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Introduction:

Online chess has become extremely popular, especially on the web site Chess.com [1].

Such games have significant potential for cheating, since chess-playing computer programs

are now much better than humans and can be easily consulted (either manually or au-

tomatically) during online matches to achieve superior play. Chess.com actively monitors

and attempts to catch cheaters [2], and has recently published a detailed report of such

matters [3]. Nevertheless, allegations of cheating continue, and are very controversial [4].

Some recent allegations of cheating concern long streaks of games which were all (or

almost all) won by a specific player. In particular, concerns about cheating were raised [4, 5]

by former world champion V. Kramnik about a recent streak of 46 games played by top-level

player Hikaru Nakamura (player name: Hikaru), of which he won 45 and tied one.

I was contacted by Chess.com CEO Erik Allebest (because of my Wired interview [6]),

and asked to perform an independent statistical analysis of such winning streaks. To facilitate

this, I was supplied [7] with data showing all results on Chess.com of seven different top-

level players, including Hikaru. I then conducted an independent statistical examination

of evidence of unusual or surprising streaks in Hikaru’s Chess.com game record, which I

now describe. I first examined the nature of chess ratings, expected scores, win and tie

probabilities, and game correlations, to establish a simple, direct model for the probabilities

of various online chess outcomes.

When my original report [8] was publicized on Chess.com [9], Kramnik posted a lengthy

response video and comments [10] with numerous criticisms, to which I responded in an ad-

dendum [11]; some of those issues are incorporated herein. (Perhaps unsurprisingly, Hikaru’s

own video response [12] was much more positive.) These same win streaks have also been ex-

amined in other contexts including a blog post [13], a Chess.com response [14], and a Bayesian

perspective [15], which each reached similar conclusions through different approaches.

Of course, the existence of unlikely streaks is distinct from the issue of cheating. Indeed,

a player who cheats in a consistent, regular manner might obtain a chess record which is

indistinguishable from a stronger (but honest) player. Conversely, a player might perform

much better over a short period due to higher concentration or motivation or preparation,

even without any cheating. So, this examination should be viewed as merely investigating

the existence of unlikely streaks, not the broader issue of cheating in online chess.
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Chess Ratings and Expected Scores:

One way to assess probabilities of chess outcomes is through chess ratings. Every player

on Chess.com is given a chess rating, which is updated after each game. (Formally, these

are “Chess.com blitz ratings”; many players also have blitz and classical ratings from the

international chess federation FIDE, but we do not consider those here.)

In principle, these ratings should specify the expected score (i.e., average outcome) in

each game, where the score is 1 for a win, 1/2 for a draw, or 0 for a loss. (The ratings do

not, however, specify what fraction of the score should arise from wins versus draws; see next

section.) Specifically, if White has rating A, and Black has rating B, so the rating difference

is D = A−B, then one possible formula for White’s expected score S is the following simple

Elo logistic formula:
1

1 + 10−D/400
=

1

1 + 10−(A−B)/400
.

To test the validity of this formula, we combined all games in the seven data files, and

“binned” them by rating difference into bin ranges . . . , (−14,−5), (−4, 5), (6, 15), (16, 25), . . ..

Then, for each bin, we computed the average score by White among all games within that

bin. We compared that to the curve specified above (in red). The results were as follows:

−400 −200 0 200 400

0.
2

0.
4

0.
6

0.
8

Average Scores versus Elo Expected Scores

Rating Difference (White − Black), plus or minus 5

A
ve

ra
ge

 S
co

re
 (

W
hi

te
)

2



(These fit curves are presented from White’s perspective. But in every game, Black’s score

equals one minus White’s score, with rating difference the negative. So, presenting those

graphs from Black’s perspective would simply involve replacing X by −X, and Y by 1− Y ,

i.e. rotating the graph by 180 degrees, leading to exactly the same fit.)

This graph indicates that the average scores do approximately mimic the Elo expected

scores, though with slight excess for rating differences between 100 and 300. Furthermore,

they do not take into account the (small) advantage of playing White (i.e., moving first),

even though the average score for White in the data is about 0.52 or slightly higher than

0.50. Hence, we tweaked the formula to arrive at the slightly adjusted expected score

S =
1

1 + 10−(D+14)/390
=

1

1 + 10−(A−B+14)/390
(∗)

(where the +14 represents White’s advantage), which fits the data even better:
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This fit is accurate enough to use to estimate probabilities. So, in our analysis below,

we assume the formula (∗) for White’s expected score. (It is also possible to use the more

sophisticated Glicko formulas [16], but they require knowing each player’s “ratings deviation”

(RD), which were not provided to me. In any case, the good fit above suggest that probability
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estimates using (∗) are quite accurate, and any other formula which also fits the data well

should give similar results.)

