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Abstract

For decades, mathematicians and statisticians have been modelling infectious diseases to

forecast case/death counts, estimate important epidemiological quantities, and understand

the dynamics of disease spread. This dissertation offers methodological insights into each of

these three challenges using novel spatial, spatio-temporal, and Bayesian modelling meth-

ods, with applications to COVID-19 data. Alongside methodological contributions, this

thesis also presents estimates of important epidemiological quantities which, subject to

peer review, could be utilized by public health professionals and policy makers. There are

four primary contributions of this work: 1) a subnational, single-wave COVID-19 mortality

forecasting model that accounts for day-of-the-week effects, which was shown to outperform

the most highly-cited model during the first viral wave; 2) a mobility-augmented spatial

model for COVID-19 case counts, where cellphone-derived mobility data is shown to capture

dependence between areal units better than physical proximity; 3) a novel, interpretable

spatio-temporal infectious disease model where infectiousness is a function of mobility be-

tween areal units, resulting in estimates of the risk associated with travelling in two Spanish

Communities; 4) a modular Bayesian framework based on mixture modelling of serological

data and disaggregated deaths data to estimate COVID-19 incidence and infection fatality

rates, resulting in estimates of these quantities across Canada for various strata. Although

the applications in this thesis are to COVID-19 data, the proposed methodology can be

applied to a wide spectrum of problems across infectious disease epidemiology.
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Chapter 1

Introduction

For decades, mathematicians and statisticians have been modelling infectious diseases to

forecast case/death counts, estimate important epidemiological quantities, and understand

the dynamics of disease spread. This dissertation offers methodological insights into each of

these three challenges using novel spatial, spatio-temporal, and Bayesian modelling meth-

ods, with applications to COVID-19 data. Alongside methodological contributions, this

thesis also presents estimates of important epidemiological quantities which, subject to

peer review, could be utilized by public health professionals and policy makers. There are

four primary contributions of this work: 1) a subnational, single-wave COVID-19 mortality

forecasting model that accounts for day-of-the-week effects, which was shown to outperform

the most highly-cited model during the first viral wave; 2) a mobility-augmented spatial

model for COVID-19 case counts, where cellphone-derived mobility data is shown to capture

dependence between areal units better than physical proximity; 3) a novel, interpretable

spatio-temporal infectious disease model where infectiousness is a function of mobility be-

tween areal units, resulting in estimates of the risk associated with travelling in two Spanish

Communities; 4) a modular Bayesian framework based on mixture modelling of serological

data and disaggregated deaths data to estimate COVID-19 incidence and infection fatality

rates, resulting in estimates of these quantities across Canada for various strata. Although

the applications in this thesis are to COVID-19 data, the proposed methodology can be

applied to a wide spectrum of problems across infectious disease epidemiology.

1



CHAPTER 1. INTRODUCTION 2

1.1 Thesis Outline

This thesis is divided into four chapters, each corresponding to a published or submit-

ted journal article that addresses a different statistical modelling challenge pertaining to

COVID-19. Each chapter stands independently, with its own abstract, bibliography, and

appendices.

In Chapter 2, we develop a parameter-driven model that accurately and consistently

estimates COVID-19 mortality at the subnational level early in the pandemic, using only

daily mortality counts as the input. We use a Bayesian hierarchical skew-normal model

with day-of-the-week parameters to provide accurate projections of COVID-19 mortality.

We validate our projections by comparing our model to the projections made by the Intitute

for Health Metrics and Evaluation, and highlight the importance of hierarchicalization and

day-of-the-week effect estimation when forecasting COVID-19 mortality.

In Chapter 3, we develop a mobility-augmented spatial model for COVID-19 case counts.

We investigate the efficacy of using cellphone-derived mobility data to model dependence

between areal units in spatial models for COVID-19. We do this by extending Besag York

Mollié (BYM) (Besag et al., 1991) models to include both a physical adjacency effect and

a mobility effect. The mobility effect is given a Gaussian Markov random field model, with

the number of trips between regions used as edge weights. Using two Spanish Communities

as examples, we leverage modern parametrizations of BYM models (Riebler et al., 2016) and

find that the number of people moving between regions better explains variation in COVID-

19 case counts than physical proximity data. We conclude that these data should be used

in conjunction with physical proximity when developing spatial models for COVID-19 case

counts.

In Chapter 4, we build a spatio-temporal mechanistic model using cellphone-derived

mobility networks. One limitation of the model developed in Chapter 3, was that it does

not capture the underlying dynamics of disease spread, which we aim to overcome in this

chapter. We extend the Endemic-Epidemic modeling framework in a principled manner,

incorporating temporally changing mobility network data. We do so by deriving our model

from first principles as done in Bauer and Wakefield (2018), and quantify the risk associated



CHAPTER 1. INTRODUCTION 3

with travelling throughout the first year of the pandemic in two Spanish Communities.

In Chapter 5, we develop statistical methodology to estimate incidence and infection

fatality rates (IFR) in Canada for various demographic groups. This is done using serological

data from the Action to Beat Coronavirus serosurvey conducted by the Centre for Global

Health Research. We develop a modular Bayesian framework where the number of infections

(incidence) is estimated based on multivariate mixture models fit to antibody test results.

We then combine these estimates into a model using disaggregated deaths data to estimate

IFR. In doing so, we account for uncertainty from both the estimated number of infections

and incomplete deaths data to provide estimates of IFRs, while not allowing the deaths

data to influence incidence estimates.

In Chapters 4 and 5, we provide estimates of epidemiologically important quantities

that are, at the time of writing this thesis, still subject to peer review and should not be

cited or used by policy makers.
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My work is supported by the Natural Sciences and Engineering Research Council (PGSD3-

559264–2021, Chapters 3-5), and the Centre for Global Health Research (Chapter 5). This
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Chapter 2 corresponds to Slater et al. (2021), which is based on joint work with Patrick

E. Brown and Jeffrey S. Rosenthal. I was responsible for statistical analysis, methodological

development, and writing the research paper. Brown proposed the high level idea of the
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velopment and implementation, as well as writing the research papers. Mateu acquired the



CHAPTER 1. INTRODUCTION 4

data and provided continued advice regarding interpretation of the data. Brown provided

the high level idea for Chapter 3, while the idea for Chapter 4 was my own. For both chap-

ters, Brown, Mateu, and Rosenthal all provided modelling suggestions, advice on framing

results, and guidance regarding the general direction of the work.

Chapter 5 corresponds to a manucript in review (Slater et al., 2022a), and was joint

work with Aiyush Bansal, Harlan Campbell, Patrick E. Brown, Jeffrey S. Rosenthal, and

Paul Gustafson. I was responsible for statistical analysis, modelling framework development

and implementation, and writing the research paper. Data for this study was provided by

the Centre for Global Health Research. Bansal provided medical expertise, acquired data

pertaining to COVID-19 deaths, helped with interpretation of the serosurvey data, and

contributed to the literature review. Brown suggested the initial modelling framework,

which was iterated on and improved over the course of the project. Campbell provided key

methodological critique which lead to great improvements in the work. Brown, Rosenthal,

and Gustafson provided modelling suggestions, advice on framing results, and guidance

regarding the general direction of the work.
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Chapter 2

Forecasting subnational COVID-19

mortality using a day-of-the-week

adjusted Bayesian Hierarchical

model

Abstract

As of October 2020, the death toll from the COVID-19 pandemic had risen over 1.1 million

deaths worldwide. Reliable estimates of mortality due to COVID-19 are important to

guide intervention strategies such as lockdowns and social distancing measures. In this

chapter, we develop a parameter-driven model that accurately and consistently estimates

COVID-19 mortality at the regional level early in the epidemic, using only daily mortality

counts as the input. We use a Bayesian hierarchical skew-normal model with day-of-the-

week parameters to provide accurate projections of COVID-19 mortality. We validate our

projections by comparing our model to the projections made by the Intitute for Health

Metrics and Evaluation, and highlight the importance of hierarchicalization and day-of-the-

week effect estimation.

6
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2.1 Introduction

As of October 2020, the death toll from the COVID-19 pandemic had to risen over 1.1

million deaths worldwide, with deaths in many regions rising again following decreases in

late spring and early summer. Although this number is likely an under estimate of the true

number of deaths, it is more reliable than the reported number of cases, which is largely

a function of the number of people tested. Reliable estimates of mortality due to COVID-

19 are useful for guiding intervention strategies such as lockdowns and social distancing

measures. Estimates are needed at the regional (e.g provincial or state) level, as the spread

of the disease can vary greatly within a particular country.

There have been many attempts at forecasting COVID-19 cases and mortality. Exten-

sions of Susceptible, Exposed, Infectious, or Recovered (SEIR) models have been consid-

ered (Anastassopoulou et al., 2020; Sarkar et al., 2020). Various time series models have

also been considered (Perc et al. 2020; Petropoulos and Makridakis 2020; Chakraborty

and Ghosh 2020). Perhaps most notably, the Institute for Health Metrics and Evaluation

(IHME) has made their predictions available since March 25th 2020 (Friedman et al. 2020),

and have been cited as the gold standard regional level projections. However, in all of these

forecasting methods, there has been little attempt at accounting for differences in deaths

by day-of-the-week, which if left unaccounted for, can drastically bias long-term forecasts

depending on which day of the week the observed data ends. Additionally, making pro-

jections for regions can be difficult where there are a relatively small number of deaths.

COVID-19 forecasting methodology needs to be able to handle low daily mortality counts,

while providing reasonable mortality estimates for each region.

Figure 2.1 shows the COVID-19 daily death counts in the United States from March

2nd to June 25th. There are several key features of these daily deaths that seem to be

prevalent in every country or region’s Coronavirus mortality counts. Firstly, note the rapid

rise in daily deaths relative to the decline. Capturing this skewness in the daily death counts

is essential for accurately forecasting COVID-19 mortality, and is not captured using the

Normal density initially used by the IHME (note that the IHME has since switched to an

SEIR model). Additionally, notice the weekly periodicity in daily death counts. It appears
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Figure 2.1: United States daily COVID-19 mortality from www.coronavirus.app (Scriby,
Inc., 2020) from March 1, 2020 to June 25th 2020

that certain days of the week tend to have higher death counts than others, which is an

important feature to capture, so that our cumulative death forecasts don’t depend on what

day of the week they are made. This weekly periodicity has been confirmed using spectral

analysis (Bukhari et al. 2020), but the relative risks of mortality between certain days-

of-the-week are still indeterminate. Studying day-of-the-week effects has proven useful in

other fields such as actuarial science (Crevecoeur et al. 2019) and economics (Berument and

Kiymaz 2001).

