includes the average width of the poste-

rior intervals, which shows on average wider intervals with fewer training data, as

expected. Note that the slight decrease in the average width of the 50% posterior

credible intervals with 10 training data may be due to monte carlo error.
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Table 5.3: RMSE of predicted hardwood probabilities

RMSE Avg RMSE
#ofTrain Sim 1 Sim 2 Sim 3 Sim 4 Sim 5

100(BGLGM) 0.2276 0.2072 0.2096 0.1983 0.1569 0.1999
100(GLM) 0.2333 0.2060 0.2137 0.1969 0.1575 0.2015

25(BGLGM) 0.2284 0.2106 0.2335 0.1985 0.2268 0.2196
25(GLM) 0.2493 0.2256 0.2455 0.2005 0.2569 0.2356

10(BGLGM) 0.2912 0.2435 0.3639 0.2080 0.2472 0.2708
10(GLM) 0.3509 0.2796 0.4805 0.2357 0.3168 0.3327

5.3.3 Comparison of BGLGM with Logistic Regression

In this section we will show the difference in performances between the BGLGM and a

simple Logistic Regression. Fitting a Logistic Regression model to this dataset using

the function glm in R is a frequentist way of analyzing this dataset, while BGLGM

is a Bayesian approach. We will compare them both through their performance in

point estimations via RMSEs, as well as their performance of distributions.

Table 5.3 is reporting the RMSEs of hardwood probabilities for the 62 valida-

tion sites, computed from runs with 100, 25, and 10 training data, for five different

simulations. The RMSEs of BGLGM are calculated using posterior means. As it is

observed, on average, RMSEs of BGLGM are smaller compared to Logistic Regres-

sion (GLM), indicating more accurate predictions. RMSEs increase with less ground

truth data fitted to the model; verifying the results shown in the previous section.

To compare the predictive distributions of the GLM and BGLGM, we simulated

10,000 hardwood counts for each validation site using the estimated probabilities from

GLM. These are compared to 10,000 MCMC posterior samples from the BGLGM us-

ing the distributions of the total hardwood counts from all 62 validation sites. Figure

5.10 is showing the corresponding distributions from BGLGM and GLM for only the
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first simulation. The distributions from GLM are significantly narrower compared to

the ones from BGLGM, as should be expected, since the GLM is ignoring errors in

the parameter estimates. The BGLGM posterior distributions with all training data

sizes capture the true value shown in green within their 95% intervals, while GLM

with 10 and even 100 training data points fails to do so. In addition, from Figure

5.10a, we also observe that the posterior distributions become wider with less training

data as expected. In conclusion, the BGLGM is a more reliable method compared

to the GLM, in terms of both prediction accuracy and the ability of explaining un-

certainties. Note that this process has been repeated for four other simulations with

figures shown in the Appendix.
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Figure 5.10: Comparing BGLGM posterior distributions of total number of hardwood
trees to the frequentist distributions from GLM.

Overall, a Bayesian approach is more reliable compared to a frequentist approach,

since more types of uncertainty are taken into account. The simple Logistic Regression

has artificially narrow prediction intervals, while BGLGM includes the true value

within its 95% intervals for this dataset.
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Figure 5.11: Comparing random vs stratified sampling for total hardwood posterior
distributions.

Figure 5.11 compares the posterior distributions of the total hardwood trees from

both random sampling and stratified sampling on the first of five simulations. Pre-

diction intervals from all five simulations are shown in Figure 5.12. The posterior

distributions all contain the true value within their 95% posterior interval, however

the uncertainty is generally less under stratified sampling in most cases. In Figure

5.11 it is notable that the stratified posterior with 10 training data contains the true

value near its mode, while with the random posterior it is covered around the tail

area.