Draw (Tie) Probabilities:

To evaluate the likelihood of long streaks of wins and draws, it is necessary to consider not

just the expected score S, but more specifically the probability W of a win and probability

T of a draw (tie). Since wins give a score of 1 while ties give a score of 1
2
, we must have

S = W +
1

2
T .

In traditional chess tournaments with over-the-board games lasting many hours, ties are

quite common. However, in online blitz chess they are less so; just 9.1% of the games in the

dataset resulted in draws. Indeed, binning the data again as above, we observe that with

rating difference D, the simple exponential downward-quadratic function

T = (1/8) e−(D/400)2 (∗∗)

gives a reasonably good approximation to the probability of a tie:
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So, in our analysis below, we use the formula (∗∗) for the probability of a tie. It then follows

from the above that the probability of a win is given by

W = S − 1

2
T

with S as in (∗) and T as in (∗∗).

Independence versus Hot Hand:

To model probabilities of streaks, another issue is the extent to which different games are

independent. There is a long history of statistical debate about “hot hands” in basketball

and other sports. It is quite plausible that there would be some “hot hand” or persistence

of performance in chess games as well, especially for games played on the same day in rapid

succession, and perhaps even against the same opponent.

To investigate this, we examined the 57,421 games played by Hikaru on Chess.com. For

each game, we computed Hikaru’s “excess score”, defined as his actual score (i.e. 1 or 0 or
1
2
) minus his expected score E from (∗) (which depends on his rating difference with his

opponent in each game). This gives a time series list of excess score for all 57,421 games

played by Hikaru on Chess.com, in time order.

For such a time series, we can consider their “autocorrelations” which measure, for each

time lag, the correlation between the excess score on games played at that spacing. For

example, at lag=1, this measures the correlation of excess score between successive games.

(The autocorrelation at lag=0 is always equal to one, since games have perfect correlation

with themselves.) For Hikaru’s list, the autocorrelations are as follows:
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We see from this plot of autocorrelations that (to our surprise) the autocorrelations at all

lags (except for lag=0) are all extremely close to zero. This indicates that there is virtually

no correlation between Hikaru’s excessive scores on successive games. That is, for these

games at least, there is no overall evidence of a “hot hand”, so they can be regarded as all

being independent. We use this assumption in our analysis below.

Hikaru Winning Streaks – Identification:

Next, we investigate winning streaks in the Hikaru game data.

Hikaru is recorded as playing a total of 57,421 games on Chess.com over the date range

2014-01-06 to 2024-07-14, primarily at time control 3m+0s (i.e., three minutes each for the

entire game; 35,449 games) or 1m+0s (15,569 games) or 3m+1s (3,310 games). We combine

all of these games together, in time order, to determine streaks. (It is also possible to separate

out the games played at specific time controls, and/or against highly-rated opponents only.

We have investigated this too, and the results are similar or less streaky; see below.)

To define a “streak”, we have to decide how to handle draws. At the “pure” extreme,

streaks consist solely of wins, while any draw or loss ends it. (We did investigate such
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“pure” winning streaks, and again the results are similar or less streaky compared to the

below.) At the other extreme, wins or draws both continue a streak, while only a loss ends

it. (This is a very loose definition, allowing many draws in a row to constitute a major

“streak”, which seems inappropriate.) As a compromise, since the most controversial of

Hikaru’s streaks involved just one draw, we use the “in between” definition that a streak

consists of a sequence of games with no losses and at most one draw. That is, a single draw

continues a streak, but a second draw (or any loss) ends it.

With this definition, Hikaru has a total of 8,069 streaks (including some overlapping

ones). Now, most of these are very short “streaks”; indeed 1,302 of them consist of just a

single game. However, quite a few of them are reasonably large. Indeed, 226 of them are at

least 30 games, and the largest are of lengths 121, 114, 107, 103, and 101.