The goal of this chapter is to develop a data-driven model that accurately and reliably

estimates COVID-19 mortality at the regional level early in the epidemic, using daily mor-

tality counts as the input. We do so by developing a hierarchical Bayesian model where

the daily death counts are assumed to follow a skew-normal density function, and vary

by day-of-the-week. In doing so, we estimate the number of daily deaths at the peak of

the epidemic, the date of the peak of the epidemic, and other epidemiologically significant

features. The hierarchical nature of our model will allow for accurate estimation of cumu-

www.coronavirus.app
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lative death counts in regions where the epidemic is still in the early stages by borrowing

information from regions where the epidemic has matured. We compare the forecasting

performance of our model to the projections made by the Institute for Health Metrics and

Evaluation (IHME), as well as the observed mortality values and highlight the importance

of hierarchicalization and accounting for day-of-the-week effects when projecting mortality

counts during an epidemic.

This work is an extension of the model presented in Brown et al. 2020, which has shown

promise as a national-level forecasting model. The two main contributions of our work

are to allow for subnational level data (hierarchicalization), and estimation/modelling of

day-of-the-week effects.

2.2 Methods

2.2.1 The Skew-Normal Model

We saw in Figure 2.1 that a key feature of daily coronavirus mortality counts is the rapid

rise relative to the fall in daily death counts. A natural choice for the response distribution

of the deaths per day is the negative binomial distribution with the trend in deaths per

day in a region following a skew normal curve. The negative binomial is often used in

infectious disease modelling, where events are positively correlated, causing larger variances

than if the events were independent (Lloyd-Smith et al., 2005). The skew-normal density

provides a good base to model the trend in death counts, but is far too simple to capture

the full range of shapes of epidemics by itself. Firstly, although a majority of the deaths

in a region occur during the main epidemic, a small number of deaths can occur outside

of this epidemic. Additionally, in order to be able to compare various regions’ mortality

counts, we need to “standardize” our estimates based on how many deaths we would expect

to see in that region from all causes. Lastly, we need to add a multiplicative term to our

skew-normal that accounts for differences in daily mortality counts by day-of-the-week. By

including all of these considerations, we arrive at the full model.

The statistical model (referred to as the “DOW model”) used to estimate daily mortality,
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Parameter Prior Description

Ai,j N(Mar 29, 1002) Location Parameter
Ai,Brazil N(Jun 17, 452) Location Parameter

1√
τj

Exp(1/10) Overdispersion Parameter

Dij Exp(1/10000) Spark Term

Cij
αj N+(50, 402) Mean of Cij , the severity parameters
θC N+(2, 0.662) Scale of the severity parameters

Bij
ηj N+(60, 302) Mean of Bij , the duration parameter
θB N+(9, 32) Scale of the duration parameters

Kij
ζj N+(3, 22) Mean of the Kij , the skewness parameters
θK N+(3, 22) Scale of the skewness parameters

Rj,m N+(1, 22) Day-of-the-week parameters

Table 2.1: Prior distributions for the DOW model in (1)

Yij , in region i of country j is given by:

Yij ∼ NegBinom[λij(t), τj ]

λij(t) = Rj,m[t]Eij [Cijf(t;Aij , Bij ,Kij) +Dij ]

Cij ∼ Gamma(αj/θC , θC)

Bij ∼ Gamma(ηj/θB, θB)

Kij ∼ Gamma(ζj/θK , θK)

(2.1)

Prior distributions for model parameters can be found in Table 2.1. The function f

is a skew-Normal density function with three parameters: the “location” parameter, Aij ,

indicate the date at which the daily deaths reaches its peak and is analogous to the mean

of a normal distribution; Bij represents the duration of the epidemic, and is analogous

to the standard deviation in the Normal density; and Kij is the “skewness” parameter,

which describes the ratio of the initial incline relative to the decline. The skewness is a

key parameter for capturing the shape of daily mortality trends. The Eij ’s are the age

standardized death counts in each region of the included countries. This was computed by

obtaining age distribution information from census data of each country and comparing it

to the deaths-by-age breakdown in Italy on March 29, 2020. Note that Eij is a constant, as

it is calculated apriori for each region. Inclusion of the Eij allows for comparable heights of

peaks between regions, which is captured in the parameter Cij . A high Cij means that there
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were a large number of coronavirus related deaths, relative to the expected number of deaths

in that region. The parameter Dij , known as the “spark” term, captures the few deaths that

were outside of the main epidemic. Rj,m[t] captures the day-of-the-week effect for country j

on day-of-the-week m[t], with Rj,Sunday fixed at 1. The overdispersion parameter, τj , allows

the variance of the daily mean deaths to vary by country by a multiplicative factor.

The number of parameters in this model can grow very quickly depending on the number

of countries/regions included in analysis, and can be difficult to implement without carefully

chosen priors. One of the advantages to Bayesian analysis is the incorporation of prior

knowledge to guide parameter estimation. That is, we can use information about duration

and severity from epidemics that are already over (e.g Spain) to set priors for regions where

the epidemic has yet to peak (e.g Brazil).

Note that Cij , Bij and Kij are all modelled hierarchically. The advantage of this is

that for regions low death counts can “borrow” information from other regions in the same

country to estimate the severity, duration, and skewness of the epidemic. For example, the

estimate of Cij will be a weighted average between the country’s mean and the region’s

mean, but will tend more toward the country’s mean when the number of events is small

(Gelman and Hill, 2006). Modelling Aij hierarchically was considered, however it was

deemed inappropriate because in regions with small death counts, the location parameter

would tend toward the country average. This is problematic because the reason that the

death counts are low in that region is likely because the epidemic has yet to run its course.

For this reason, we decided to estimate the location parameter separately for each region.

Modelling the day-of-the-week effects, Rj,m[t], hierarchically was also considered because it

would provide a day-of-the-week effect estimate for each region. However, this was deemed

computationally too cumbersome, as this would add over 300 parameters to our model.

2.2.2 Daily mortality projections for four countries

We applied our model to daily COVID-19 death counts from 95 regions from four countries:

U.S states; Canadian provinces; Spanish Autonomous Communities; and Brazilian states.

These four countries were chosen based on demographic data availability at the regional

level. Data are from www.coronavirus.app (Scriby, Inc., 2020), where any region with 50

www.coronavirus.app
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or more deaths as of June 25th was included in the analysis. Parameters for our models

were estimated using No-U-turn sampling (Hoffman and Gelman, 2014) within the Stan

software (Carpenter et al., 2017). Four chains were used with 3000 iterations of warm-up

and 1000 iterations of sampling, which were then thinned by a factor of 10 (leaving 400

posterior samples for each parameter). Convergence of Markov Chains was assessed using

trace plots alongside the Gelman-Rubin Statistic (R̂ < 1.05) (Gelman et al., 1992).

Forecasts were created from the posterior samples of λij(t) up until October 1st 2020.

Given that λij has a day-of-the-week effect, the posterior samples of λij(t) will be oscillatory.

Forecasts were also made at the country level by computing

λ̄j(t) =
∑
i

λij(t)

for each posterior sample.

2.2.3 Day-of-the-week effect estimates

The model produces estimates for 24 day of the week effect parameters: one for each day

of the week (except for Sunday which is fixed at 1) for each of the four countries. In order

to gain some insight as to whether the estimated day-of-the-week effects are simply due to

differences in reporting, we pulled proportions of historical deaths by day-of-the-week in

Canada from various non-COVID related causes: circulatory, pulmonary, circulatory and

pulmonary, and non-circulatory pulmonary. We will compare the estimated mortality rates

from these causes to the estimated day-of-the-week effects to see if there is a similar trend.

If not, then this suggests that coronavirus may be more likely to cause death on certain days

of the week, or simply that coronavirus mortality has its own unique reporting artifacts.

2.2.4 Validating Forecasts

Institute for Health Metrics and Evaluation (2020) has made projections for the United

States available since March 25th 2020, and has since expanded the number of regions they

include in their model. In order to validate our model projections, we ran our model using

the same daily mortality data as the IHME, and compared both model’s cumulative death
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Figure 2.2: Populations of regions (black dots) by country. Note that the boxplot was
omitted for Canada, as only 4 Canadian provinces were included
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counts to the observed death count on June 30th 2020 for 14 different time points ranging

from April 1st to June 25th. Additionally, we ran our model without a day-of-the-week

effect to see whether the forecasting performance of our model relies on the day-of-the-

week, and is not only outperforming the IHME model for other reasons. This model will

be referred to as the “non-DOW model”.

Models were compared by assessing consistency and accuracy of projections throughout

time. Consistency was assessed by examining the amount of overlap between successive

intervals, with subsequent intervals hopefully being narrower and mostly contained in pre-

vious intervals. Successive interval overlap is important to ensure that a model’s results are

consistent throughout time. If two successive intervals do not overlap, then at least one of

those intervals must not contain the true value. Overlap was measured at 13 time points,

since the first time point does not have a previous interval. At each of these 13 time points,

the proportion of the interval that is contained in the previous interval is calculated for

each region individually, resulting in 13 proportions per region. These proportions are then

averaged across all regions to determine which model, on average, had the most consistent

predictions.

The first measure used to assess the accuracy of the models was the standardized Root

Mean Squared Log Error (sRMSLE) at time t, which was computed as:

sRMSLE(t) =

√√√√mean
ij

{
log(Pij(t)/Oij(t))2

log(Oij(t))

}

where Pij(t) and Oij(t) are the predicted/observed number of deaths from region i of country

j. Note that each time point has a different number of regions with available data. The

mean squared error is often used as a metric to assess accuracy of point estimates. We

chose to use the log error because of the skewness in the reported deaths. Additionally, we

chose to standardize the result to ensure all included regions have the same weight.

Accuracy of model forecasts was also assessed by computing the proportion of time

points that the prediction intervals contain the observed cumulative death counts on June

30th 2020. To avoid the issue of excessively wide intervals appearing the best, we also plot

the mean log-length of the intervals for each model, at each time point. The model which
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contains the true value the most often, relative to the mean log-length of the intervals, was

considered the favourable model by this metric.

