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Naive estimates of incidence and infection fatality rates (IFR) of COVID-19 suffer from a variety

of biases, many of which relate to preferential testing. This has motivated epidemiologists from

around the globe to conduct serosurveys that measure the immunity of individuals by testing for

the presence of SARS-CoV-2 antibodies in the blood. These quantitative measures (titre values)

are then used as a proxy for previous or current infection. However, statistical methods that

use this data to its full potential have yet to be developed. Previous researchers have discretized

these continuous values, discarding potentially useful information. In this paper, we demonstrate

how multivariate mixture models can be used in combination with poststratification to estimate

cumulative incidence and IFR in an approximate Bayesian framework without discretization. In

doing so, we account for uncertainty from both the estimated number of infections and incomplete

deaths data to provide estimates of IFR. This method is demonstrated using data from the Action

to Beat Coronavirus (Ab-C) serosurvey in Canada.
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1. Introduction

As of April 1, 2022, there have been close to 500 million confirmed cases of COVID-19 worldwide

(World Health Organization, 2022). However, the general consensus is that this number is an

underestimate of the true cumulative incidence of the disease, as this estimate is largely dependent

on the number of tests being administered, the accuracy of testing (Burstyn and others, 2020a,b),

and to whom these tests are being issued. If testing is extensive enough, and a correction is made

for underreporting of asymptomatic cases, then a test-based case fatality rate may be a reasonable

proxy for the infection fatality rate (IFR) (Luo and others, 2021). However, given that the testing

early in the pandemic was sparse, and estimating IFR accurately is of the utmost importance,

epidemiologists across the globe are conducting serosurveys that measure immunity of individuals
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by testing for the presence of SARS-CoV-2 antibodies in the blood (Chen and others, 2021). This

quantitative measure (which we will call a titre value) is then used as a proxy for previous or

current infection. However, how exactly this data should be used to accurately estimate important

epidemiological quantities (like incidence and IFR) is an active area of research.

The standard approach is to label everyone who has a titre value above some threshold as

“infected”, and consider everyone else not infected. This leads to the problem of selecting the

cutoff, which can be made based on known cases/controls and analysis of the Receiver Operating

Characteristic (ROC) Curve. The ROC plots the true positive rate (sensitivity) vs the false

positive rate (1-specificity) and it is typical to select the cutoff that results in the highest Youden

Index (sensitivity + specificity - 1) (Krzanowski and Hand, 2009). Gelman and Carpenter (2020)

suggest that the uncertainty in sensitivity and specificity can be considered parameters to be

estimated in a Bayesian hierarchical model assuming that informative priors are used for the

sensitivity and specificity. Although this method accounts for uncertainty in the sensitivity and

specificity, it still suffers from the loss of information in the discretization process. Particularly in

COVID-19 applications, a subject with an extremely high level of antibodies should have a lower

probability of being a false-positive than someone who is just barely above the threshold. This

could be partially remedied by allowing sensitivity and specificity to be a function of covariates,

but ideally methods that avoid these issues all together are preferable.

Mixture models are a natural choice to overcome the limitations of using a fixed cutoff, as

they allow infection status and associated uncertainty to depend on the magnitude of individuals’

titre values. Mixture models have been widely applied when studying the prevalence of infectious

diseases in animals (Ødeg̊ard and others, 2003, 2005; Nielsen and others, 2007) and in humans

(Vink and others, 2015, 2016; Kyomuhangi and Giorgi, 2022). There are several other papers that

have modeled the COVID-19 antibody levels directly to infer cumulative incidence through the use

of mixture models. Bouman and others (2021) showed that mixture models can outperform the
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methods of Gelman and Carpenter (2020) for estimation of cumulative incidence of COVID-19.

Furthermore, Bottomley and others (2021) apply mixture models to Kenyan serosurvey data and

show that mixture of skew normal distributions more accurately estimates cumulative incidence

than methods based on thresholds. However, the applications of these models thus far has been

rather limited. For instance, some unexplored questions include: how do we use these mixture

models to account for survey bias and get cumulative incidence rates for the general population?

How do we incorporate multiple titre values per person? How do we estimate cumulative incidence

in the presence of vaccinated individuals? How do we use these mixture models to estimate IFR

while accounting for uncertainty in both the number of infections and deaths?

In this paper, we demonstrate how mixture models can be used to estimate cumulative in-

cidence in an approximate Bayesian framework without discretization. Specifically, we apply a

mixture of multivariate t-distributions to the log of the titre values, using a logistic regression

model for the mixing parameter to account for covariates. We then use poststratification to obtain

estimates of cumulative incidence and its associated uncertainty. Furthermore, we estimate the

number of COVID-19 related deaths using partially complete data, and use this in combination

with incidence estimates to estimate the IFR across Canada.

1.1 Data

Dry blood spot (DBS) samples were collected from participants of the Action to Beat Coronavirus

(Ab-C) study (https://www.abcstudy.ca/). This paper is concerned with the first two phases of

the study. In Phase 1, DBS samples from 9123 participants were collected from June to November

2020 and roughly corresponding to the first viral wave (April 1 to July 31, 2020). In Phase 2,

DBS samples from 7299 were collected from December 2020 to May 2021 and roughly correspond

to the second viral wave (October 1, 2020 to March 1, 2021). These blood spots were tested for

prevalence of Immunoglobin G (IgG) antibodies, measured using three antigens: Spike (SmT1),
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RBD, and nucleocapsid (NP). Two different versions of the SmT1 antigen test were used on the

Phase 1 blood spots, while all three were applied to Phase 2 blood spots. All three titres will show

larger values for participants who have been exposed to COVID-19, but only SmT1 and RBD will

show larger values for mRNA vaccinated individuals. This is because the mRNA vaccines do not

contain the nucleocapsid (NP) protein. Therefore, people who received an mRNA vaccine and

did not have a history of prior infection, will not develop anti-NP antibodies. Those that were

previously infected, regardless of vaccination status, will have anti-NP antibodies (Houlihan and

Beale, 2020). This will be helpful for distinguishing between vaccinated and infected individuals

in Section 3.3. In Phase 1, 8919 people had one SmT1 measurement, and 8704 had two SmT1

titre measurements, along with complete covariate information. In Phase 2, 7065 had all three

measurements, along with complete covariate information. Of those 7065, 624 joined the study

in Phase 2 (6441 participants had complete Phase 1 and Phase 2 data). These data have been

previously analyzed by Tang and others (2022) using a simpler model. Additional medical details

regarding these antigen tests can be found in their paper. Tang and others (2022) also investigated

the representativeness of study participants when compared to the Canadian population. They

found that the study population tended to be older, more university educated, more likely to be

indigenous, etc. See eTable 3 in their paper for further reading.

Although serosurveys are a proven way to accurately measure seroprevalence, the notion of

seroprevalence itself has several drawbacks. Firstly, there is a chance that participants got infected

and returned their blood spots soon after. Antibodies generally take between 7 and 14 days to

be measurable from the onset of infection (Centre for Disease Control and Prevention, 2022).