Hikaru Winning Streaks – Probabilities:

Just because a streak is long, does not necessarily mean that it is unlikely. We define the

“raw” probability of each streak as the probability of his either winning all of those games

(if he did win them all), or of either winning all or winning all but one and tying the other

(if he did win all but one and tie one). This probability depends on the rating differences,

according to the formulae (∗) and (∗∗), using the actual rating difference of the players

at the time of each game (to account for changes in player ability over time). We assume

independence between games as discussed above; any persistence or “hot hand” assumption

would only make the streaks more likely. We can then compute the “raw” probability of

that specific streak on those specific games.

Even some very long streaks are not particularly unlikely. For example, Hikaru’s streak

of length 121 began with his game number 20,940, and took place on 22 December 2018

(except for the final game), with opponents having a mean rating of just 1,579 (compared

to his rating of over 3,000 during that same period). His probability of scoring at least 120.5

on those 121 games then works out to 1/8.9, which is not unlikely at all. (Streaks which are

very long but not unlikely might be related to Hikaru’s apparent practice of “farming”, i.e.

intentionally seeking out lower-rated players in an effort to increase his own rating [12].)

To avoid streaks which are short, or not particularly unlikely, we need to focus on those

which are striking in some sense. To be specific, we define a streak to be “notable” if it

consists of a total of at least 30 games, and has raw probability less than one chance in 500.

The following table shows all of Hikaru’s streaks which are “notable” by this definition:
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Hikaru Notable Streaks (length 30+, and prob 1/500+):

line streaknum enddate startgame length score expected 1/prob
1 589 2016.04.06 7027 54 54 48.6 1766
2 2155 2018.07.01 18184 44 43.5 38 875.9
3 2414 2018.11.12 19665 40 39.5 33.9 1083.7
4 2415 2018.11.12 19666 57 56.5 49.2 9452.1
5 3734 2020.01.25 28227 30 29.5 23.9 1345.1
6 3917 2020.03.12 29340 41 40.5 33.3 11570.6
7 4465 2020.05.31 32790 61 61 55 4849.8
8 4551 2020.06.30 33483 53 52.5 47.1 808.1
9 7388 2023.11.17 51857 46 45.5 40 829.6
10 7770 2024.03.12 55162 35 34.5 29.5 568.4

Hikaru Notable Streaks – Theoretical Analysis:

As can be seen from the above table, the most controversial streak, of length 46 ending

on date 2023.11.17 (line 9), is not too far out of the ordinary. It has probability about one

chance in 830. Indeed, a sequence of 57,421 games has about 57, 421/46
.
= 1, 248 different

non-overlapping independent chances to achieve a streak of that length, so finding one with

probability 1/830 is actually very likely.

Of the other streaks, just two are considerably less likely, namely lines 4 and 6 with

probabilities 1/9,452 and 1/11,571 respectively. So, we consider them next.

The streak on line 4, with probability 1/9,452, consisted of 57 games during the period

Nov. 10–12, 2018, at time controls 3m+0s (37 games) or 1m+0s (20 games). (As an aside,

the previous streak on line 3 largely overlaps with this one, beginning with a draw one game

earlier, and thus ending earlier upon the next draw.) This streak was played against a total

of eight different opponents (none more than ten games each). The mean opponent rating

was 2,786, or about 315 less than Hikaru’s rating which hovered around 3,100.

Now, out of 57,421 games total, there are still over 1,000 different independent oppor-

tunities to establish a streak of length 57 (and much more if overlapping, non-independent

intervals are considered). So, as a first approximation lower bound, suppose there are 1,000

independent opportunities to establish a streak, each of independent probability 1/9,452.

Then the probability of achieving such a streak would be given by

1 −
[
1 − 1

9, 452

]1,000 .
= 0.100398 = 1/10 .

That is, under this independence approximation, the probability of achieving such a streak

over the course of 57,421 games is about one chance in ten. That is not particularly surprising,

and does not reach the usual 0.05 level for statistical significance. (And remember that this

is just a lower bound, ignoring overlapping opportunities; see the next section.)
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The streak on line 6, with probability 1/11,571, consisted of 41 games during the period

March 10–12, 2020, all at time control 3m+0s. This streak was played against five different

opponents, including Bigfish1995 (13 games) and ToivoK3 and wonderfultime (10 games

each). The mean opponent rating was 3,008, which on average was nearly 250 less than

Hikaru’s rating which had climbed to around 3,250 by this point.