2.3 Results

2.3.1 Forecasts of Daily Mortality in Four Countries

Figure 2.2 visualizes the variation in the population sizes of the regions considered. Note

that the regions in Spain tend to be smaller than those of the other three countries and

for Canada only the four largest provinces were included. Figures 2.3-2.5 show forecasts

for countries and a subset of the regions studied, a full set of results is available in the

online supplement to this chapter. The forecasts for all of Brazil are shown in Figure

2.3a, with the red points representing the data that was used to fit the model, and the

purple representing the observed values from June 26th to August 31st. Up until July, our

model fits the data quite well, indicated by the red points clustered around the posterior

samples, and the day-of-the-week effect is well captured. However, starting in July, our

model slightly underestimates the mean daily death counts. Figures 2.3b-c show the daily

mortality forecasts in Sao Paulo, the region in Brazil with the most deaths, and Acre, a

region with few deaths. In Acre, our model captures the trend of daily deaths reasonably

well, suggesting that the hierarchical nature of our model is helping provide good forecasts

for small regions. Starting in July, we are underestimating daily deaths in Sao Paulo.

Although we estimate the mean daily deaths in Sao Paulo before July, it appears that

we are slightly underestimating the day-of-the-week effect in Sao Paulo, indicated by the

dispersion of the red and purple points having higher variance than the day-of-the-week

effect allows for. This is due to the fact that we only allowed for one day-of-the-week effect

for each country.

The forecasts for all of the United States are shown in Figure 2.4a. Notice that our

model under predicts daily mortality counts throughout July and August. This is likely

due to the fact that many states in the U.S have loosened their lockdown restrictions,

which our model is unable to account for. Figures 2.4b-c show plots of the projections for

Illinois and California. Our projections for Illinois seem to be quite accurate, as this is

https://github.com/cghr-toronto/public/blob/master/covid/DOW/all_daily.pdf
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Figure 2.3: Forecasting daily and cumulative deaths in Brazil as a whole, and the states of
Sau Paulo and Acre.
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one of the states that is yet to experience any repercussions from reopening. However, our

model is underestimating deaths in California likely because of loosening COVID-19 related

restrictions.

Results for Spain and Canada are presented in Figure 2.5, and are less interesting due

to the fact that the epidemics are largely over in these countries. When looking at the

daily death plot for Spain, we see a small second wave not captured by the model. But the

fact that this plot is on the log scale amplifies the apparent size of the second wave. Our

model seems to project Canada’s COVID-19 mortality reasonable well, likely due to the

relatively firm COVID-19 restrictions in Canada. Ultimately, our model seems to predict

daily COVID-19 mortality well in regions with firm COVID-19 restrictions. In 2.3.3, we

will validate our projections under the assumption that COVID-19 related restrictions are

held constant.

2.3.2 Day-of-the-week effects

The 2.5th, 50th and 97.5th percentiles of the posterior distributions of the day-of-the-week

effects are presented in Figure 2.6. With the possible exception of Spain, Sunday appears to

report the lowest death counts, followed by Monday. In all countries, death counts seem to

rise on Tuesday, and remain high until Friday or Saturday, and are still elevated relative to

Sunday. The day-of-the-week effect is most pronounced in the United States, where Tuesday

- Friday are all very similar, but are vastly different than the other days of the week. Brazil

also shows a strong day-of-the-week effect, indicated by Monday’s credible interval having

almost no overlap to any other day-of-the-week. As expected, Canada’s credible intervals

are the widest, due to the fewest deaths overall.

The proportion of deaths by day-of-the-week relative to Sunday for historical (non-

COVID) data from Canada are shown in Table 2.2. Note that there is very little, if any,

similarities between our model’s day of the week estimates and this data. These numbers

only fluctuate by a few percentage points, and do not generally show a large spike on Tuesday

as we saw in our COVID-19 day-of-the-week estimates. This could indicate that people are

more likely to die due to COVID-19 on particular days, but is more likely explainable by

differences in reporting between data sources.
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Figure 2.4: Forecasting daily and cumulative deaths in the United States
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Figure 2.5: Forecasting daily deaths in the Canada and Spain
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Figure 2.6: 2.5th, 50th, and 97.5th percentiles of posterior distributions for day of the week
parameters relative to Sunday (which is fixed at 1.)
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Cause Monday Tuesday Wednesday Thursday Friday Saturday

Circulatory 1.016 1.003 1.005 0.995 1.003 0.997
Pulmonary 0.994 0.996 0.975 0.985 0.996 0.988

Circulatory and Pulmonary 1.011 1.002 0.999 0.993 1.002 0.995
Non-Circulatory Pulmonary 0.988 0.998 1.002 1.007 0.998 1.005

Table 2.2: Relative risks of days-of-the-week (relative to Sunday) for non COVID-19 related
causes in Canada

2.3.3 Model Validation

Projections made at each of the 14 dates in all regions for the 3 models are shown in the

online supplement. Figures 2.7-2.9 show projections for the four regions with the most

deaths in each nation. In any plot where the Institute for Health Metrics and Evaluation

(2020) results are missing, it is because they were not produced for that region at that

time. In the plots where the DOW or non-DOW model were missing, it is because they

had not yet achieved the minimum 50 deaths required to be included in our analysis. For

regions with a large number of deaths (such as New York), the day-of-the-week model was

very consistent, where 95% credible intervals have a large amount of overlap from date-

to-date. The IHME projections are somewhat inconsistent for this region, indicated by

non-overlapping intervals. However, in regions like Florida, the IHME model seems to

outperform the DOW and non-DOW models, requiring a more formal investigation into

model projection assessments. The mean proportion of overlap between successive intervals

for all regions is shown in Figure 2.10b. The DOW model tends to show the highest mean

overlap at 8/13 time points, the non-DOW model had the most overlap at 3/13 time points,

follow by the IHME which had the most overlap at 2/13 time points. This suggests that

the DOW model produces the most consistent projections of the 3 models, and indicates

that in the long-run our projections are likely to be better suited than the IHME’s.

The sRMSLE for each of the three models at each time point is shown in Figure 2.10a.

This figure shows that the IHME is drastically underperforming when compared to the

other two models between April 7th and May 4th. The sRMSLE’s are otherwise compara-

ble. Figure 2.10c shows the proportion of regions that each model’s interval contained the

observed June 30th cumulative death count. Somewhat surprisingly, we see a downward

trend as we get closer to June 30th, as shorter term predictions should become easier. This

https://github.com/cghr-toronto/public/blob/master/covid/DOW/validation_all.png
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Figure 2.7: Cumulative mortality projections for June 30th made at 14 different dates
starting April 1st 2020. The log of the cumulative mortality counts for June 30th are
represented by the dashed line. Results are shown for the four Canadian provinces with the
most COVID-19 deaths.
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Figure 2.8: Cumulative mortality projections for June 30th made at 14 different dates
starting April 1st 2020. The log of the cumulative mortality counts for June 30th are
represented by the dashed line. Results are shown for the four U.S states with the most
COVID-19 deaths.
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Figure 2.9: Cumulative mortality projections for June 30th made at 14 different dates start-
ing April 1st 2020. The log of the cumulative mortality counts for June 30th are represented
by the dashed line. Results are shown for the four Spanish Autonomous Communities with
the most COVID-19 deaths.
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is likely because many regions had started their second uprising in daily deaths just prior to

June 30th, causing models to slightly underestimate deaths in the short term. The DOW

and non-DOW models seem to do very well early on in the epidemic, capturing over 90% of

true values on April 17th. The IHME model tends to do better in the 1-month projection

range. All models tend to perform poorly for very short-term projections (i.e < 2 weeks).

Although the IHME model appears to be better suited in 1-month projections based

on our accuracy metric, Figure 2.10d shows that this is likely due to the increased interval

width. The IHME’s intervals are approximately two times as wide when making 1-month

projections. Despite the IHME’s wider intervals at almost every time point, the DOW model

outperforms the IHME projections in terms of consistency (i.e interval overlap), and is more

accurate for longer-term projections. Note that we have not validated these projections for

the second uprising in deaths, so although our model outperforms the IHME up until June

30th, an extension of our methodology is likely required to accurately forecast COVID-19

mortality in the second “wave” and beyond.

2.4 Discussion

One interpretation of the day of the week effects estimated by our model is that people are

more likely to die from COVID-19 on certain days of the week. It may be the case that

people are more likely to contract the disease on given days of the week (e.g weekdays),

which may cause them to pass away at higher rates in the following days. It is also possible

that on certain days of the week, hospitals are more crowded and have fewer available

resources, which could increase mortality on those days. However, it is more likely the

case that deaths are equally likely to occur on any day-of-the-week, but are simply more

likely to be reported on certain days due to hospital administration procedures. Hospital

administrative workers likely work less on weekends, so deaths on the weekends may be

reported several days after they occur, resulting in lower deaths on Sundays and Mondays.

In either case, our results show that regardless of whether or not these are true day-of-

the-week effects or are simply an artifact created by inconsistent reporting, accounting for

day-of-the-week effects is important when projecting mortality during epidemics. Our non-
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Figure 2.10: Comparing the DOW, non-DOW, and IHME models based on standardized
Root Mean Squared Log Error, how much overlap there was between successive intervals,
how often their intervals contained the true value, and their interval lengths
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DOW model also outperformed the IHME projections, which shows the potential benefits

of using a skew-Normal and/or hierarchicalizing the model parameters.

One limitation of our model is that although we estimate day-of-the-week effects, the

forecasts output from our model are projections of the number of COVID-19 deaths reported

on certain days, as opposed to the true death count. Further extensions of our model could

echo the methodology of Seaman et al. (2020), allowing for the forecasting of the true

number of deaths on any given day.

Since June 30th 2020, many regions such as Florida have seen a second increase in

COVID-19 deaths. Further extensions to our model need to be explored to account for a

second increase in daily deaths. Prediction of these seconds increases could be performed

using region-level covariates such as lock-down severity or mask usage in the region. The

second peak itself could be potentially be modelled by adding a second skew-Normal, where

the location and height of the peak daily deaths are related to the first skew-Normal’s

parameters. Additionally, some regions that appear to be undergoing a second increase

but may just be having multiple epidemics in different subregions (e.g counties in the U.S).