This may cause a slight under-estimation of incidence. Secondly, antibodies wane slowly over

time. However, they have been shown to remain elevated for many months after infection. In a

study (Alfego and others, 2021) evaluating 39,086 individuals with confirmed positive COVID-

19 infection by RT-PCR between March 2020 to January 2021, the anti-NP antibody remained
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elevated in 68.2% [95% Cl: 63.1-70.8%] of participants after 293 days, while anti-SmT1 antibody

remained elevated in 87.8% [95% Cl: 86.3-89.1%] of participants after 300 days. Note that the

majority of people in our study were likely infected far less than 300 days prior to submitting

their blood spots, so the maintenance percentange in our study was likely higher than those in

Alfego and others (2021). At this point, we simply note these limitations of seroprevalence, and

examine the potential impact of waning immunity on our results in Appendix F.

Population demographics (age, sex, province, ethnicity, education, and long-term care resi-

dency) were obtained from 2016 Census data from Statistics Canada (Statistics Canada, 2016).

We are using the 2016 Census data because, at the time of writing, the 2021 Census data per-

taining to education and ethnicity was not available. The age/sex/geographic data for 2021 were

available and while the total population increased roughly 5% between 2016 and 2021, the age-sex

and geographic distributions were nearly identical. This information will be used for poststrati-

fication as described in Section 2.3. The long-term care (LTC) COVID-19 deaths were obtained

from https://ltc-covid19-tracker.ca (Samir and others, 2022) between Sept 2020 and March 2021

for each province. The total deaths for each province by age and sex were obtained from the dif-

ferent provincial governments (Ontario, Alberta, and Quebec). For additional provinces, where

deaths by age and sex could not be obtained, we used the distribution of nearby provinces to

approximate those deaths. The age/sex distribution of deaths in Alberta was used to infer the

distribution of deaths in British Columbia and Saskatchewan. The age/sex distribution of deaths

in Quebec was used to infer the distribution for the Atlantic region (New Brunswick, Nova Scotia,

Newfoundland, and Prince Edward Island). Manitoba reported different age groups than Ontario,

but seemed to have a similar distribution. Thus we used Ontario data to infer Manitoba’s age/sex

deaths for the different age groups. This means that although the aggregate IFR estimates for the

Atlantic region, Manitoba, British Columbia, and Saskatchewan are likely valid, the estimates by

age/sex should be treated with caution due to the imputations noted above.
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2. Methods

Our first goal is to estimate the cumulative incidence of SARS-CoV-2 in Canada. We define

cumulative incidence in Phase 1 to be the number of SARS-CoV-2 infections up until September

30th 2020, divided by the population size. The cumulative incidence in Phase 1 and 2 has the

cumulative number of infections up until March 31st 2021 as the numerator. We define the

incidence proportion in Phase 2 to be the number of infections from Oct 1st 2020 to March

31st 2021, divided by the population size. We recognize that the terms cumulative incidence and

incidence proportion are used interchangeably in the epidemiology literature, and we are avoiding

the term “cumulative” when presenting estimates of incidence in Phase 2 alone. We estimate

incidence in two steps. First, we will fit a Bayesian mixture model to the titre values, relating an

individual’s infection status, a latent variable, to their measured covariates via a logistic regression

model. Second, we will use poststratification to account for the disparity between the population

of survey responders versus the general Canadian population. This will yield an estimate of the

number of infections in Canada for each covariate combination, and hence, an estimate of the

cumulative incidence.

Our second goal is to estimate the Infection Fatality Rate, which is defined as the number of

COVID-19 related deaths divided by the number of infections. This will be estimated in Phase 1,

Phase 1 and 2, and Phase 2 alone with the same time periods as mentioned previously. We do this

by building a Bayesian model for the number of deaths in Canada by age/sex/province group,

and dividing this by the estimated number of infections. This will allow for estimates of IFR in

any age/sex/province category that we want, accounting for uncertainty in both the deaths and

the infections.
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2.1 Notation

Lower case Latin letters are used to represent (potentially vector-valued) observed data; x are

observed covariates, w is observed titre values, and d is observed deaths. The exception is p,

which is an unknown probability of infection. Upper-case Latin letters represent latent variables

(“missing data”), such as the unknown number of infections Y , an unknown number of deaths D,

and the latent infection status Z of an individual. Greek letters will be used for model parameters.

2.2 Mixture models

In this subsection we will introduce three mixture models that will be used to infer cumulative

incidence. First, we will introduce a univariate (one titre value), two-component (“not infected”

and “infected”) mixture model, relating each study participant’s covariates to their probability of

infection. We will then extend this model to the bivariate case with two titre values in 2.2.2. These

two models will be fit to the Phase 1 data. We will then present a trivariate, three-component

(“unvaccinated, not infected”, “unvaccinated, infected”, and “vaccinated, not infected”) mixture

model that will be fit to the Phase 2 data. Note that the “infected” group here contains both

vaccinated and unvaccinated people as our titres values are not precise enough to determine

vaccination status if a person is infected. This is likely inconsequential as we will explain shortly.

2.2.1 Univariate mixture of t-distributions - Phase 1. The infectivity status, Zi, of an individual

i is latent and is measured through an antibody lab test (titre), which is a quantitative measure.

The density of the logged Phase 1 SmT1 titre values is shown in Figure 1. Notice that there is

an approximately symmetric mound around 0.15 which is likely to be comprised of individuals

who never had COVID-19. Previously, Gaussian distributions were used to model the logged

titre values in non-infected individuals (Bottomley and others, 2021). However, we expected a

heavier-tailed distribution would be needed, and employ a t-distribution for both the negative
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and positive individuals.

The univariate, two-component version of our mixture model can be written as follows:

log(wi)|Zi = k ∼ f1(µk, σk, νk), k = 0, 1

Zi|xi ∼ Bernoulli(pi) (2.1)

logit(pi) = βTxi

where wi is the titre value of invidual i, Zi is the latent variable indicating SARS-CoV-2 infection

(Zi = 1) or non-incidence (Zi = 0), xi is a m× 1 vector of covariates, β is a 1× (m+ 1) vector of

regression coefficients which will be used for poststratification as described in Section 2.3, f1 is the

univariate (shifted and scaled) t-density, and pi = logit−1(βTxi) is the probability that individual

i has been infected with COVID-19. That is, the probability that someone had COVID-19 is a

function of their covariates, but the parameters of the t-distributions are not. The covariates

used in our mixture models were age (< 20, 20-29, 30-39, 40-49, 50-59, 60-69, 70-79, 80+),

sex (male, female), province (Alberta, Atlantic Region, British Columbia, Manitoba, Ontario,

Quebec, Saskatchewan), ethnicity (white, indigenous, not white or indigenous), and education

(university degree, college degree, less than college degree), meaning that m = 18.

Since Zi is a latent discrete variable, certain MCMC software programs cannot sample it

directly. However, we can marginalize Zi out to obtain the following likelihood:

π(log(wi);β, ξ, xi) = [1− logit−1(βTxi)]f1[log(wi)|µ0, σ0, ν0] + logit−1(βTxi)f1[log(wi)|µ1, σ1, ν1]

where ξ = {µ0, µ1, σ0, σ1, ν0, ν1} is a vector of parameters which need to be estimated, but are

not used to infer incidence directly.