In simulations 2 and 4 results are roughly comparable, while in simulation 3 the

stratified posterior with 10 data points captures the true value around its mode. On

the other hand, in simulation 5, the stratified posterior with 10 data points becomes

more dispersed while with 25 more narrow. Overall, the stratified sampling approach

shows only potential in improving results and thus may not be of significant improve-
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Figure 5.12: 95% posterior intervals of Random sampling vs Stratified sampling from
all five simulations.

ments.

More details on the MCMC trace plots and the posterior distributions of each

model parameter for the stratified sampling is included in the Appendix (for all

simulations).

5.4 Discussion

In this chapter, we have analyzed the spatial data from the Timiskaming and Abitibi

River forests in Ontario, Canada. We have studied the prediction of hardwood tree

counts from elevation and vegetation index. We implemented a bespoke MCMC algo-

rithm for posterior simulation of a Bayesian Generalized Linear Geostatistical Model

(BGLGM), in order to make spatial predictions for new sites in the forests. The
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bespoke MCMC performed well with this dataset while the general purpose “Pre-

vMap” package struggled. We compared the Bayesian model with the frequentist

Logistic Regression model. Although the dataset is imbalanced and contains many

zero hardwood counts, the Bayesian approach provided unbiased estimates with rea-

sonable uncertainties, while the overly simplistic Logistic Regression underestimated

the uncertainty associated with the predictions. More importantly, with ground truth

data as small as 10 points, BGLGM captured the true value of hardwood tree counts

within its 95% posterior intervals, while the Logistic Regression failed even with 100

training points. This suggests with fewer ground truth data collected and hence re-

duction in expenses, good estimates of hardwood counts are still present and can

capture the true value but perhaps with more uncertainties involved. This result is

fairly important in terms of saving time and money for companies to gather such

data.

Furthermore, a stratified sampling strategy of choosing the subset training data

showed potential improvements in terms of predictions and uncertainties. However,

these improvements are not always guaranteed.

As future work, one can further extend this model for multiple forests, where

forests with similar features are considered to have high correlation indicated within

priors and hence facilitate future spatial predictions for similar forests. This will

significantly help reduce the redundant collection of data from similar forests.
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Conclusion

6.1 Summary

Bayesian methods are essential for exploring the underlying models through probabil-

ity distributions and uncertainties. However computing the corresponding probability

distributions (posterior distributions) are infeasible in most applications and hence re-

quire computational methods such as Markov Chain Monte Carlo (MCMC) methods

to draw samples from such distributions. In this thesis, we have tackled two different

Bayesian inference problems via MCMC methods. Our contributions involved both

methodology and application aspects.

In Chapter 2, we briefly reviewed the fundamentals of Bayesian modelling and

discussed the foundations of MCMC methods along with the descriptions of the most

common ones used in this thesis.

In Chapter 3, we addressed the computational challenges of Bayesian inference

caused by large-scale data, and introduced a divide and conquer MCMC method

that splits tasks among different machines. The Likelihood Inflating Sampling Al-

gorithm (LISA), significantly reduces computational costs by randomly partitioning

101
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the dataset into smaller subsets and running MCMC methods independently in par-

allel on each subset using different processors. Each processor runs an MCMC chain

that samples from sub-posterior distributions which are defined using an “inflated”

likelihood function. The draws from all processors are then combined in a way to pro-

vide approximate full posterior draws. We derived theoretical results showing that

LISA’s sub-posterior distributions are asymptotically equivalent to the full posterior

distribution while the sub-posteriors of its competing method, the popular Consensus

Monte Carlo (CMC), are asymptotically over-dispersed. Keeping this into account,

we showed with a Bernoulli distributed data, LISA with uniform weights (uniformly

choosing draws from all processors) outperforms CMC. However, our main contri-

bution was to examine the performance of LISA on the complex nonparametric re-

gression model, the Bayesian Additive Regression Trees (BART) model, where CMC

fails. We developed a different strategy for combining the draws of LISA from all

processors to study the full posterior of BART. We proved theoretically that with a

minor modification on LISA’s draws, we are able to generate full posterior draws of

BART by simply taking a weighted average. Using simulated and real datasets, LISA

showed superior performance in terms of accuracy and efficiency compared to CMC

in the widely used nonparametric regression model BART, where computations were

performed on the GPC supercomputer at the SciNet HPC Consortium.