Having smaller-area level data could improve model performance because of this.

Another extension to this model could be to have a different day-of-the-week parameter

per region, but this is likely only possible for regions that have at least several weeks of

data. Hierarchicalizing the day of the week parameters is also an option. For example,

the Monday effect for regions with less mature data could be estimated by “borrowing”

information from regions where the epidemic has matured. Another potential extension is to

have a day-of-the-week effect changing throughout time, as COVID-19 death reporting may

have improved since the beginning of the pandemic. However, in the midst of an epidemic,

computational efficiency is of the utmost importance, as these models can easily take over

a week to run. Obtaining robust estimates quickly can help aid policy decisions which can

ultimately save lives, so having projections within a day or two is largely beneficial.

Further analysis is needed to fully assess the predictive capabilities of our model by ex-

panding the number of countries and regions included. Additionally, including more models

for comparison would be ideal, such as the projections made at https://covid19-projections.

com/ (Scriby, Inc., 2020). This work focused on presenting our core methodology, and pro-

https://covid19-projections.com/
https://covid19-projections.com/


CHAPTER 2. FORECASTING COVID-19 MORTALITY 27

vide accurate single ”wave” projections for four countries that were near or past the peak

of their epidemic.

Despite these limitations in the DOW model, it seems to forecast mortality related to

COVID-19 in the first “wave” quite well when compared to the alternatives. Our projec-

tions made in Section 2.3.1 can be seen as accurate projections assuming that COVID-19

restrictions were never loosened in each region. The day-of-the-week effect was shown to

be important when forecasting COVID-19 mortality, as the IHME and non-DOW model

seemed to be inconsistent with their projections over time, which could be because the pro-

jections were made on different days of the week. Our skew-Normal Bayesian hierarchical

model with day-of-the-week effects could be used as the basis for future COVID-19 mor-

tality predictions where the epidemic is less mature, or perhaps for future outbreaks where

accurate and consistent mortality projections are needed, where only daily mortality data

is available as the input.
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Chapter 3

Capturing Spatial Dependence of

COVID-19 Case Counts with

Cellphone Mobility Data

Abstract

Spatial dependence is usually introduced into spatial models using measure of physical

proximity. When analyzing COVID-19 case counts, this makes sense as regions that are close

together are more likely to have more people moving between them, spreading the disease.

However, using the actual number of trips between each region may explain COVID-19 case

counts better than physical proximity. In this chapter, we investigate the efficacy of using

telecommunications-derived mobility data to induce spatial dependence in spatial models

applied to two Spanish communities’ COVID-19 case counts. We do this by extending

Besag York Mollié (BYM) models to include both a physical adjacency effect, alongside a

mobility effect. The mobility effect is given a Gaussian Markov random field prior, with the

number of trips between regions as edge weights. We leverage modern parametrizations of

BYM models to conclude that the number of people moving between regions better explains

variation in COVID-19 case counts than physical proximity data. We suggest that this data

should be used in conjunction with physical proximity data when developing spatial models

29
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for COVID-19 case counts.

3.1 Introduction

Spatial analyses of COVID-19 case data were first published as early as March of 2020

(Huang et al., 2020; Arab-Mazar et al., 2020; Giuliani et al., 2020), in an attempt to char-

acterize, predict, and attenuate the severity of the pandemic. Subsequent studies have

noted substantial spatial dependence in COVID-19 case counts (Kang et al., 2020; Bilal

et al., 2020). This makes sense as regions that are close to each other likely have more

people moving between them, spreading the disease to nearby regions.

Many groups have attempted to model COVID-19 case counts as a function of climate

(Liu et al., 2020; Shi et al., 2020; Briz-Redón and Serrano-Aroca, 2020), healthcare quality

(Sugg et al., 2021), socioeconomic factors (Baum and Henry, 2020) and more. More recently,

mobility data has become more abundant and popular for modeling COVID-19 transmission.

This makes sense because the disease spreads through human contact, meaning that case

counts are likely to be a function of the number of people moving around. Such mobility

data has been used to model the evolution of the epidemic in Spain (Aràndiga et al., 2020;

Iacus et al., 2020), assess the effectiveness of the Spanish lockdown (Orea and Álvarez, 2020),

monitoring the epidemic in Switzerland (Persson et al., 2021), identify at-risk populations in

France during a lockdown (Pullano et al., 2020), individual-level infection tracing in China

(Kraemer et al., 2020), assess the timing of stay-home orders (Audirac et al., 2020), and

evaluating the effectiveness of social distancing in the United States (Badr et al., 2020). This

data can be found in many forms, but is commonly found in the form of aggregated areal

mobility matrices. If we denote a mobility matrix M , [M ]ij corresponds to the number of

trips from region i to region j, and M ii represents the number of trips within region i.

These data have been applied in a variety of different models to answer numerous ques-

tions, but lack of available methods makes it difficult for researchers to use this data to

its full potential. In this chapter, we demonstrate a novel method for analyzing this data,

whereby the mobility data is used as edge weights in a Gaussian Markov random field (net-

work) model. Previous work using network models have been applied to mobility data in
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the form of a network compartment model (Chang et al., 2021) which was used to con-

duct inference regarding societal inequities, and inform reopening. This work does not

aim to make such claims, but rather demonstrate the efficacy of mobility data in modern

parametrizations of Besag, York, and Mollié (BYM) models (Besag et al., 1991) and their

extensions.

BYM models have been used frequently in the spatial analysis literature due to their

effectiveness and computational efficiency. In these models, the spatial component is com-

prised of Conditional Autoregressive (CAR) (Besag, 1974) models and conventional random

effects. This means that the spatial effect of region i depends only on its “neighbours”.

Neighbours could be defined by any quantity the analyst has access to, but is most often

defined by physical adjacency, i.e. if two regions share a common border, they are consid-

ered neighbours. Several ICAR/BYM models have been applied to COVID-19 data with

neighbours defined in this way (DiMaggio et al., 2020; Huang and Brown, 2021; Brainard

et al., 2020). Although these spatial model components based on physical adjacency are

powerful and computationally efficient, it makes more sense to use mobility between re-

gions to induce spatial dependence in COVID-19 models because the disease spreads via

person-to-person contact.

In this chapter, we build a BYM model where mobility data is used to induce spa-

tial dependence between regions. Using mobility data within two Communities in Spain,

Madrid and Castilla-Leon, we demonstrate the value of mobility data for COVID-19 spatial

modeling applications. Furthermore, we extend modern parametrizations of BYM models

to account for both physical adjacency and mobility simultaneously, and show that mobil-

ity data captures spatial variation in COVID-19 case counts much more accurately than

physical adjacency alone.

This chapter is organized as follows. Section 3.2 presents the data and the modeling

strategy based on particular parametrizations of BYM models. The results come in Section

3.3, and the chapter ends with a final discussion in Section 3.4.
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Figure 3.1: Number of trips greater than 500 metres (a and b) and daily case counts (c and
d) in the two Communities of Spain from March to June 2020.

3.2 Methods

3.2.1 Data

This chapter is focused on two regions in Spain. Castilla-Leon is the largest Community in

Spain by area and is located in the northwest part of Spain, with a population of 2.5 million.

The Community of Madrid is located in the central part of Spain and has a population of

around 6.8 million, and it is home of the capital of the country, Madrid City, with 3.3

million inhabitants.

The human mobility data was obtained from Barcelona Supercomputing Center Flow-

map dashboard (Valencia, 2021). Trips within Madrid and Castilla-Leon were extracted

from over 13 million phone records provided by a Spanish cellphone company. Both passive
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Figure 3.2: COVID-19 cases per thousand, up to May 31 2020 for two communities in Spain.
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(GPS) and active (text messages, calls etc.) data were aggregated to construct daily move-

ment matrices in each of the Communities, prior to the authors acquisition of the data.

Given that trips were only recorded from one cellphone company, adjustment was made

to estimate the number of total trips between each region. As a result, the entries of the

mobility matrices are non-integer values.

Figures 3.1a and 3.1b show the total daily movement between regions in Madrid, and

Castilla-Leon, respectively. There is a sharp drop in the number of trips around March

14th 2020, which corresponds to a nation-wide lockdown. Lockdown restrictions began

to ease around May 11th, where the number of trips slowly began to rise. Figures 3.1c

and 3.1d show the number of cases of COVID-19 cases in both Communities. COVID-

19 daily cases data were retrieved from the open data portal of Castilla-Leon (General

Directorate of Information Systems, Quality and Pharmaceutical Provision, 2021) and from

the Epidemiological Surveillance Network of Madrid (Ministry of Economic Affairs and

Digital Transformation, 2021). Notice that the movement drops as cases rise, because a

lockdown was implemented in response to the increasing severity of the epidemic. In order

to avoid this potential “reverse causality” problem, we will only use movement data in the

first week of March. Our justification for this is that there is a time lag between when the

virus spreads and the resulting COVID cases are confirmed. That is, the “first wave” of the

epidemic was likely influenced mostly by the movement that occurred prior to the peak in

cases, and less by the movement that occurred during it.

Figure 3.2 shows the spatial distribution of the COVID-19 case rates up until May 31,

2020. The cases per thousand people range from (approximately) 0 − 30 in Madrid, and

0 − 100 for Castilla-Leon. We can see that there is substantial variation in the case rates

within each of these Communities. Note that the extreme values in these plots are mostly

small regions, which makes sense since the variance of case rates is higher when population

is small. In the north of Madrid, there is a cluster of municipalities that have very low

case rates. In Castilla-Leon, case rates are highest near the southeast border, which is the

border to Madrid.

Figure 3.3 shows the number of trips to, from, and within each Municipality of Madrid

(there are 179 of these small regions), and Castilla-Leon (there are 245 health zones).
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Madrid and Castilla-Leon are considered separately throughout this chapter. Although

they are adjacent, data on movements between the two communities are not available. In

Madrid, there is a lot of movement in and around Madrid City, and less movement in the

more rural areas. Castilla-Leon shows a less predictable movement pattern, as there is not

a single capital city that accounts for most of the movement. This movement data will be

used to induce spatial correlation between regions, as described in Section 3.2.3.