Out of 57,421 games total, there are about 1,400 different independent opportunities to

establish a streak of length 41 (again ignoring overlapping opportunities). So, we consider

the approximation that there are 1,400 independent opportunities to establish a streak, each

of independent probability 1/11,571. Then the probability of achieving such a streak would

be given by

1 − [1 − 1

11, 571
]1,400

.
= 0.11396

.
= 1/8.8 ,

That is, under this lower bound approximation, the probability of achieving such a streak

over the course of 57,421 games is about one chance in 8.8. That is not very surprising, and

again does not reach the usual 0.05 level for statistical significance.

Hikaru Monte Carlo Simulation:

The above discussion indicates that Hikaru’s individual win streaks are not particularly

surprising. However, the approximate probabilities computed above are just lower bounds,

since they do not take into account the additional possibilities of long streaks in overlapping

(and hence not independent) game sequences.

To analyse this further, we conducted a Monte Carlo (random) simulation. Specifically,

using the actual player ratings for each of Hikaru’s 57,421 games, we simulated fresh inde-

pendent results using the probabilities of wins and ties from (∗) and (∗∗). We repeated this

simulation 100 different times, each time recording the smallest individual streak probability

(i.e. the largest 1/probability), and also the total number of “notable” streaks as above (i.e.

length at least 30, and 1/probability at least 500).

The distribution of the largest 1/probability in those 100 simulations, together with

Hikaru’s observed two largest 1/probability values (11,570.6 and 9,452.1, respectively) in

red, is as follows:
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Hikaru Streak Probability Monte Carlo Samples
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We see from the graph that, while the observed values 11,570.6 and 9,452.1 are larger

than many of the simulated maximum 1/probability values, there are also many simulated

1/probability values which are much larger than that. Indeed, the largest simulated 1/prob-

ability value is over 284,000, and the mean simulated 1/probability value is over 26,000, and

even the median simulated 1/probability value is 10,462 which is close to Hikaru’s 11,570.6

value. In fact, in 43 of the 100 simulations (nearly half), the least likely streak is less likely

than the observed 1/11570.6 one. This further confirms that Hikaru’s least likely streaks are

not surprising over such a long collection of games.

Similarly, the distribution of the number of “notable” streaks (i.e. length at least 30, and

1/probability at least 500) in each of the 100 simulations, together with Hikaru’s observed

value of 10 in red, is as follows:
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Hikaru # Notable Monte Carlo Samples

Number of Notable Streaks

N
um

be
r 

of
 O

cc
ur

en
ce

s 
in

 1
00

 S
im

ul
at

io
ns

0 5 10 15

0
5

10
15

This graph shows that Hikaru’s actual number 10 of notable streaks is quite typical for the

simulations, which have a mean of 9.25 and median of 9. Indeed, in 40 of the 100 simulations,

the number of notable streaks was equal to or greater than the observed 10. This confirms

that Hikaru’s number of notable streaks is also not surprising.

Second-Least-Likely Streaks:

As another test, we note that Hikaru had two streaks whose raw probabilities were quite

low, namely 1/11570.6 and 1/9452.1. As discussed above, each of these streaks on its own

turns out to be not at all surprising. However, this raises the question of how unlikely it

would be to have two such streaks which are each so unlikely.

To test this, we ran another Monte Carlo simulation, again simulating the possible out-

comes of Hikaru’s 57,421 games, but this time looking at the raw probability of the second

most unlikely streak. Once again, we repeated this simulation 100 times. The resulting

distribution, together with Hikaru’s observed value of 1/9452.1, appears as follows:
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Second−Most Unlikely Streak Monte Carlo Samples
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This graph indicates that Hikaru’s second-most-unlikely streak probability of 1/9452.1

is slightly less likely than typical. Indeed, only 18 of the 100 simulations had second-most-

unlikely streaks which were less likely. Nevertheless, even 18% is still quite a large fraction,

much larger than the 0.05 required for statistical significance. Indeed, some of the simulated

second-most-unlikely streaks were considerably less likely, with two of their probabilities less

than 1/65,000. This analysis indicates that Hikaru’s second-most-unlikely streak was slightly

less likely than expected, but still well within the usual range of statistical fluctuation.