In Chapter 4, we successfully examined LISA on BART with efficient Metropolis-

Hastings (MH) proposals introduced by Pratola (2016). Pratola (2016) discussed that

the existing MCMC methods for BART suffer from poor mixing and hence proposed

new MH proposals that efficiently searches the tree space in BART. The performance

of LISA on BART using the new MH proposals were consistent with the results

previously presented in Chapter 3 and in fact shows that both LISA and the new

efficient MCMC for BART can create a powerful combination that will significantly
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help reduce poor mixing and hence prevent overfitting issues.

Finally in Chapter 5, we analyzed a spatial forestry dataset provided by the First

Resource Management Group Inc. from the Timiskaming & Abitibi River forests in

Ontario, Canada. We built a Bayesian Geostatistical model to predict the proportion

of hardwood trees from elevation and vegetation index, and implemented an MCMC

method for posterior simulations. We compared our results with the simple Logis-

tic Regression model without spatial effect. As collecting ground truth data is very

costly, we have analyzed the trend of predictions with fewer data fitted to the model.

Our analysis suggest that with data as small as 10 points, the Bayesian Geostatistical

model generates unbiased estimates of hardwood counts with reasonable estimates of

uncertainty, while the Logistic Regression underestimates these uncertainties. Fur-

thermore, we examined that by stratifying the subsets of spatial points, the posterior

distributions show potential improvements, however do not always guarantee more

accurate predictions. Our analysis help reduce expenses of collecting ground truth

data, as the statistical model presented in this thesis shows the ability to generate

reasonable predictions with fewer data.

6.2 Future Work

In this thesis we studied the theoretical concepts behind performing Bayesian infer-

ence on large-scale data, and constructed the formulation of batch-posteriors that

guided us to develop LISA. With the asymptotic theoretical justifications, we pro-

posed to use uniform weights to combine LISA’s draws from all processors and success-

fully examined this on a Bernoulli distributed data. The intuition of using uniform

weights for LISA can also be justified as future work by showing if the geometric

and arithmetic means of LISA’s unnormalized sub-posterior densities are approxi-
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mately equal, i.e. the full posterior can be approximately seen as a mixture of LISA’s

sub-posteriors. However, we discovered that this weighting scheme cannot be used

in general for all models, specially complex models like BART, and thus is highly

model-specific. An avenue for future work can be to theoretically explore a general

weighting scheme to combine LISA’s draws, and examine LISA on a wider range of

models. One can also study and examine the behaviour of multimodal sub-posterior

distributions in LISA. Additional future work can be pursued to adaptively find the

best K (total number of batches) that will have the best performance or specify upper

bounds on K that will ensure enough data is in each batch for the overall algorithm

to perform well.



Appendix A

Appendix for Chapter 5

This Appendix includes the results from runs on five different simulations related to

Chapter 5. Mainly the 162 dataset is randomly divided into 100 (training) and 62

(validation) sets, five times, resulting in five different simulations. For each simulation,

we will then choose 25 and 10 data points from the 100, using random sampling and

stratified sampling.

Section A.0.1 compares the total hardwood count posteriors (in validation set)

from BGLGM and GLM for both random sampling and stratified sampling. Section

A.0.2 presents the prior and posteriors of all model parameters from all runs. At last,

Section A.0.3 contains the MCMC traceplots.
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A.0.1 Total Hardwood Count Posteriors from BGLGM &