3.2.2 Spatial autoregressive models

Besag, York, and Mollié (BYM) models (Besag et al., 1991) are widely used in spatial

epidemiology and disease mapping due to their simplicity and computational efficiency.

They assume the incidence of disease in region i follows a Poisson distribution

Yi ∼ Pois(Eiλi)

where Yi is the number of infected cases in region i, and Ei is some form of expected count

or offset, which could be the at-risk population, exposure time, etc. The log-relative risk,

λi, is often modeled as

log(λi) = µ+ βX + φi + θi

φi|φ−i ∼ N
(

1∑
j wij

∑
j

wijφj ,
σ2
φ∑
j wij

)
(3.1)

θi
i.i.d∼ N(0, σ2

θ)

where µ is the overall intercept, β is the effect of spatial covariates, φi is the structured

spatial random effect, and θi is the unstructured spatial random effect which allows for

overdispersion in the response. In the spatial formulation of the BYM model, wij = 1 when

regions i and j share a common border, and 0 otherwise. That is, region i’s structured

spatial effect is only conditionally dependent on its neighbours, given all other regions. The

distributions {φi|φ−i}ni=1 are known as the full conditionals, where φ−i is short hand for the

set {φ1, φ2, ...φi−1, φi+1, ...φn}. We can see from (3.1) that E(φi|φ−i) is a weighted average
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Figure 3.3: Number of trips (incoming, outgoing, and within) the 179 regions of Madrid,
and 245 health zones of Castilla-Leon, for the period March 1 to March 7 2020.
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of its neighbours, resulting in spatial smoothing. These full conditionals correspond to the

joint distribution of the φ’s being a Gaussian Markov random field (GMRF) (Rue and Held,

2005), with

φ ∼MVN(0,Q−1)

Q = σ−2
φ D(I −W )

where W is a matrix of weights such that wij > 0 for i 6= j and wii = 0, and σ2 is a

variance parameter to be estimated. D is a diagonal matrix such that Dii =
∑

j wij . This

definition ensures that the precision matrix, Q, is both symmetric and positive definite.

In addition to the 0-1 weights based on regions being adjacent, other weighting schemes,

such as inverse of Euclidean distance between regions, have been used. For a comparison of

common weighting schemes, see (Duncan et al., 2017). When we specify Q in this way, we

refer to this as an Intrinsic Autoregressive (ICAR) model for φ. The joint density function

has a computationally convenient form with

p(φ) ∝ exp
[
− 1

2σφ

∑
i<j

wij(φi − φj)2
]

which is sometimes referred to as the pairwise difference formula. Notice that this density

is invariant to the addition of a constant to each φi, leaving the spatial random effects

unidentifiable up to a constant. This is typically remedied by imposing the constraint∑
i φi = 0 (Duncan et al., 2017). We will now modify this BYM model to account for

movement between regions, in addition to physical adjacency.

3.2.3 Movement augmented BYM model

In order to extend the BYM model to allow for spatial correlation based on movement

data, a second ICAR term, γi, with dependence structure governed by the movement data

is added to the model. We also retain an adjacency-determined spatial effect φi in order to

infer the relative importance of mobility-based and adjacency-based spatial dependence in
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determining COVID-19 case counts. The resulting model is

log(λi) = µ+ βXi + φi + γi + θi

φi|φ−i ∼ N
(

1∑
j wij

∑
j

wijφj ,
σ2
φ∑
j wij

)

γi|γ−i ∼ N
(

1∑
j vij

∑
j

vijγj ,
σ2
γ∑
j vij

)

θi ∼ N(0, σ2
θ)

where φi and γi are the spatial random effects with priors based on the physical data

and movement data respectively. The geographically-defined process φi has weights wij =

1 if regions i and j share a common border and are 0 otherwise, while the movement-

defined process γi has weights vij representing the number of trips between regions i and j.

Using mobility as edge weights in network models has shown to be effective in the context

of infectious diseases (Schrödle et al., 2012; Volkova et al., 2010; Geilhufe et al., 2014).

(Schrödle et al., 2012) used mobility weights in an autoregressive term, which allowed the

weights matrices to be asymmetric. However, given that our mobility data is being used

in a Gaussian prior for a random effect, the precision matrices of φ and γ, Qφ and Qγ ,

must be symmetric. Therefore we require wij = wji and vij = vji. While the first equality

will always be true, the mobility matrices are not perfectly symmetric, thus symmetry was

induced by defining vij as the sum of the numbers of trips from i to j and from j to i.

The GRMF does not account for the movement within a region, so the movement within a

region was included in the model as a spatial covariate Xi (fixed effect). That is, Xi was

computed as

Xi =

vii
Ei
−mean

j
(
vjj
Ej

)

sd
j

(
vjj
Ej

)

where vii/Ei is the number of trips per person within a region, and mean(vjj/Ej) and

sd(vjj/Ej) are the mean and standard deviations of the trips per person in all other regions.

This model was run on both the Madrid and Castilla-Leon data.

There are two main drawbacks with the formulations of BYM models presented thus
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far. Firstly, the interpretation of the parameters σγ and σφ depend on the average number

of neighbours and the total number of trips for each region, and hence their magnitudes

are not comparable (Sørbye and Rue, 2014). Secondly, σφ, σγ , and σθ are hard to estimate

without very careful choices of hyperpriors (Leroux et al., 2000). We will now address these

shortcoming via reparametrizations.

3.2.4 Reparametrizations and Priors

In order to solve issues with comparability, interpretability, and estimation, we apply a

reparameterization of our model that is inspired by Riebler et al. (2016) with

σ2 ≈ Var(φi + γi + θi)

φ∗i |φ∗−i ∼ N
(

1∑
j wij

∑
j

wijφ
∗
ij ,

ρφσ
2

sφ
∑

j wij

)

γ∗i |γ∗−i ∼ N
(

1∑
j vij

∑
j

vijγ
∗
ij ,

ργσ
2

sγ
∑

j vij

)

θi ∼ N(0, ρθσ
2)

where ρφ + ργ + ρθ = 1 and 0 < ργ , ρφ, ρθ < 1. The priors for σ and ρ are

σ ∼ N+(0, 1)

ρ ∼ Dirichlet(1, 1, 1)

Note that

φ∗i = σ
(√

ρφ/sφ

)
φi

γ∗i = σ
(√

ργ/sγ

)
γi.

Here, σ2 is the combined variance of the spatial effects, and the ρ’s are mixing pa-

rameters, interpreted as the proportion of the combined spatial variance explained by each

model component. Note that ρθ = 1 reduces the spatial component to purely overdispersion,

ρφ = 1 reduces the spatial component of the model to an adjacency ICAR model for the
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spatial effects, and ργ = 1 reduces the spatial component to a mobility ICAR model. Most

importantly, if ργ > ρφ then this means that the mobility data better explains variation

in COVID-19 case counts than the adjacency data. As long as the spatial weights matrix

and the mobility weights matrix are linearly independent, then having both spatial and

mobility terms in our model present no issues with identifiability (Rodrigues and Assunçao,

2012). Finally, sγ and sφ are scaling factors, such that the geometric means of s−1
γ Var(γi)

and s−1
φ Var(φi) are both ≈ 1 for each i, meaning that γ∗i and φ∗i are the log relative risk

contributions from the movement data and physical data respectively (Sørbye and Rue,

2014). Scaling is absolutely necessary in order to conduct inference on the ρ’s. We compute

the scaling factors as follows

s = exp
( 1

n

n∑
i=1

log[Q−]ii

)
where Q− is the generalized inverse of the n× n precision matrix (Freni-Sterrantino et al.,

2018). In order to scale the precision matrices of the spatial effects, the generalized inverse

for sparse matrices from Rue et al. (2017) was used. The diagonal elements, [Q−]ii, of Q−

are referred to as the marginal variances of the structured spatial effects, i.e var(φi) = [Q−φ ]ii

and var(γi) = [Q−γ ]ii.

As was the case with the ICAR model in (3.1), we can derive the full conditionals of

the combined spatial effect, τi = φ∗i + γ∗i + θ∗i , for the model described in Section 3.2.3

τi|τ−i ∼ N
[ ∑

j(
ρφ
sφ
wij +

ργ
sγ
vij)τj

ρφ
sφ

∑
j wij +

ργ
sγ

∑
j vij + ρθ

,
σ2

ρφ
sφ

∑
j wij +

ργ
sγ

∑
j vij + ρθ

]
(3.2)

These full conditionals can help provide some intuition as to the mechanism by which this

model provides spatial smoothing. As ργ → 1, τi is simply the weighted sum of the other

regions, where the weights are the proportion of region i’s total movement between each

other region. If ρφ → 1, the conditional mean of τi reduces to the arithmetic average of

the spatial effects of its neighbours. If ρθ → 1, then the conditional mean shrinks to 0

(remember that ρφ+ργ +ρθ = 1). Given that ρθ is positive, the conditional mean is always

shrunk towards 0, resulting in spatial smoothing. In practice, the conditional mean will
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be a weighted average of the estimates smoothed by the movement GMRF, the physical

GMRF and 0. It is important to note here that the wij/sφ and vij/sγ are relative measures

due to the scaling factors. That is, doubling the total amount of movement has no effect on

the conditional mean or variance of τi. This is in contrast to the combined spatial effects in

the commonly used Leroux model Leroux et al. (2000). Additionally, the variance of τi|τ−i
is lower when region i has a lot of movement or many neighbours, relative to the other

regions.

3.2.5 Inference, computation, and validation

Four chains each with 3000 iterations of No U-Turn Sampling were used for parameter

estimation within Stan Stan Development Team (2021). The first 1500 iterations were used

as a warm-up, the 1500 remaining iterations from each chain were thinned by a factor of

10, leaving 600 total posterior samples to perform inference. As mentioned in Section 3.2.2,

we require
∑

i φi = 0. In practice, we use the soft constraint

∑
i

φi ∼ N(0, 0.001)

for computational reasons (as recommended by the Stan team (Morris et al., 2019)). To

complete the model, priors for β and µ were N(0, 1). To ensure the robustness of our results,

we also ran BYM models using the adjacency data and the movement data separately. That

is, for both Madrid and Castilla-Leon, we ran a model where we assumed ργ = 0, and a

separate model where ρφ = 0. The results of these four models are presented in Section

3.3.2.