For both Phase 1 and Phase 2, we have continuous values for multiple titres, and thus will

now extend this univariate mixture model to a mixture of multivariate t-distributions.
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2.2.2 A bivariate mixture model for Phase 1. For Phase 1, we have two measurements of SmT1

for each sample. Using both titres should improve our ability to identify individuals who were in-

fected. Our model naturally extends to the bivariate case by replacing the univariate t-distribution

by a bivariate t-distribution (f2):

log(wi)|Zi = k, xi ∼ f2(µk,Σk, νk), k = 0, 1

Zi|xi ∼ Bernoulli(pi) (2.2)

logit(pi) = βTxi

where µk is a vector of length 2, Σk is a 2x2 covariance matrix, and the rest of the parameters

are the same as Section 2.2.1. Note that the logistic regression model for Zi in the second level is

still univariate. This allows the model to accomodate multiple titre values per person without the

number of parameters getting out of control. We fit this bivariate model on the two Phase 1 titre

values using MCMC to obtain posterior samples of β which will be used later for poststratification.

2.2.3 A trivariate, three-component mixture model for Phase 2. In Phase 1, vaccinations had

not yet been made available and Zi could only take on two values: “infected” or “not infected”.

However, during Phase 2, a non-negligible proportion (≈ 2.5%) had claimed to have been vacci-

nated. Given that vaccinated people are distinguishable from infected people based on the three

titre values that we have available, we now have three mutually exclusive values for Zi: “unvacci-

nated, not infected”,“unvaccinated, infected”, and “vaccinated, not infected”. We did not include

a fourth group ”vaccinated, infected”, as there were likely to be very few participants in this

category. Note that we can differentiate between “vaccinated, not infected” and “unvaccinated,

infected” individuals because infected individuals will tend to have high titre values for all three

titres, while vaccinated individuals should not have an elevated titre value for NP. That is, if

a participant shows a high value of SmT1 and RBD, and a low value for NP, it should predict

a small probability of infection. If a participant has a large value for all three, then the model
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should predict a large probability of infection.

Furthermore, we decided not to use self reported vaccination status as data, as only about half

of the participants who claimed to be vaccinated were showing large values of SmT1 and RBD.

This may be because they had only received one dose, or perhaps they had provided their blood

spot less than two weeks since their second dose. Either way, we want the data (titre values) to

determine SARS-CoV-2 incidence, rather than rely on self-reported claims of vaccination.

In addition to having three infected statuses, we also now have three titre values which we can

use to define a mixture of three trivariate t-distributions (f3). The likelihood for this trivariate

model is:

π(log(wi);β, ξ, xi) = (1− ρ)[1− logit−1(βTxi)]f3(log(wi)|µ0,Σ0, ν0)

+ logit−1(βTxi)f3(log(wi)|µ1,Σ1, ν1)

+ ρ[1− logit−1(βTxi)]f3(log(wi)|µ2,Σ2, ν2)

where ρ = Prob(yi = 2|yi 6= 1). Here, Prob(yi = 0) = Prob(yi = 0|yi 6= 1)Prob(yi 6= 1) =

(1 − ρ)(1 − logit−1(βTxi)). We fit this trivariate model to Phase 2 data using Bayesian MCMC

to obtain posterior samples of β which will be used for poststratification.

2.3 Estimating incidence using poststratification

Incidence is defined as the number of people with an infection in a given time frame, divided by

the population. We estimate incidence of COVID-19 in a subgroup of Canadians G by taking

posterior samples of IG where

IG =
∑
h`j∈G Yh`j∑
h`j∈G nh`j

= YG
nG

,

h is ethnicity/education, ` is age/sex, j is province, ph`j is the probability of COVID-19 infection

(as in Equation 2.2) for a person with covariate combination h`j, Yh`j is the number of people

in Canada with covariate combination h`j who were infected with COVID-19, and nh`j is the
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number of people in Canada with covariate combination h`j. To obtain samples of IG we first fit

the mixture models presented in Section 2.2 to obtain T posterior samples of ph`j . We then use

poststratification (Little, 1993) to generalize these results to the Canadian population. That is,

we draw one sample from

Y
(t)
h`j ∼ Bin(nh`j , p(t)

h`j)

for each t = 1...T . We then compute

I
(t)
G =

∑
h`j∈G Y

(t)
h`j∑

h`j∈G nh`j

for t = 1...T , which are then used to obtain point estimates and credible intervals for cumulative

incidence in Phase 1 and Phase 1 and 2 combined. The incidence proportion in Phase 2 is

estimated by computing these two cumulative incidence estimates for each t, then taking the

difference.

2.4 Estimating infection fatality rates outside of long-term care homes

The infection fatality rate (IFR) is a measure of the deadliness of a disease. It is defined as

IFR = Number of deaths from disease
Number of infected individuals .

The methods described in Sections 2.2 and 2.3 provide estimates of the denominator with as-

sociated uncertainty, but we still need to estimate the number of deaths in the numerator. The

number of COVID-19 related deaths in Canada are publicly available, but include long-term

care (LTC) residents. Our target of inference is the IFR for the “community-dwelling” Canadian

population and does not apply to people living in LTC homes. The spread of COVID-19 is sub-

stantially different in LTC homes than in the general population and residents of LTC homes are

particularly vulnerable to severe illness and death from infection; see Danis and others (2020).

Indeed nearly 80% of the reported deaths from COVID-19 prior to Sept. 2020 in Canada were in

LTC homes (Samir and others, 2022). Modeling the spread and mortality of COVID-19 within
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LTC homes will require unique approaches and should be considered in a separate analysis; see

the recommendations of Pillemer and others (2020). The Ab-C study excludes residents of LTC

and thus we need to exclude this population from our numerator as well. To do this, we will extend

our poststratified mixture models to estimate the deaths outside of long-term care homes, using

publicly available COVID-19 deaths data and long-term care deaths data described in Section

1.1.

In the rest of this section, we describe the extended mixture model and algorithm used to

estimate IFR in this paper. We start by displaying the full model with a description of each com-

ponent. We then provide a Directed Acyclic Graph (DAG) that displays the relationship between

all quantities in the model. We then provide a full factorization of the posterior distribution and

explain how our algorithm approximates this posterior.

2.4.1 The complete model. The full model is shown in Equations 2.3a-2.3h, followed by a

description of each component. Equations 2.3a-2.3c represent the mixture model and post-

stratification described previously, and will be referred to as “Module 1” of our IFR model.

Equations 2.3d-2.3h represent the model extension to estimate the number of deaths outside of

long-term care, and will be referred to as “Module 2”. Left aligned are the model components,

right aligned are the nomenclature used in the posterior factorization in Section 2.4.2.
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log(W i)|Zi = k, xi ∼ fd(µk,Σk, νk) π(W |ξ, Z) (2.3a)

Prob(Zi = 1|xi, β) = ph`j[i] = logit−1(βTxi) π(Z|β, x) (2.3b)

Yh`j ∼ Bin(n1h`j , ph`j) π(Y |β, x) (2.3c)

D1`j ∼ Bin(Y·`j , η`j) π(D|Y, η) (2.3d)

d`j ∼ Pois(λ1`j + λ2lj) π(d|Y, η, θ) (2.3e)

d2·j ∼ Pois
(∑

l

λ2`j
)

π(d2|θ) (2.3f)

λ1`j = Y·`jη`j (2.3g)

λ2`j = n2`jθ`j (2.3h)

• Indices: h, `, and j represent education/ethnicity, age/sex, and province groups respectively.