GLM

Simulation 1 - Random & Stratified Comparisons
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Figure A.1: Comparing BGLGM posterior distributions of total number of hardwood
trees to the frequentist distributions from GLM - simulation 1.
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Simulation 2 - Random & Stratified Comparisons
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Figure A.2: Comparing BGLGM posterior distributions of total number of hardwood
trees to the frequentist distributions from GLM - simulation 2.
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Simulation 3 - Random & Stratified Comparisons
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Figure A.3: Comparing BGLGM posterior distributions of total number of hardwood
trees to the frequentist distributions from GLM - simulation 3.
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Simulation 4 - Random & Stratified Comparisons
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Figure A.4: Comparing BGLGM posterior distributions of total number of hardwood
trees to the frequentist distributions from GLM - simulation 4.
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Simulation 5 - Random & Stratified Comparisons
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Figure A.5: Comparing BGLGM posterior distributions of total number of hardwood
trees to the frequentist distributions from GLM - simulation 5.
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A.0.2 Posterior & Prior of model parameters

Simulation 1 - Stratified sampling
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Figure A.6: Priors and posteriors of β’s from simulation 1 - stratified sampling.
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Figure A.7: Priors and posteriors of σ, τ, and φ from simulation 1 - stratified sampling.
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Simulation 2 - Random sampling
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Figure A.8: Priors and posteriors of β’s from simulation 2 - random sampling.
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Figure A.9: Priors and posteriors of σ, τ, and φ from simulation 2 - random sampling.
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Simulation 2 - Stratified sampling

−10 −8 −6 −4 −2 0 2 4

0.
0

0.
2

0.
4

0.
6

0.
8

β0

D
en

si
ty

post'r (100 Train)
post'r (25 Train)
post'r (10 Train)
prior

(a) Intercept Posteriors

−2 0 2 4 6

0.
0

0.
5

1.
0

1.
5

β1
D

en
si

ty

post'r (100 Train)
post'r (25 Train)
post'r (10 Train)
prior

(b) β1,elev Posteriors

−5 0 5 10 15 20

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

β2

D
en

si
ty

post'r (100 Train)
post'r (25 Train)
post'r (10 Train)
prior

(c) β2,veg− Posteriors

−2 0 2 4 6 8

0.
0

0.
5

1.
0

1.
5

β3

D
en

si
ty

post'r (100 Train)
post'r (25 Train)
post'r (10 Train)
prior

(d) β3,veg+ Posteriors

Figure A.10: Priors and posteriors of β’s from simulation 2 - stratified sampling.
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Figure A.11: Priors and posteriors of σ, τ, and φ from simulation 2 - stratified sam-
pling.



Appendix A. Appendix for Chapter 5 117

Simulation 3 - Random sampling

−6 −4 −2 0 2 4

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

β0

D
en

si
ty

post'r (100 Train)
post'r (25 Train)
post'r (10 Train)
prior

(a) Intercept Posteriors

−2 −1 0 1 2 3

0.
0

0.
5

1.
0

1.
5

2.
0

β1
D

en
si

ty

post'r (100 Train)
post'r (25 Train)
post'r (10 Train)
prior

(b) β1,elev Posteriors

−10 −5 0 5 10 15 20 25

0.
0

0.
1

0.
2

0.
3

0.
4

β2

D
en

si
ty

post'r (100 Train)
post'r (25 Train)
post'r (10 Train)
prior

(c) β2,veg− Posteriors

−1 0 1 2 3 4 5

0.
0

0.
5

1.
0

1.
5

β3

D
en

si
ty

post'r (100 Train)
post'r (25 Train)
post'r (10 Train)
prior

(d) β3,veg+ Posteriors

Figure A.12: Priors and posteriors of β’s from simulation 3 - random sampling.
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Figure A.13: Priors and posteriors of σ, τ, and φ from simulation 3 - random sampling.
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Simulation 3 - Stratified sampling
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Figure A.14: Priors and posteriors of β’s from simulation 3 - stratified sampling.
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Figure A.15: Priors and posteriors of σ, τ, and φ from simulation 3 - stratified sam-
pling.
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Simulation 4 - Random sampling
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Figure A.16: Priors and posteriors of β’s from simulation 4 - random sampling.
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Figure A.17: Priors and posteriors of σ, τ, and φ from simulation 4 - random sampling.
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Simulation 4 - Stratified sampling
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Figure A.18: Priors and posteriors of β’s from simulation 4 - stratified sampling.