Our code and posterior samples are posted at https://github.com/cghr-toronto/

public/tree/master/covid/spain_public_code.

https://github.com/cghr-toronto/public/tree/master/covid/spain_public_code
https://github.com/cghr-toronto/public/tree/master/covid/spain_public_code
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Parameter Madrid Castilla-Leon
Est (95% CrI) Est (95% CrI)

ρ
Movement 0.76 (0.54, 0.89) 0.88 (0.66, 0.98)
Neighbour 0.13 (0.01, 0.39) 0.09 (0.01, 0.30)
Independent 0.10 (0.02, 0.25) 0.02 (0.00, 0.09)

µ -5.36 (-5.51, -5.24) -3.75 (-3.78, -3.73)
β 0.12 ( 0.05, 0.20) -0.01 (-0.04, 0.02)
σ 0.65 ( 0.55, 0.78) 0.72 ( 0.63, 0.83)

Table 3.1: Posterior medians, and 95% credible intervals for ρ in BYM models using move-
ment and physical (adjacency) data in the same model.

3.3 Results

3.3.1 Joint model

Table 3.1 shows posterior medians and credible intervals for the mixing parameters for the

model with both movement and adjacency spatial effects. For both Madrid and Castilla-

Leon, the proportion of spatial variation explained by γ is much higher than that of φ and

θ. The posterior probability that ργ > ρφ was 0.997 for Madrid, and 0.998 for Castilla-Leon.

However, φ does seem to account for a non-trivial amount of spatial variation in both Madrid

and Castilla-Leon. This means that although movement data is likely more explanatory,

adjacency data can help with explaining variation in COVID-19 cases. Additionally, there

is a substantial amount of spatial variation explained by the unstructured spatial effect for

Madrid. This is not the case for Castilla-Leon, as most of the mass of the posterior of ρθ is

near 0. This makes sense given that Madrid has a large metropolitan centre surrounded by

a mix of suburbs and rural areas, so there are probably spatial confounders that our model

is missing. For a plot of the posterior densities of ρ, see Appendix 3.A.

Figures 3.4a through 3.4d show the spatial distribution γ∗ and φ∗, plotted using the same

colour scale for comparability. We can see that γ’s log-relative risks have a lot more spatial

variation in both Commmunities. The log-relative risks for φ tend to have smooth spatial

gradients, while γ tends to identify clusters of regions as high-risk areas. As seen in equation

3.2, the expectation of the combined spatial effects are a weighted average of these spatial

effects, and 0 (notice that the numerator can be rewritten as
∑

j(
ρφ
sφ
wij +

ργ
sγ
vij + ρθ · 0)τj

where ρθ > 0). Figures 3.4e and 3.4f show the predicted cases per 1000 people per region,



CHAPTER 3. MOBILITY-AUGMENTED SPATIAL MODELS FOR COVID-19 43

Parameter Madrid Castilla-Leon
Est (95% CrI) Est (95% CrI)

ρ
movement 0.82 ( 0.66, 0.91) 0.95 ( 0.89, 0.98)
neighbour 0.56 ( 0.22, 0.83) 0.77 ( 0.58, 0.91)

µ
movement -5.34 (-5.48, -5.23) -3.75 (-3.78, -3.73)
neighbour -5.18 (-5.30, -5.09) -3.74 (-3.78, -3.70)

β
movement 0.12 ( 0.05, 0.18) -0.02 (-0.05, 0.02)
neighbour 0.13 ( 0.01, 0.24) -0.01 (-0.05, 0.04)

σ
movement 0.63 ( 0.55, 0.76) 0.74 ( 0.65, 0.83)
neighbour 0.66 ( 0.56, 0.83) 0.58 ( 0.51, 0.66)

Table 3.2: Posterior medians, and 95% credible intervals for ρ in BYM models using move-
ment and physical (adjacency) data in separate models.

showing highly similar patterns to the observed values in Figure 3.2.

The standard deviation was slightly larger for Castilla-Leon than it was for Madrid.

Figure 3.B.2 shows the the spatial distribution of the standard deviation of the cases per

thousand people in both communities. Here, we can see that the standard deviation is

pretty small in and around Madrid City, because the movement to and from Madrid City is

causing a high-degree of spatial smoothing in the surrounding area. The effect of movement

within regions, β, is associated with larger case counts in Madrid, but this is not the case for

Castilla-Leon. This small covariate effect could result in more variance being attributable

to the random effects, potentially contributing to the larger σ in Castilla-Leon.

3.3.2 Model Validation - Individual models

Table 3.2 shows posterior medians and credible intervals for the ρ parameter from the

movement and physical BYM models described in Section 3.2.5, fit separately to Madrid

and Castilla-Leon (four models total). In both regions, the model where spatial smoothing

is induced by population movement explains a higher proportion of the variation in the

outcome, indicated by the posterior density of ρ having more mass near 1. Additionally, the

BYM model that used physical adjacency as a spatial smoother had a much wider credible

interval for ρ, indicating more model uncertainty. Both models show more uncertainty in

the region of Madrid than for Castilla-Leon, likely due to the fact that Madrid is more

heterogeneous in terms of population density and other factors. For full posterior densities

of the ρ parameter, see Appendix 3.A.2.
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Figure 3.4: Log-relative risk contributions (a-d) from the movement effects (γ∗) and spatial
effects effects (φ∗). The predicted cases per thousand people are also presented (e-f).
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3.4 Discussion

In this chapter, we have demonstrated that there is much value in using mobility data in

combination with geographical proximity for defining correlation structures in COVID-19

incidence data. We showed that even while using only one week of movement data, we were

able to explain the spatial variation in COVID-19 counts better than using the classic BYM

model. Additionally, we showed that the model can be re-parametrized so that the means

by which smoothing occurs in these mobility models is intuitive.

A key limitation of this work is that the models presented in this chapter do not serve as

individual-level infectious disease models, as correlation is induced by a latent effect rather

than direct dependence between the counts. However, this will be a natural extension of this

work and would require the addition of many more parameters, including multiple mobility

network components at various time points. This will ultimately pose a computational

challenge as well.

An additional limitation of this work is that the availability and structure of mobility

data will vary across data sources, and may only be available in higher income countries.

Furthermore, there is selection bias in the movement data, as it only tracks those who

actually have a cellphone, which may tend to be younger and more economically advantaged

individuals. Given potential differences in quality of these data, its efficacy in spatial models

may need to be assessed on a case by case basis.

Furthermore, the models presented in this chapter may suffer from overfitting. A po-

tential remedy for this would be to put a penalized complexity prior (Simpson et al., 2017)

on the mixing parameters, which may improve inference by shrinking ργ (and perhaps ρφ)

towards 0. An interesting area for future work would be to combine Dirichlet and penal-

ized complexity priors to specify a joint prior for the mixing parameters as described in

Fuglstad et al. (2020), which can be implemented using the makemyprior R package (Hem

et al., 2021). This was deemed unnecessary for this work, as we were mainly interested in

comparing ργ to ρφ, and felt that our prior should not favour either one of these terms.

Despite these limitations, this work demonstrates the value of mobility data and provides

the foundation for various extensions and future work. This data is only becoming more
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abundant as time passes, and methods that allow for efficient use of this data are essential to

model the current epidemic, and any spatial epidemiological application where population

movement is likely a predictor of disease.
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D. F. (2020). A spatial-temporal model for the evolution of the COVID-19 pandemic in

Spain including mobility. Mathematics, 8(10):1677.

Audirac, M., Tec, M., Meyers, L. A., Fox, S., and Zigler, C. (2020). How timing of stay-home

orders and mobility reductions impacted first-wave COVID-19 deaths in US counties.

medRxiv. https://doi.org/10.1101/2020.11.24.20238055.

Badr, H. S., Du, H., Marshall, M., Dong, E., Squire, M. M., and Gardner, L. M. (2020).

Association between mobility patterns and COVID-19 transmission in the usa: a math-

ematical modelling study. The Lancet Infectious Diseases, 20(11):1247–1254.

Baum, C. F. and Henry, M. (2020). Socioeconomic factors influencing the spa-

tial spread of COVID-19 in the United States. Preprints with The Lancet.

http://dx.doi.org/10.2139/ssrn.3559569.

Besag, J. (1974). Spatial interaction and the statistical analysis of lattice systems. Journal

of the Royal Statistical Society: Series B (Methodological), 36(2):192–225.
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3.A Appendix Posterior Densities of ρ for various models
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Figure 3.A.1: Posterior Density of the proportion of variance explained by each of the 3
spatial parameters when adjacency and movement data are included in the same model
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Figure 3.A.2: Posterior Density of the proportion of variance explained by spatial compo-
nents when adjacency and movement data are used in separate models (model validation).



CHAPTER 3. MOBILITY-AUGMENTED SPATIAL MODELS FOR COVID-19 52

rho[1] rho[2] rho[3]

1500 2000 2500 3000 1500 2000 2500 3000 1500 2000 2500 3000

0.0

0.1

0.2

0.3

0.4

0.0

0.2

0.4

0.6

0.4

0.6

0.8

chain

1

2

3

4

(a) Madrid

rho[1] rho[2] rho[3]

1500 2000 2500 3000 1500 2000 2500 3000 1500 2000 2500 3000

0.00

0.05

0.10

0.15

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.8

1.0

chain

1

2

3

4

(b) Castilla-Leon

Figure 3.A.3: Traceplots of ρ
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3.B Additional Spatial plots
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Figure 3.B.1: Number of trips to and from Madrid City (white).
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Figure 3.B.2: Standard deviations of predicted cases per thousand people.



Chapter 4

Leveraging mobility networks to

assess COVID-19 travel risk

Abstract

Since the beginning of the COVID-19 pandemic, public health authorities across the globe

have implemented policies, such as lockdowns, in an attempt to reduce population mobility,

and consequently, person-to-person contacts. It is well known that lockdowns reduce mobil-

ity, but to what extent does this reduction in mobility lead to lower infection rates? In this

chapter, we extend the Endemic-Epidemic modeling framework in a principled manner, in-

corporating temporally changing mobility network data and quantifying the risk associated

with travelling throughout the first year of the pandemic in two Spanish Communities.