It is possible to continue such analyses to additional streaks. However, Hikaru’s third-

least likely streaks (and beyond) are less surprising (with probabilities 1/4849.8 and larger),

so they provide less evidence. Indeed, a fresh Monte Carlo simulation looking for third-least-

likely streaks found that 45% of the time they are less likely than 1/4849.8, so this is not

rare at all. And his fourth etc streaks would be even less rare by this measure. That is,

Hikaru’s two least likely streaks are the only two with very small raw probabilities which are

potentially surprising and thus in need of investigation.
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Restricting to just a Single Time Control:

The response [10] vigorously objected to my combining games at different time controls

when investigating streaks. So, I now consider what would change if we restrict solely to

games with 3m+0s time control (Hikaru’s most common time: 35,449 games, including the

entire controversial 46-game streak). In that case, the list of “notable” streaks (as defined

above) becomes the following:

Hikaru 3m+0s Notable Streaks (length 30+, and prob 1/500+):

line streaknum enddate startgame length score expected 1/prob
1 8 2014.05.14 45 46 46 40.5 2143.3
2 1189 2018.07.01 8757 44 43.5 38 875.9
3 2400 2020.01.25 16508 52 51.5 46.5 680
4 2557 2020.03.12 17551 41 40.5 33.3 11570.6
5 3063 2020.05.31 20723 61 61 55 4849.8
6 4575 2023.07.10 31607 47 46.5 41.1 746
7 4675 2023.11.17 32499 46 45.5 40 829.6

Comparing this with the previous table, we see that several of the previous streaks remain,

including the least likely one (now line 4), and the most controversial one (now line 7).

(However, the second-least-likely one disappears.) And, in a fresh Monte Carlo simulation

of 100 random results for just these 35,449 games, 29% of them have a streak which is

less likely than the 1/11,570.6 lowest probability achieved by Hikaru. So, Hikaru’s notable

streaks, restricted to just 3m+0s games, are still not at all unlikely over his full history.

Related to this, the above fits of the expected score and draw probabilities to average

game data were also done combining the seven data files at all time controls (a total of

293,047 games). If we restrict to just the 3m+0s games (a total of 131,445, or about 45% of

them), then the fit of the score formula (∗) to average scores becomes:
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This is nearly as good a fit of (∗) as before, with just slightly more excess at differences

around +200, but still quite a reasonable approximation.

Meanwhile, the fit for draw probabilities (∗∗) for just the 3m+0s games becomes:
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This is a slightly worse fit of (∗∗) than before, since the 3m+0s games have a slightly higher

draw rate than the data overall. So it could be adjusted slightly, but this would make only

small changes to the probabilities, not nearly enough to effect the overall conclusions.

In summary, restricting to just the single most common 3m+0s time control makes only

small changes to the fit of the (∗) and (∗∗) formulae, and does not show any additional

evidence of unlikely winning streaks.

Conclusion:

This statistical analysis indicates that Hikaru’s online chess winning streaks are not

particularly surprising. His recent controversial streak of length 46 is well within expected

levels. His two most surprising streaks are of length 57 in 2018, and of length 41 in 2020.

Although their raw probabilities are each about one chance in 10,000, the probability of

observing each such streak over the course of so many games is still shown to be above 10%

based on independent non-overlapping opportunities alone, and about 43% in Monte Carlo

simulations, and hence not unlikely. Having two such notable streaks is somewhat less likely,

but still occurs about 18% of the time, well within usual statistical variability.
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Of course, every statistical analysis requires making some choices regarding definitions,

scope, etc. I believe that the choices in this report are all fair and defensible, consistent with

the available data, and lead to accurate conclusions. Furthermore, various alternative choices

(such as restricting to a single time control) lead to similar results, with no indications that

other reasonable choices would lead to significantly different conclusions. Hence, the final

conclusion, that the streaks observed in Hikaru’s Chess.com record are fairly typical given

the player ratings over Hikaru’s long record of games, appears to be quite robust.

In closing, contrary to the allegations in [10], I seek only the truth, and am not at all

averse to statistically identifying suspicious behaviour it arises (see e.g. my work in the high-

profile lottery retailer scandal [17]). So, I would be very happy to uncover suspicious chess

behaviour if I could. However, I do not see any evidence of suspicious behaviour in Hikaru’s

online chess streaks.
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