Subscripts 1 and 2 are used to distinguish between quantities outside and within long-term

care respectively.

• 2.3a: The log of the titre values, wi, of individual i follow a (shifted and scaled) multivariate

t-distribution, with parameters that depend on the infectious status Zi = k of that individ-

ual. k=0: “unvaccinated, not infected”, k=1: “unvaccinated, infected”, k=2: “vaccinated,

not infected” (for Phase 2 only).

• 2.3b: an individual’s infection status, Zi, depends on the infection probability corresponding

to that individual’s covariate combination, ph`j[i].

• 2.3c: The number of infections in Canada with covariate combination h`j is determined by

the number of people in Canada with that covariate combination, nh`j , and the probability,

ph`j , that a person with that covariate combination was infected.

• 2.3d: The number of deaths outside long-term care in age/sex/province group `j, D1`j ,

depends on the number of infections in that group, Y·`j , and the infection fatality rate in
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that group, η`j . Note that we do not attempt to estimate the deaths by education and

ethnicity, which is why we sum over h in Y·`j .

• 2.3e: The total number of COVID-related deaths in age/sex/province group `j, d`j , has

death rate equal to the sum of the death rates outside long-term care, λ1`j , and the death

rate inside long-term care, λ2`j .

• 2.3f: Outside long-term care, we only know the death rates aggregated by province (the

age/sex distribution is unknown). If we assume that the number of deaths outside long-

term care in age/sex group ` and province j follows an independent Poisson process with

mean λ2`j , then the deaths aggregated by province, d2·j , will be Poisson distributed with

mean
∑
` λ2`j . Note that if we knew d2`j , there would be no need for Module 2.

• 2.3g: In each age/sex/province group, the mean number of deaths (death rate) outside long-

term care, λ1`j , is the product of the number of infections outside of long-term care Y`j ,

and the infection fatality rate outside long-term care, η`j .

• 2.3h: In each age/sex/province group, the mean number of deaths (death rate) within long-

term care, λ2`j , is the product of the number of people in Canada in long-term care n2`j ,

and the COVID-19 death rate in long-term care, θ`j .

2.4.2 Approximating the Bayesian posterior. Figure 2 displays the model represented in Equations

2.3a-2.3h as a Directed Acyclic Graph (DAG). Based on this DAG, the full posterior can be

factored as follows:

π(Y,D, η, β, ξ, θ, Z|x,W , d, d2)

∝ π(D|Y, η)π(Y |β, x, d)π(W , d, d2|η, β, ξ, θ, Z, x)π(η, β, ξ, θ, Z)

= π(Y |β, x, d)π(W |ξ, Z)π(Z|β, x)π(β)π(ξ)︸ ︷︷ ︸
Module 1

·π(D|Y, η)π(d|Y, η, θ)π(d2|θ)π(η)π(θ)︸ ︷︷ ︸
Module 2

(2.4)
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However, sampling from this posterior poses a computational challenge, as Y and D are both

discrete latent variables, and all three terms in π(D|Y, η) are unknown. Instead, we sample from

the “cut distribution” (Plummer, 2015), which is the same as Equation 2.4 but the dependence on

d in π(Y |β, x, d) is dropped. The removal of this dependence is sometimes referred to as “cutting

feedback”. Since we are not allowing our deaths data to influence our infection estimates, we

are only approximating Bayesian inference when computing IFR. The cut distribution has been

shown to give more sensible results than the full posterior in some scenarios where certain portions

(modules) of the model are misspecified, or data quality is poor (Lunn and others, 2009). It is

important to note that our serosurvey data is very high quality individual level data, but our

deaths data is partially imputed and is from an unofficial source. The cut model allows us to base

our estimates of incidence solely on the serosurvey data (and census data), while still utilizing all

data sources to estimate IFR. We sample from the cut distribution using the following two step

algorithm:

1) We first sample from the joint posterior of the parameters in the first module:

π(Y, β, ξ, Z|x,W ) ∝ π(Y |β, x)π(W |, ξ, Z)π(Z, ξ, β)

= π(Y |β, x)π(W |ξ, Z)π(Z|β, x)π(β)π(ξ)

which is the same as the Module 1 portion of Equation 2.4 but with the dependence of d dropped

in the first term. We sample from this distribution by obtaining T (post burn-in) posterior samples

of each parameter using π(β, ξ, Z|x,W ) = π(W |ξ, Z)π(Z|β, x)π(β)π(ξ) as a target distribution

in MCMC. We then draw a sample, Y (t), from π(Y |β(t), x) for t = 1...T .

2) For each t = 1...T , we use MCMC to obtain 1 post burn-in sample from the posterior of

Module 2. To do this, we first obtain one post burn-in sample using π(d|Y (t), η, θ)π(d2|θ)π(η)π(θ)

as the target in MCMC for each t = 1...T . We then sample D(t) from π(D|Y (t), η(t)) for t = 1...T .

We used this algorithm for both Phase 1 and Phase 2 data, obtaining T samples of (Y·`j , D1`j)

from πcut(Y,D). We then estimate IFR by computing samples from πcut(IFRG) for any subgroup
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of Canadians G outside of long-term care:

IFR(t)
G =

∑
`j∈GD

(t)
1`j∑

`j∈G Y
(t)
·`j

(2.5)

for each t = 1...T . We can then compute point estimates with uncertainty for all of Canada,

and any age/sex/province combination that we so please. We compute the IFRG for various

age/sex/province combinations using univariate and bivariate models to estimate the denomina-

tors for the Phase 1 data, and the multivariate model for Phase 1 and 2 combined. We do not

attempt to estimate IFR by education/ethnicity, so we sum over h in Y·`j .

Since individuals who were likely to be positive in Phase 1 were also likely to be positive in

Phase 2, estimating incidence and deaths just based on Phase 2 data will also include people

who were likely infected in Phase 1. In order to estimate the new infections and deaths (and as

a result, IFR) in just Phase 2, we found posterior samples of Y from the multivariate model and

subtracted the posterior samples from the bivariate model to get the denominator. The same was

done for the deaths D for each posterior sample, allowing us to calculate IFR for any subgroup

we desire.

2.5 Priors

In all three mixture models, a weakly informative prior of N(0, 1) was used for each β. This

will stabilize estimates in groups with a small amount of data, and have little effect on those

that have a lot of data. A weakly informative penalized complexity prior was put on the degrees

of freedom in all three models (see Appendix A). In the multivariate cases, informative priors

were used to overcome well-known computational challenges of fitting Bayesian mixture models

as noted in the Stan documentation (Betancourt, 2017). We describe our informative priors and

their justifications in detail in Appendix D.1. In the reproducible example that we provide in

the supplemental materials, we show that our results are not too sensitive to “mis-specified”

informative priors on the mixture components. We also note that it is primarily the estimation
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of β’s that influence the results of this paper. A weakly informative prior was used on Σ as

recommended by Section 1.13 of the Stan User’s Guide (Stan Development Team, 2021). A

complete list of priors for all models is presented in Appendix D.