4.1 Introduction

Since the beginning of the COVID-19 pandemic, public health authorities across the globe

have implemented policies such as lockdowns, with the intention of reducing population

mobility and, consequently, person-to-person contacts. Countless studies have attempted

to quantify the effectiveness of mobility reductions by using a variety of data sources and

statistical methods. Cellphone-derived mobility data is well-suited this purpose, as we can

use it to quantify the severity of a lockdown as well as relate it to case counts via a statistical

54
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model such as a generalized linear model or infectious disease model.

Slater et al. (2021b) showed that mobility data better captures spatial heterogeneity in

COVID-19 case counts than spatial proximity in Bayesian spatial models. However, the

temporal relationship between mobility and case counts poses great modeling challenges,

as the correlation between the two changes in each wave (Gottumukkala et al., 2021). We

argue that since mobility affects the reproduction rate of infectious diseases (as opposed

to the absolute counts), we can indeed infer the impact of mobility on case counts using a

spatio-temporal infectious disease model.

In the last two decades, a class of infectious disease models known as Endemic - Epidemic

(EE) models have gained popularity due to their simplicity and forecasting ability (Held

et al., 2005). A simple version of these models can be written as:

Yt|Yt−1 ∼ Pois(µt)

µt = vt + αYt−1

where Yt is the number of cases, vt is the “endemic” component which describes new cases

that are not explained by previous cases, and αYt−1 is the “epidemic component” which

describes new cases that are directly attributable to previous cases. These models have

since then been extended to include temporally changing α (Held et al., 2006), multiple

diseases (Paul et al., 2008), random effects (Paul and Held, 2011), seasonal effects (Held

and Paul, 2012), serial interval distributions of disease (Bracher and Held, 2020) and more.

EE models overcome the computational difficulties of fitting classic compartmental (SIR)

models, and are an attractive alternative when an abundance of data is available (Wakefield

et al., 2019).

An example of a multi-region EE model is

Yit|Y −i,t−1 ∼ Pois(µit)

µit = vit + α
∑
j

wjiYj,t−1 (4.1)

where i and j are region indicators and wji’s represent (potentially asymmetric) weights
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between regions j and i. Typically these weights are row-normalized (sum to 1) but this is

not necessary. The most common form of weights is some function of physical distance or

proximity, such as

wji =
1

|i ∼ j|

or

wji = (oji + 1)−ρ

where |i ∼ j| is the number of regions sharing a border (neighbors) with region j, oji

is the minimum number of region borders you would have to cross to get from region j

to i, and ρ is a parameter to be estimated. These weights tend to work well because

they are good proxy for the number of people moving between regions, and resultingly,

contact rates between infectious and susceptible people. More interestingly, these weights

have been combined with or replaced by other data sources to more accurately estimate

the contact rates between individuals of different regions. For instance, Schrödle et al.

(2012) used assymetric mobility weights to model the spread of Coxiellosis in Swiss cows.

Geilhufe et al. (2014) used mobility data to estimate the relationship between distance

and mobility, and define their weights based on this relationship. Meyer and Held (2017)

estimate contact rates between age groups using external data and combine these data with

spatial proximity weights and used this as an estimate for contact rates between age groups

across various regions. Fritz and Kauermann (2022) build weights based on estimated

social connectedness via social media data. Grimée et al. (2021) combine border closure

data with proximity weights to assess the effectiveness of lockdowns during the COVID-19

pandemic, and estimate case counts under counterfactual scenarios. Celani and Giudici

(2022) incorporated mobility weights to assess the effectiveness of containment measures in

Italy. Each of these works show that proximity weights can be supplemented or replaced

with external data to improve forecasting or inference.

Much of the methodological progress surrounding EE models aims to improve forecasting

ability based on the framework presented in Gneiting and Raftery (2007). Consequently, the

applications of these models tend to lack interpretability. When the goal is learning about

the biological phenomenon, we must make every effort to ensure our model parameters have
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clear meanings, and that our results are biologically plausible. Covariates introduced should

be done so carefully, and should effect model parameters in a way that are consistent with

infectious disease dynamics.

In this chapter, we derive a mobility extended spatio-temporal EE model where contact

rates are a temporally changing function of mobility. In doing so, we ensure interpretability

of our important parameters, and carefully specify the functional form of the reproduc-

tion number via data exploration methods. We use this model to infer the risk associated

with travelling during the first 12-15 months of the COVID-19 pandemic in two Span-

ish Autonomous Communities using high resolution areal mobility networks derived from

cellphone GPS signals.

This chapter is structured as follows. We introduce the data that motivated this work in

Section 4.2, and present our model and methods in Section 4.3. In Section 4.4, we apply our

model to two Spanish Communities, inferring the risk associated with travelling in both.

We end with a discussion of our model results, limitations, and future work.

4.2 Data

This chapter focuses on Madrid and Castilla-Leon, two Communities in Spain. Madrid,

with a population of approximately 6.8 million, is home to Madrid City, the capital of

Spain. Castilla-Leon is geographically the largest Community in Spain, with a population

of 2.5 million, and is thus much more rural than the Community of Madrid. Each com-

munity is divided into smaller subregions (Madrid has 179 subregions, Castilla-Leon has

245). We obtain weekly mobility network data for the trips between and within each of

these subregions, alongside COVID-19 cases. The mobility data used in this chapter is a

temporal extension of that used in Slater et al. (2021b). These data can be downloaded

from Ministerio de Transportes Movilidad Y Agends Urbana, Gobierno de España (2022),

and are described in detail in Ponce-de Leon et al. (2021). Although daily mobility data is

available, we aggregated it by week to match the resolution of the case data, avoiding the

well-known day-of-the-week effect of COVID-19 case reporting (Slater et al., 2021a).

For Castilla-Leon, the weekly case data from March 1, 2020, to March 7, 2021 was
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Figure 4.1: Time series of cases, trips, and tests between March 2020 and March 2021
(Castilla-Leon), and March 2020 and May 2021 (Madrid).

obtained from the open data portal of Castilla-Leon (General Directorate of Information

Systems, Quality and Pharmaceutical Provision, 2022). For Madrid, case data from March

1, 2020, to May 9, 2021 was obtained from Epidemiological Surveillance Network of Madrid

(Epidemiological Surveillance Network of Madrid, 2022). Note that nearing the end of

our Madrid case data, vaccines were being administered to the public, and thus should

be accounted for. Country level vaccine data was obtained from Ministerio de Sanidad,

Gobierno De España (2022b), where about 30% of the population had been vaccinated prior

to the end of our Madrid case data. Although we don’t expect this to have a substantial

impact on our results, the effect of vaccines should at least be explored.

Daily testing data was acquired from the Government of Spain Ministry of Health web-

site (Ministerio de Sanidad, Gobierno De España, 2022a). Testing data was only available

at the community level, which we aggregated by week. The first two weeks of the pandemic
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were missing, and were imputed using the fourth and fifth weeks, as this seemed to suit the

temporal testing pattern well.

4.3 Methodology

In this section, we start by introducing a single-region version of a mobility extended EE

model, a derivation inspired by Bauer and Wakefield (2018). We then extend this model

to a multi-region model, and describe reasonable assumptions that make implementing this

model computationally feasible. We then describe the careful processes of accounting for

delayed reporting, serial intervals, and under reporting, while retaining interpretability of

our model. We conclude the section with an explanation of the summary statistics used in

this chapter, followed by our inference methodology.

4.3.1 Single region model

In epidemiology, the force of infection at time t, λt, is defined as the rate at which susceptible

individuals become infected. Mathematically, we write it as (Halloran et al., 2010)

λt = Ct−1 × Pt−1 ×
It−1

N

where Ct−1 is the number of contacts between infectious and susceptibles individuals, Pt−1

is the probability of infection given a contact between an infectious and susceptible indi-

vidual, and It−1 is the number of infectious individuals at time t− 1 (meaning that It−1

N is

the prevalence at time t− 1). For simplicity, we will assume It−1 = yt−1, that the number

of infectious individuals equals the number of cases, but will later relax this assumption.

Typically, the number of contacts is assumed to be constant (frequency dependent) or pro-

portional to the population size N (density dependent). Distinguishing between these is

inconsequential in our models as we will see later on. However, in this chapter, we assume

Ct is a function of mobility, w, which is the number of trips as described in Section 4.2.
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That is, we assume that the contacts function takes the form

Ct−1(w) = cAR +
D∑
d=1

cmob
d wt−d

where the c’s are parameters to be estimated, and D is some small integer (i.e 1,2 or 3)

chosen by the analyst. The reason for including higher lags of mobility is because cases

appearing at yt−1 may have been infectious at time t− 2 or earlier but didn’t immediately

produce a positive test. If we assume that the per-contact probability of infection is time

constant Pt−1 = p, then our force of infection is

λt =
(
cAR +

D∑
d=1

cmob
d wt−d

)
× p× yt−1

N

= cARp
yt−1

N
+
( D∑
d=1

cmob
d pwt−d

)yt−1

N

= αAR
yt−1

N
+
( D∑
d=1

αmob
d wt−d

)yt−1

N

If we make the assumption that infected people are equally likely to move as the rest of

the population, then αmob
d can be interpretted as the number of infected trips from d time

units ago required to cause an infection at time t, and αAR is the number of new infections

caused by previous infections, but not related to mobility. This assumption may not be as

problematic as it may sound, as people can be infectious several days prior to showing any

symptoms (He et al., 2020), and thus likely not to change their behavior in this time.

Bauer and Wakefield (2018) show that when the disease is rare and the susceptible pop-

ulation is close to the total population, the number of infections at time t is approximately

Poisson distributed

Yt|Yt−1 ∼ Pois(λt).

Furthermore, it is common, and mathematically convenient, to assume that there is some

number infections, αEX, that come from outside the region, not related to the previous

cases yt−1. In doing so, we arrive at an extension of the univariate Endemic-Epidemic
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model (Held et al., 2005)

Yt|Yt−1 ∼ Pois(λ†t)

λ†t = αEX + αARYt−1 +
( D∑
d=1

αmob
d wt−d

)
Yt−1 (4.2)

This model can be thought of as a branching process with immigration, with reproduction

number, αAR +
∑D

d=1 α
mob
d wt−d, that linearly depends on mobility, and an immigration

of αEX. This implies that mobility only effects the reproduction rate of the disease, and

does not relate directly to the case counts. This is an attractive property of this model,

as mobility can only cause infections in the next generation if infectious people from the

previous generation move around. If the effect of mobility is small, then the reproduction

number will be almost entirely described by the constant αAR. In other words, αAR can be

thought of as an autoregressive term that relates previous cases to current cases, or it can

be thought of as the intercept in the line relating the reproduction number to mobility.