Appendix A. Appendix for Chapter 5 124

0.0 0.1 0.2 0.3 0.4

0
5

10
15

20
25

30

σ

D
en

si
ty

post'r (100 Train)
post'r (25 Train)
post'r (10 Train)
prior

(a) σ Posteriors

0 2 4 6 8

0.
0

0.
5

1.
0

1.
5

2.
0

τ

D
en

si
ty

post'r (100 Train)
post'r (25 Train)
post'r (10 Train)
prior

(b) τ Posteriors

0 100 200 300 400 500

0.
00

0
0.

00
2

0.
00

4
0.

00
6

0.
00

8

φ

D
en

si
ty

post'r (100 Train)
post'r (25 Train)
post'r (10 Train)
prior

(c) φ Posteriors

Figure A.19: Priors and posteriors of σ, τ, and φ from simulation 4 - stratified sam-
pling.
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Simulation 5 - Random sampling
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Figure A.20: Priors and posteriors of β’s from simulation 5 - random sampling.
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Figure A.21: Priors and posteriors of σ, τ, and φ from simulation 5 - random sampling.
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Simulation 5 - Stratified sampling
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Figure A.22: Priors and posteriors of β’s from simulation 5 - stratified sampling.
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Figure A.23: Priors and posteriors of σ, τ, and φ from simulation 5 - stratified sam-
pling.
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A.0.3 MCMC Trace Plots