2.6 Inference

Each model was run using No-U-Turn sampling, a form of Hamiltonian Monte Carlo that is

readily available in the Stan software (Carpenter and others, 2017; Stan Development Team,

2021). Four chains with 1000 iterations, with the first half being warmup, were used for each

model component. Traceplots were used to visually assess convergence of Markov chains, alongside

values of Rhat < 1.01 confirming an appropriate amount of mixing (Vehtari and others, 2021).

Point estimates are taken to be the 50th percentile of the (approximate) posterior distributions,

and credible intervals (CrI’s) are computed using the 2.5th and 97.5th quantiles.

3. Results

3.1 Univariate model - Phase 1

Estimated cumulative incidence and IFR by age group is presented in Figure 5. Using the uni-

variate model, the overall estimated cumulative incidence in Phase 1 (Feb - Sept 2020) is 1.79%

(95% CrI: 1.21%, 2.66%), which is similar to the estimate presented in Tang and others (2022)

of 1.9% (95% CI: 0.7%, 4.7%). Using this model for the denominators in the IFR calculation

leads to an estimated infection fatality rate of 0.35% (95% CrI: 0.24%, 0.52%) for all Canadians

outside of long-term care homes. This is, again, consistent with the estimates presented in Tang

and others (2022) of 0.373 (95% CI: 0.153%, 1.024%).

When we look at the age distribution of cumulative incidence, we see a general downward trend

with increasing age, with estimates for the age group 70+ being the smallest at 0.71% (95% CrI:

0.24%,1.74%). However, the credible intervals all overlap which suggests that incidence is similar
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between age groups. We see an upward trend in IFR with increasing age, with non-overlapping

credible intervals. This is to be expected, as COVID-19 is now known to be much deadlier in

older populations (Williamson and others, 2020).

A plot of the two univariate t-distributions is shown in Figure 1. Notice that the density plot

for the positive group has mass to the left of the cutoff used by Tang and others (2022), and the

negative group has mass to the right of the cutoff. Large values of titres (> 2) will show high

probability of SARS-CoV-2 incidence from our model, but this is not true for titre values around

0.5. If these values had been discretized using a fixed cutoff, participants with very large titre

values would be indistinguishable from those with values of ≈ 0.5, thus would have the same

probability of being false positives. Although this univariate case works well to demonstrate our

method, we will use the results from the bivariate model when computing estimates for Phase 1.

3.2 Bivariate model - Phase 1

Figure 5 presents estimated cumulative incidence and infection fatality rates for the bivariate

model in Phase 1 using both SmT1 titres. The overall cumulative incidence for Canada was

1.60% (95% CrI: 1.15%, 2.23%). This point estimate is somewhat consistent (slightly lower) with

the univariate results, with a smaller credible interval. This is reassuring, since our uncertainty

should decrease as more data is used in the model. Our Phase 1 estimates are comparable with

the estimate for seroprevalence in Canada from O’Driscoll and others (2021) of 1.4% (CI: 1.16%,

1.68%, as of September 1st 2020). The estimated overall infection fatality rates for residents

outside of long-term care homes was 0.39% (95% CrI: 0.27%, 0.56%), which is also consistent

with our univariate results. We will use the bivariate results for Phase 1 going forward.

When broken down by age, we see very similar trends in both cumulative incidence and IFR

as with the univariate model. We also see slightly reduced uncertainty in all age groups, which

is to be expected since we are adding more information (an extra titre value) into the model.
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The decrease in uncertainty is small, suggesting that the additional assay didn’t provide much

additional information when predicting infection. We can investigate which titre value had more

influence on the probability of infection by computing

Prob(Zi = 1|wi) = Prob(wi|Zi = 1)Prob(Zi = 1)
Prob(wi)

That is, we compute the probability of infection given the titre values, which are easily computed

based on results from (2.2).

Figure 3 shows the probability of infection given each individual’s titre values using the

Bivariate mixture of t-distributions. Our model seems to “trust” the Sinai titre value more, given

that it predicts a high probability when the Sinai value is high, even if the Euroimmune titre

value is low. Our model seems to be indeterminate around the cutoff (Sinai titre value ≈ 0.5) that

was chosen by Tang and others (2022), which implies some agreement between the two methods.

3.3 Trivariate model - Phase 2

Estimates of cumulative incidences and infection fatality rates in Phase 2 are presented in Figures

5c and 5d. Using a trivariate mixture of t-distributions with three latent groups and poststratifi-

cation, the estimated incidence proportion in Phase 2 was 6.81% (95% CrI: 5.35%, 8.42%). This

is obviously much higher than our estimates in Phase 1, which is to be expected. The estimated

infection fatality rate in Phase 2 was 0.31% (95% CrI 0.25%, 0.39%), which is slightly lower

than Phase 1. This is comparable, but slightly lower than other estimates for Canadian IFR (∼

0.65% from O’Driscoll and others (2021)), which is unsurprising since our study excluded those

in nursing homes.

The incidence proportion in Phase 2 was comparable across age groups, with the IFR again

trending upwards with age. In Phase 2, see that each age category had a lower IFR than Phase

1. Our estimates of IFR by age were highly comparable to international estimates (see Table S3

of O’Driscoll and others (2021)).
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The cumulative incidence and IFR’s for Phase 1 and Phase 2 combined are shown in Figures

5e and 5f. The cumulative incidence estimate is 8.41% (95% CrI: 7.04%, 9.92%), with an IFR of

approximately 0.31% (95% CrI: 0.27%, 0.37%). The patterns in incidence and IFR by age are

highly similar to those in Phase 2 alon. The probabilities of infection given the titre values of each

participant are shown in Figure 4. Since our outcome is three-dimensional, three separate plots

are required. Blue dots in the bottom right corner of Figures 4a and 4b, and the top right corner

of Figure 4c, identify participants that are likely showing immunity due to being vaccinated, as

vaccinated individuals should be low on NP and high on the other two. We see that our model

tends to “trust” the NP and SmT1 titres more when predicting infection. People who are high

on NP or SmT1 tend to have higher probabilities, while people with only high RBD values tend

to have a low probability of infection.

3.4 Cumulative incidence and IFR by province

One advantage to the methods presented in this paper, is that once we have posterior samples for

infections and deaths outside of long-term care, we can break the results down by any covariate

combination that we so please. Figure B2 shows the cumulative incidence and infection fatality

rates by province in both phases. In Phase 1, Ontario had the highest point estimate for cumula-

tive incidence, and Quebec had the highest IFR. Our estimated IFR in Ontario was 0.27% (95%

CrI: 0.19%, 0.41%) in Phase 1, which is much lower than the estimate given by Public Health

Ontario at the time (2.8% as of May 17, 2020 (Public Health Ontario, 2020)). Although these

numbers aren’t directly comparable, as our estimates do not include people in nursing homes,

this likely doesn’t account for all of the disparity. Public Health Ontario’s number was estimated

based on IFR numbers obtained using individual-level data from China (Verity and others, 2020),

and was adjusted to match the age distribution of Ontario. We therefore remain somewhat skep-

tical of the numbers presented in Public Health Ontario (2020). When comparing our overall
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estimate to the estimate in Verity and others (2020) (0.657%, CI 0.389% - 1.33%), our number

is much more comparable.

In Phase 1, Quebec had a very high reported number of deaths, which was not proportional to

the number of long-term-care home deaths, resulting in a high IFR. In Phase 2 Quebec’s incidence

went up substantially, while the IFR dropped significantly. In Phase 2, the credible intervals for

both cumulative incidence and IFR overlap between provinces.

Estimates by age group in each province are shown in Figure B1. In all provinces, incidence

in Phase 1 was highest in 18 to 39 year olds, and lowest in 70+ year olds. With the exception

of Alberta, this pattern did not hold in Phase 2, as incidence seems to be less predictable as a

function of age. In each province and phase, IFR reliably trends upwards with age.

Estimates of incidence by ethnicity in each province are shown in Appendix C. In both phases,

the white and indigenous groups have comparable incidences in each province. The “not white

or indigenous” group (NWoI) has relatively high incidence in Ontario and British Columbia in

both phases, and low incidence in the Atlantic region and Saskatchewan in Phase 2. Note that

estimates of IFR are not reported by ethnicity, as we do not have (even aggregate) COVID-19

deaths data by ethnicity.

4. Discussion

In this paper, we developed an approximate Bayesian approach to estimate cumulative incidence

and IFR using a multivariate mixture of t-distributions. We used data from the Ab-C serosurvey

to estimate the probability that individuals were infected with COVID-19 based on their titre

values and covariate combinations, and used poststratification to generalize our results to the

Canadian population that resides outside of long-term care. Our Phase 1 cumulative incidence

estimates were slightly lower than previous estimates based on fixed cutoffs. Our Phase 2 estimate

was higher than the one in the literature. Furthermore, our method accounts for uncertainty in
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both the number of infections and the number of deaths, and is essentially a cut model where we

do not allow the deaths data to affect the estimation of the number of infections.

Estimates of incidence by age do not show any noteworthy patterns other than a slight upward

trend in Phase 1. In both Phase 1 and Phase 2, IFR increased with age. Furthermore, IFR was

higher in Phase 2 than Phase 1 in each age group, although the overall IFR was the same.

The main strength of our approach is that it uses the exact titre values as outcomes in

our model, as opposed to a discretized version which discards information. Furthermore, we

can leverage multiple titre values in a multivariate model to improve estimated probabilities of

infection, while being able to differentiate between previously infected and vaccinated individuals.

An additional strength of our study is that error is correctly accounted for in both the calculation

of the number of infections and deaths outside long-term care, and consequently, IFR. We have not

considered under-reporting of COVID-19 deaths, and we acknowledge this could be a potential

issue. One way to accommodate this would be to make an assumption that a known proportion

of COVID-19 deaths go unreported and include draws of unreported deaths in each posterior

sample of the IFR. In the absence of information of what this proportion should be, we have

treated the reported death counts as correct with the caveat that the estimated IFRs only refer

to deaths directly attributed to COVID-19.

A methodological limitation of this study is that we are assuming that both the infected and

uninfected groups follow a multivariate t-distribution. This may not be the most appropriate

distribution for these data, and perhaps a distribution that allows for skewness may be more

appropriate. Although our model makes no direct assumption about sensitivity and specificity,

these two quantities are directly related to the length of the tails of the t-distributions for any

given cutoff. However, the parameters of the multivariate t-distribution are estimated from the

data, so our method is analogous to a non-discretized version of the methodology presented in

Gelman and Carpenter (2020), where sensitivity and specificity are parameters to be estimated
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in the model.

A second limitation is that some responses to the survey happened before the end of the

survey, such that they could have returned a “negative” dry blood spot sample and subsequently

gotten infected. This would lead to slightly underestimating incidence (overestimating IFR). On

the other hand, there is a time lag between infection and death, so if we counted infections up

until the end of September 2020, then those infected people could experience death several weeks

later and not be recorded. However, given that the vast majority of participants returned their

blood samples study more than two weeks prior to each Phase’s end date (see Figure G1), we

figured that accounting for this time lag was not necessary.

A third limitation of our methodology is that we were unable to incorporate information

regarding Phase 1 infection probabilities (from SmT1 protein) into our Phase 2 estimates of inci-

dence. Although Phase 1 and Phase 2 SmT1 protein titre values are not directly comparable (due

to the assays being calibrated slightly differently), we recognize that there is some potential to

treat the SmT1 titre longitudinally from Phase 1 to Phase 2. However, we figured that this would

require a drastic reworking of our current model and inference framework, and thus we deemed

it out of the scope of this paper. The potential consequence of this is a slight underestimate of

cumulative incidence at the end of Phase 2, as some “infected” individuals in Phase 1 may be

overlooked by solely looking at Phase 2 titre values (see Appendix E for a sensitivity analysis

and discussion), with waning being one potential cause. However, Tang and others (2022) show

that roughly 80% of people retain their “seropositivity” status from Phase 1 to Phase 2. The

exploratory analysis presented in Appendix F suggests that waning may not be a large issue. It

is also possible that people who were infected in Phase 1 were reinfected in Phase 2. Reinfected

individuals will likely have titre values that are exceptionally high, which would affect our esti-

mates of the parameters for the mixture distributions. This also would make the interpretation

of incidence murky, as reinfected people only count as one infection. We suspect this to be more
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of an issue when estimating incidence/IFR at later dates, as the number of reinfected indivudals

in our study is expected to be very small.

A direction for future work will be to apply these methods to upcoming Phase 3 and Phase

4 data that includes a much larger vaccinated population, as well as breakthrough infections in

people who have been vaccinated. Furthermore, we will have to account for reinfections as the

populations’ immunity wanes and new variants emerge. This could involve a longitudinal mixture

model or Hidden Markov Model. Furthermore, an improved serosurvey design and associated

statistical methodology that allowed for estimation of incidence (and consequently, IFR) in real-

time would be an ambitious and highly interesting area of future research.

This study only looks at humoral immune response, but cellular immunity also plays an

important role in the immune response to SARS-CoV-2. Other studies have evaluated the effects

of T-cell response in infected people (Guo and others, 2022; Moss, 2022). An interesting line

of future work would be to develop similar methods to incorporate T-cell response data into

estimates of incidence and IFR.