Simulation 1 - Random sampling
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Figure A.24: MCMC Trace plots of β0 and β1 from simulation 1 (random sampling),
with their corresponding mean, 2.5%, and 97.5% quantiles.
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Figure A.25: MCMC Trace plots of β2 and β3 from simulation 1 (random sampling),
with their corresponding mean, 2.5%, and 97.5% quantiles.
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Figure A.26: MCMC Trace plots of σ and τ from simulation 1 (random sampling),
with their corresponding mean, 2.5%, and 97.5% quantiles.
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Figure A.27: MCMC Trace plots of φ from simulation 1 (random sampling), with
their corresponding mean, 2.5%, and 97.5% quantiles.
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Simulation 1 - Stratified sampling
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Figure A.28: MCMC Trace plots of β0 and β1 from simulation 1 (stratified sampling),
with their corresponding mean, 2.5%, and 97.5% quantiles.
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Figure A.29: MCMC Trace plots of β2 and β3 from simulation 1 (stratified sampling),
with their corresponding mean, 2.5%, and 97.5% quantiles.
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Figure A.30: MCMC Trace plots of σ, τ and φ from simulation 1 (stratified sampling),
with their corresponding mean, 2.5%, and 97.5% quantiles.
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Simulation 2 - Random sampling
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Figure A.31: MCMC Trace plots of β0 and β1 from simulation 2 (random sampling),
with their corresponding mean, 2.5%, and 97.5% quantiles.
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Figure A.32: MCMC Trace plots of β2 and β3 from simulation 2 (random sampling),
with their corresponding mean, 2.5%, and 97.5% quantiles.
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Figure A.33: MCMC Trace plots of σ and τ from simulation 2 (random sampling),
with their corresponding mean, 2.5%, and 97.5% quantiles.
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Figure A.34: MCMC Trace plots of φ from simulation 2 (random sampling), with
their corresponding mean, 2.5%, and 97.5% quantiles.
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Simulation 2 - Stratified sampling
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Figure A.35: MCMC Trace plots of β0 and β1 from simulation 2 (stratified sampling),
with their corresponding mean, 2.5%, and 97.5% quantiles.
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Figure A.36: MCMC Trace plots of β2 and β3 from simulation 2 (stratified sampling),
with their corresponding mean, 2.5%, and 97.5% quantiles.
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Figure A.37: MCMC Trace plots of σ, τ and φ from simulation 2 (stratified sampling),
with their corresponding mean, 2.5%, and 97.5% quantiles.
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Simulation 3 - Random sampling
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Figure A.38: MCMC Trace plots of β0 and β1 from simulation 3 (random sampling),
with their corresponding mean, 2.5%, and 97.5% quantiles.
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Figure A.39: MCMC Trace plots of β2 and β3 from simulation 3 (random sampling),
with their corresponding mean, 2.5%, and 97.5% quantiles.
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Figure A.40: MCMC Trace plots of σ and τ from simulation 3 (random sampling),
with their corresponding mean, 2.5%, and 97.5% quantiles.
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Figure A.41: MCMC Trace plots of φ from simulation 3 (random sampling), with
their corresponding mean, 2.5%, and 97.5% quantiles.
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Simulation 3 - Stratified sampling
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Figure A.42: MCMC Trace plots of β0 and β1 from simulation 3 (stratified sampling),
with their corresponding mean, 2.5%, and 97.5% quantiles.
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Figure A.43: MCMC Trace plots of β2 and β3 from simulation 3 (stratified sampling),
with their corresponding mean, 2.5%, and 97.5% quantiles.
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Figure A.44: MCMC Trace plots of σ, τ and φ from simulation 3 (stratified sampling),
with their corresponding mean, 2.5%, and 97.5% quantiles.
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Simulation 4 - Random sampling
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Figure A.45: MCMC Trace plots of β0 and β1 from simulation 4 (random sampling),
with their corresponding mean, 2.5%, and 97.5% quantiles.
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Figure A.46: MCMC Trace plots of β2 and β3 from simulation 4 (random sampling),
with their corresponding mean, 2.5%, and 97.5% quantiles.
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Figure A.47: MCMC Trace plots of σ and τ from simulation 4 (random sampling),
with their corresponding mean, 2.5%, and 97.5% quantiles.
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Figure A.48: MCMC Trace plots of φ from simulation 4 (random sampling), with
their corresponding mean, 2.5%, and 97.5% quantiles.
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Simulation 4 - Stratified sampling
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Figure A.49: MCMC Trace plots of β0 and β1 from simulation 4 (stratified sampling),
with their corresponding mean, 2.5%, and 97.5% quantiles.
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Figure A.50: MCMC Trace plots of β2 and β3 from simulation 4 (stratified sampling),
with their corresponding mean, 2.5%, and 97.5% quantiles.
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Figure A.51: MCMC Trace plots of σ, τ and φ from simulation 4 (stratified sampling),
with their corresponding mean, 2.5%, and 97.5% quantiles.
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Simulation 5 - Random sampling
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Figure A.52: MCMC Trace plots of β0 and β1 from simulation 5 (random sampling),
with their corresponding mean, 2.5%, and 97.5% quantiles.
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Figure A.53: MCMC Trace plots of β2 and β3 from simulation 5 (random sampling),
with their corresponding mean, 2.5%, and 97.5% quantiles.
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Figure A.54: MCMC Trace plots of σ and τ from simulation 5 (random sampling),
with their corresponding mean, 2.5%, and 97.5% quantiles.
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Figure A.55: MCMC Trace plots of φ from simulation 5 (random sampling), with
their corresponding mean, 2.5%, and 97.5% quantiles.
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Simulation 5 - Stratified sampling
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Figure A.56: MCMC Trace plots of β0 and β1 from simulation 5 (stratified sampling),
with their corresponding mean, 2.5%, and 97.5% quantiles.
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Figure A.57: MCMC Trace plots of β2 and β3 from simulation 5 (stratified sampling),
with their corresponding mean, 2.5%, and 97.5% quantiles.
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Figure A.58: MCMC Trace plots of σ, τ and φ from simulation 5 (stratified sampling),
with their corresponding mean, 2.5%, and 97.5% quantiles.
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