Although we focused on SARS-CoV-2 infections and deaths in this paper, the methods pre-

sented can be applied to a variety of outcomes for any infectious disease of interest in which

serosurvey data is available. There are plenty of potential extensions to this model that can be

implemented to suit a variety of problems in epidemiology and biostatistics.
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6. Supplemental Materials

The serosurvey data used in this paper is highly confidential and cannot be shared publicly. We

have supplied a reproducible example using simulated serosurvey data to demonstrate how our

method is implimented:

https://github.com/JustinJSlater/AbC-Bayesian-Mixture--Reproducible-Example
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Fig. 1: Mixture of t-distributions for the Phase 1 univariate model fit to the SmT1 titre values.
The posterior median for each parameter is used. The vertical dashed line represents the cutoff
used in Tang and others (2022). Keep in mind that this plot does not display uncertainty in the
model parameters of the t-distributions.
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Fig. 2: Directed acyclic graph corresponding to the model presented in equations 2.3a-2.3h, with
subscripts omitted. Lower case Latin letters are known, all other terms are unknown. Module
1 is the portion of the model concerned with estimating infections. Module 2 is the portion of
the model concerned with estimating deaths. The red arrows indicate a one-directional flow of
information, and are the reason we are sampling from the cut distribution as opposed to the
Bayesian posterior. β is the effect of covariates, x, on the log(odds) of infection; Z is infection
status, w represents titre values from the serosurvey; ξ are the parameters of the multivariate
t-distributions; Y is the number of infections outside of long-term care; D is the number of deaths
outside long-term care; d is the total number of deaths by age/sex/province; d2 is the number of
deaths inside long-term care by province; η is the population average probability of death given
infection; θ is the COVID-19 death rate in long-term care.
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Fig. 3: Probability of infection given each individual’s titre values using the bivariate mixture of
t-distributions in Phase 1. Each dot represents a participant in the Ab-C study. On the x-axis is
the titre value that was used in the univariate model. On the y-axis is an second SmT1 protein
assay. A red dot indicates that this model predicts a high probability of infection, with blue being
a low probability of infection, and purple being indeterminate.
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Fig. 4: Probability of infection given each individual’s titre values using the trivariate mixture
of t-distributions in Phase 2. A red dot indicates that this model predicts a high probability
of infection, with blue being a low probability of infection, and purple being indeterminate. In
theory, participants who have never been infected or vaccinated should have low values for all
three titres. Vaccinated, but never infected individuals should have high SmT1 and RBD, but
low NP, and infected individuals have high values for all three.
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Fig. 5: Incidence/IFR by age (years) for each time period. Posterior medians are used as point
estimates, and the 2.5th and 97.5th posterior quantiles define the error bars.



REFERENCES 37

A. Penalized complexity prior on degrees of freedom ν

As mentioned in 2.2.1, we noticed that a Normal distribution is likely not heavy-tailed enough

to accurately model the log(titre) of the non-infected group. The t-distribution adds a degrees

of freedom parameter, ν, which controls how heavy-tailed the t-distribution is relative to the

Normal distribution. The t-distribution reduces to a Normal distribution as ν → ∞. Therefore

we can view ν in this case as a parameter that adds complexity to a base model, the Normal

model. The closer ν is to 1, the more “complex” the model is. Simpson and others (2017) outlines

a framework for penalizing model component complexity as a function of the distance to a base

model. We used a penalized complexity (PC) prior on ν that will encourage ν to be large (closer

to the Normal model) unless there is appropriate evidence in the data.

Rather than putting a prior on ν itself, Simpson and others suggest putting a prior on the

root Kullback-Leibler (KL) distance:

δ(ν) =
√

2 ·DKL[tν(µ,Σ)||N (µ,Σ)] (A.6)

where tν and N denote the multivariate t and normal densities respectively, and DKL is the KL

divergence. Note that the shifting (µ) and scaling (Σ) parameters cancel out, and hence DKL is

only a function of ν (Villa and Rubio, 2018). Unfortunately, DKL in Equation (A.6) has no closed

form that the authors are aware of, so we computed it numerically as described in Appendix A.

(Villa and Rubio, 2018) showed that the Kullback-Liebler Divergence between two d-dimensional

Multivariate-t distributions, f(x|µ,Σ, ν), and f(x|µ,Σ, ν′), is

log K(d, ν)
K(d, ν′) −

ν + d

2 Ef
[

log
(

1 + xTx

ν

)]
+ ν′ + d

2 Ef log
(

1 + xTx

ν′

)
where

K(d, ν) =
Γ(ν+d

2 )
Γ(ν2 )

√
(πν)d
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The two expectations are shown to be

Ef
[

log
(

1 + xTx

ν

)]
= Ψ

(ν + d

2

)
−Ψ

(ν
2

)
Ef
[

log
(

1 + xTx

ν′

)]
= K(d, ν) π

d
2

Γ(d2 )

∫ ∞
0

(
1 + t

ν

)− ν+d
2
t
d
2−1 log

(
1 + t

ν′

)
dt

Meaning that the d-dimensional integral can be reduced to one dimensional integral. Since we

are interested in the KLD between a multivariate T and a multivariate normal, we substitute

ν′ = 200, and compute this integral numerically as a function of ν. We then approximate the

distance, δ(ν) =
√

2 ·DKL with a polynomial. For example, δ(ν) for the bivariate model was

δ(ν) ∝ ν−1.3. We then say that

π(δ(ν)) ∼ exp(λ)

with λ = − log(α)/δ(U) where α and U are chosen such that our prior belief is that there is a

50% chance that ν is greater than 30.



REFERENCES 39

B. Estimates by age and Province
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Fig. B1: Incidence/IFR by age (years) in each province. Posterior medians are used as point
estimates, and the 2.5th and 97.5th posterior quantiles define the error bars.
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Fig. B2: Incidence/IFR by province. Posterior medians are used as point estimates, and the 2.5th
and 97.5th posterior quantiles define the error bars.
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C. Estimates by province and ethnicity
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Fig. B3: Incidence by ethnicity in each province. Posterior medians are used as point estimates,
and the 2.5th and 97.5th posterior quantiles define the error bars.
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D. Prior distributions

Parameter Prior
µ0, µ1 N(0, 10)
σ0, σ1 N+(0, 10)
β N(0, 1)
νk Prob(ν > 10) = 0.5

Table D1: Priors used in Phase 1 univariate model

Parameter Prior

µ0 MVN

([
−2
−2

]
,

[
0.5 0
0 0.5

])

µ1 MVN

([
0
0

]
,

[
0.5 0
0 0.5

])
β N(0, 1)
νk Prob(ν > 10) = 0.5

Σk = diag(τ)× Ω× diag(τ)
τ Cauchy+(0, 1)
Ω LKJCorr(2)

Table D2: Priors used in Phase 1 bivariate model

Parameter Prior

µ0 MVN

( −1.75
−2.4
−1.918

 ,
0.25 0 0

0 0.2 0
0 0 0.03

)

µ1 MVN

( −0.5
0

−0.065

 ,
0.2 0 0

0 0.1 0
0 0 0.07

)

µ2 MVN

( −0.6
0.6

 ,
− − −
− 0.2 0
− 0 0.2

)
β N(0, 1)
νk Prob(νk > 30) = 0.5
ρ N+(0.015, 0.0025)

Σk = diag(τ)× Ωk × diag(τ)
τ Cauchy+(0, 1)

Ωk LKJCorr(0.5)
∏
cN(c|mc, sc)

Table D3: Priors used in Phase 2 mixture model
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Parameter Prior
η N+(0.004, 0.05)
θ N+(0.01, 0.1)

Table D4: Priors used in deaths module (Section 2.4.2)

D.1 Phase 2 model prior justification

As mentioned in the main text, we require informative priors for computational reasons. In this

Section, we justify our choices of informative priors for the Phase 2 trivariate model. We note

that these priors are not very sensitive to

• µ0 corresponds to the means of the “not infected” group. The first element of µ0 corre-

sponds to the mean NP titre values in “not infected individuals”. Alongside the NP titre

values collected from the survey, the lab also provided us with “control” samples of known

negatives. We found that the vast majority of the control samples fell between -2.5 and -1

on the log scale. Therefore we are very confident that the mean of NP titre values from

“not infected” people should be in this range. Therefore we applied the conservative but

informative prior N(−1.75, 0.25). Similar reasoning was used for the prior on the second

element of µ0, corresponding to the mean of RBD titre values in “not infected” people.

• When setting priors for the “not vaccinated, not infected” and “infected” groups based on

Smt1 titre values, we used the corresponding posterior distributions from Phase 1. Although

the tests are calibrated slightly differently, and there will be a small amount of waning

between phases, we do expect these values to be somewhat similar.

• To determine the posterior of the mean of the infected group for NP titre values (first

element of µ1), we consider the fact that any titre value above mean+3SDs is likely a

previous infection (this is how the cutoff was chosen in Tang et al.). We then ensure that

the bulk of the prior distribution for the positive N group was above this value, with some

overlap. We used similar reasoning for the RBD positive group.
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• To determine the prior for the mean RBD/SmT1 titre values in the vaccinated groups, we

used similar reasoning as above, trying to ensure that the prior has most of it’s mass above

that of the infected group’s with some overlap.

• We used a weakly informative prior for Ωk using the the LKJ distribution with shape=0.5.

This provides a roughly uniform distribution across positive-semidefinite 3x3 matrices. We

then add additional information for each off-diagonal by multiplying by normal densities.

For instance, if we suspect that the correlation between two parameters should be positive

(i.e off-diagonal element c of Ωk is positive), we multiply the prior for c by N(c|0.5, 0.2)

which gently encourages the the correlation to be positive, but still has mass below 0.

E. Longitudinal Sensitivity Analysis

As mentioned in the Discussion, there is potential for these data to be used in a longitudinal way,

as roughly 6300 survey participants had titre values in both Phase 1 and Phase 2. SmT1 titre

values are measured in both phases, while RBD and NP are only available in Phase 2. Thus in this

section, we wanted to examine the potential effects of ignoring the longitudinal nature of these

data. In the analysis of the main paper, we use only titres from Phase 2 to determine cumulative

incidence in Phase 2. Can we better estimate cumulative incidence in Phase 2 by incorporating

Phase 1 measurements into the model? Due to computational/methodological reasons, we can

not answer this question perfectly. However, we fit models that can potentially provide insight

into the effect of not looking at the data longitudinally.

For this analysis, we made the following simplifications/assumptions:

• Excluded anyone who claimed to have been vaccinated. The addition of a vaccinated group

causes computational challenges when fitting the longitudinal mixture model, due to the

additional group.



REFERENCES 45

• We do not consider covariates (age, sex, etc.), as these are mainly used for poststratification.

• We only consider one titre in Phase 1 (SmT1 Sinai assay) and two titres in Phase 2 (SmT1

and RBD). Note that the exclusion of the NP titre value will cause underestimation of

seroprevalence by ≈ 2%. This simplification is necessary as these mixture models become

hard to fit with more than three titres without unjustifiably strong prior information.

In this analysis, we fit two models. The first is a bivariate mixture model using only the titres

available from Phase 2 (SmT1 and RBD). This is analogous to what we did in our paper (minus

the third titre value, NP). We then compare this to a “longitudinal” model, which a trivariate

mixture model using all three titres (one from Phase 1, two from Phase 2), and three mutually

exclusive infection groups: “not infected”, “infected in Phase 1”, and “infected in Phase 2”.

We compared the predicted probabilities of infection for each survey participant based on the

bivariate model and the longitudinal model. Figure E1a displays Pr(Zi = “previously infected”|wi)

for the model fit using solely Phase 2 SmT1 and RBD titre values. Figure E1b shows probabilities

of previous infection, given all three titre values, Pr(Zi ∈ {“infected in Phase 1, infected in Phase 2”}|wi),

for the longitudinal model. To reduce the total number of plots, we display these probabilities

on plots without an RBD axis. We can see that the longitudinal model predicts higher infec-

tion probabilities for a small subset of individuals who were marginally high on SmT1 in both

phases. These individuals are highlighted in Figure E1c, where we plot the difference in predicted

probabilities between models for each individual. This plot indicates that the non-longitudinal

model may be missing some infected individuals when we do not consider the Phase 1 titre. The

estimated prevalence in the cohort is 4.5%(95% CrI: 3.9% to 5.3%) based on the bivariate model,

and 4.9% (95% CrI: 4.1% to 6.4%) based on the longitudinal model. However, of the 8 people

who had very substantial differences in their predicted probabilities (> 50%), 6 of them had high

NP titre values in Phase 2, thus the third titre that we excluded would potentially make up for

part of the disparity.
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Fig. E1: Comparing infection probabilities between the bivariate (Phase 2) and longitudinal
(Phase 1 and 2) models. In a) and b), blue points indicate low probability of infection, while red
indicates a high probability of infection. In c), blue indicates agreement between the two models,
while a more red color indicates a high estimated infection probability from the longitudinal
model.
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In summary, when estimating infection probabilities in Phase 2 based solely on Phase 2

titres, we tend to slightly underestimate average infection probabilities when compared to the

longitudinal model: 4.5%(95% CrI: 3.9% to 5.3%) versus 4.9% (95% CrI: 4.1% to 6.4%). However,

it appears that some people “missed” by the non-longitudinal model would have been captured

by the NP titre value in Phase 2. Hence, the overall effect of not considering Phase 1 titre values

when estimating cumulative incidence in Phase 2 is likely small, but measureable.

A longitudinal model may help improve incidence estimation prospectively. However, adding

additional titre values from either phase would also likely improve incidence estimation. With-

out using all titre values from both phases, it is hard to determine the effects of ignoring the

longitudinal nature of these data. More methodological research is required to fit longitudinal

multivariate mixture models in a Bayesian framework.

F. Potential waning immunity

It is well known that antibodies decay over time, but how much this effects our results is unclear.

Unfortunately, we can’t simply compare antibody results from Phase 1 to Phase 2, as these

numbers are not directly comparable. Instead, we compared the Phase 1 and Phase 2 probabilities

of participants who had a high probability of infection in Phase 1. A comparison of these predicted

probabilities is shown in Figure F1. It appears that those with large predicted probabilities in

Phase 1 still had large predicted probabilities in Phase 2. This is largely because in Phase 2,

we see relatively lower parameter estimates for the means of the infected group. This likely will

also make estimates of infection noisier, as the variance will also increase. So although our model

does not appear to be underestimating Cumulative Incidence due to waning, waning likely does

cause more uncertainty when predicting infection. More work needs to be done to confirm this

assertion.
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Fig. F1: Phase 1 vs Phase 2 predicted probabilities for participants who had large predicted
probabilities in Phase 1. Points above the red line indicate that Phase 1 predicted probability
was higher.

G. Date distributions of samples received

Fig. G1: Distribution of dates of samples received for Phase 1 and Phase 2.