αEX represents an influx of cases caused by infectious people outside our dataset infect-

ing susceptibles in our region. When regions are large, this number should be relatively

small. Including αEX serves to prevent our branching process from dying out, which will

be especially helpful in the multi-region case when there are small subregions with low

amounts of mobility. In some applications, this component is appropriately referred to as

an “endemic” component, as it may describe predictable yearly fluctations/periodicities in

disease incidence. However, even cases that arise in an “endemic” are often still attributable

previous cases, but with a more predictable/periodic pattern, and can be thought of as the

“background rate of disease” (Gordis, 2013). COVID-19 had not yet reached endemic sta-

tus, thus estimating the background rate of infection is challenging. Thus we believe the

term “exogenous” is more appropriate for our application, and should be viewed as factors

influencing the absolute number of cases in a region as opposed to the infectiousness of the

disease.

An alternative way to view model (4.2) is using the competing risks framework as in

Bauer and Wakefield (2018). That is, we can view the exogenous, autoregressive, and
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movement terms as their own Poisson process, and the total force of infection, indicated by

†, is the sum of three Possion random variables with mean

λ†t = λEX
t + λAR

t + λmob
t .

In other words, a susceptible can be infected in one of three ways, all with some positive

probability. This tells us that each of the α’s should be positive. Furthermore, we can

compute the proportion of cases attributable to movement (PCAtM) at time t as
λmob
t

λ†t
.

We will use this measure and its associated uncertainty to assess the association between

mobility and infection. We will now extend our model to the multi-region case.

4.3.2 Multi-region model

Now that we are dealing with more than one geographic region (245 for Castilla-Leon, 179

for Madrid), we must define a region-wise force of infection. The force of infection, λjit is

defined as the rate at which infectious individuals in region j, infect susceptible individuals

in region i, at time t. Similar to the univariate case, we can write this mathematically as

λjit = Cji(wji,t−1)pji,t−1
yj,t−1

Nj

= (c∗ji,t−1pji,t−1 +
D∑
d=1

cmob
ji,t−dpji,t−1wji,t−d)

yj,t−1

Nj

= (α∗jit +
D∑
d=1

αmob
ji,d wji,t−d)

yj,t−1

Nj
,

where α∗jit = c∗jitpjit is number of cases in region i attributed to a single case in region j,

that is not accounted for by mobility. αmob
jit = cmob

jit pjit is the of cases in region i caused by

infected trips from region j to i. As is, the number of model parameters grow at a rate of

O(I2 × T ) where I is the number of regions and T is the number of time points. Given

that we will be dealing with hundreds of subregions, we simplify the problem by making

the following assumptions:

� We assume that α∗jit is temporally constant, and is equal to the sum of an autore-

gressive term and a spatial term: α∗jit = αAR
i + αspat

i

∑
j vji, where vji = 1

|Ne(j)| , with
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|Ne(j)| being the number regions sharing a border (neighbors) with region j.

� We assume that αmob
jit is temporally constant, and does not depend on the origin j,

but only on the destination i: αmob
ji,t−d = αmob

i,d .

� For every i, t there are j independent Poisson processes (with mean λjit) competing

to infect susceptibles in region i. Since the sum of Poisson processes is Poisson, we

arrive at λit =
∑

j λjit.

The number of parameters to be estimated is nowO(I), which is much more computationally

feasible. Adding an exogenous component, αEX
i , for each region, leads us to an extension

of the multi-region Endemic-Epidemic model

Yit|Y −i,t−1 ∼ Pois(λ†it)

λ†it = αEX
i︸︷︷︸

λEXit

+αAR
i

Yi,t−1

Ni︸ ︷︷ ︸
λAR
it

+αspat
i

∑
j 6=i

vji
Yj,t−1

Nj︸ ︷︷ ︸
λspatit

+

D∑
d=1

αmob
id

∑
j

wji,t−d
Yj,t−1

Nj︸ ︷︷ ︸
λmob
it

If the αmob
d ’s are 0, then this model reduces to a typical EE model as seen frequently in the

literature.

4.3.3 Delayed reporting, serial intervals, and incubation periods

The modeling challenges caused by delayed reporting of cases is closely tied with the serial

interval of infection and to the incubation period. The serial interval for COVID-19 has

been estimated to be between 4 and 7 days, while the incubation period is between 4 and 9

days (Alene et al., 2021). These quantities can vary between individuals, and can be hard

to measure due to delayed reporting/testing. Garćıa-Garćıa et al. (2021) showed that in

Spain, cases may have peaked several days before the observed peak in cases, but the delay

varied across Spanish provinces. Although we don’t attempt to estimate any of these factors

individually, we may be able to account for their combination by including additional time

lags in our model. Bracher and Held (2020) showed that including cases from several time

units in the past improved forecasting ability of EE models in the presence of random serial
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intervals. Following their guidance, we assume that the number of cases at time t is a

weighted average of cases at s time points in the past. Our force of infection is now:

λjit =
(
αAR
i + αspat

i vji +
D∑
d=1

αmob
i,d wji,t−d

) S∑
s=1

ρs
Yj,t−s
Nj

=
(
αAR
i + αspat

i vji
) S∑
s=1

ρs
Yj,t−s
Nj

+

D∑
d=1

αi,dwji,t−d
∑

1≤s<d
ρs
Yj,t−s
Nj

(4.3)

where
∑S

s=1 ρs = 1. Note that in the second term, we exclude terms where the mobility lag

is higher than the cases lag (e.g Yt−2, wt−1) as we don’t suspect any reporting delay with

our mobility data, so if someone tests positive at t− 2, when they move at time t− 1, they

should no longer be infectious, thus their mobility won’t contribute to new cases.

It remains to specify D and S. In determining D, we first consider a univariate model for

case counts: Yt|Yt−1 ∼ Poisson(λt) with λt = φtYt−1 where φt is the effective reproduction

number at time t. If we solve for φt, and replace λt with Yt, then we arrive at a crude

estimate of Reff (Crude Reff) φt ≈ Yt
Yt−1

. To determine how many mobility lags to include

in our model, we examine the relationship of wt−h with Yt
Yt−1

for various lags h > 0. If wt−h

has a strong relationship with Yt
Yt−1

, then we include this in our model.

Determining S is more challenging, but we can be fairly confident that S ≤ 2, as it is

fairy unlikely that a case would take 3 or more weeks from primary case to cause a secondary

case. Thus we will investigate values of S = 1 and S = 2.

4.3.4 Under-reporting

Epidemic curves are well-known to suffer from under-reporting. The number of cases is

usually an underestimate of the number of infections, because of testing capacity limitations

and asymptomatic or minimally symptomatic cases going undetected. This is troublesome

when conducting inference, as our estimate of the α’s depends on reporting. There are

several methods that correct for underreporting, such as those in Wakefield et al. (2019),

but this involves estimating T×I latent discrete variables, which quickly becomes infeasible.

One solution to the under-reporting issue is to assume that the true cases, Y ∗i,t in region i
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at time t, are reported with some probability γi,t

Yi,t|Yi,t−1 ∼ Bin(Y ∗i,t, γi,t)

Y ∗i,t|Y ∗i,t−1 ∼ Poisson(λ†i,t−1)

=⇒ Yi,t|Yi,t−1 ∼ Poisson(γi,tλ
†
i,t−1) (4.4)

where Yi,t and Y ∗i,t are the observed and the actual COVID-19 cases, respectively. That is,

the observed number of reported cases is binomially distributed with reporting probability

γit. We must place some restriction on the γit, otherwise the model is unidentified. In this

chapter, we assume the reporting probability log(γi,t) = βtest log
(

xt
maxt(xt)

)
, where xt is the

number of tests at time t.

4.3.5 Summary Statistics

The basic reproduction number, R0, is a succinct way to describe the infectiousness of

a disease, and is defined as the average number of secondary cases caused by an index

primary case (Diekmann et al., 2013). When dealing with more than one region (or some

other strata), measuring R0 is nontrivial. Rewriting (4.1) in matrix form, we obtain

µt = νt + ΛY t−1

with Λij = λwij . Diekmann et al. (1990) use a limit argument to show that after a large

number of generations, the typical number of primary cases given secondary cases is well

described by the dominant eigenvalue of Λ (assuming Λ is irreducible and aperiodic). They

thus define R0 to be this dominant eigenvalue. We don’t believe that this argument extends

well to the case when Λ is temporally changing, since Λ only ‘acts’ on Y for ≈ 1 generation

(this is assuming that the generation time is one time unit). However, in keeping with the

EE literature, we will present dominant eigenvalues over time where possible, as it is likely

a good representation of infectiousness, but we suspect it is biassed and is more noisy than

R0 should be. Where possible, we compute the dominant eigenvalue of the matrix with
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entries

αAR
i I{i=j} + αspat

i vjiI{i 6=j} +
D∑
d=1

(
αmob
i,d wji,t−d

)
(4.5)

where I is the indicator function. We will plot this over time t.

Reproduction numbers measure the number of new cases stemming from old cases, but

we also want to quantify the number of new cases stemming from the mobility of infectious

people. We summarize the number of new infections per infected trip over time as

∑
i(
∑D

d=1 α
mob
i,d

∑
j wji,t−d

Yj,t−1

Ni
)∑

i

∑D
d=1

∑
j wji,t−d

Yj,t−1

Ni
)

Although this may look cumbersone, it is simply a weighted average of the αmob
i,d ’s over time.

Furthermore, we can look at the number of infections per infected trip at the region level

by summing over t instead of i. This formula can be easily modified in the presence of a

serial interval.

4.3.6 Inference

All model parameters were estimated using Bayesian Markov chain Monte Carlo. In par-

ticular, we used the No-U-Turn sampler readily available in Stan (Carpenter et al., 2017)

and its associated R package (Stan Development Team, 2021). Four chains with 1000 inter-

ations, with the first half being warmup were used for each model. Trace plots were used

to visually assess convergence of Markov chains. The scale reduction factor was were also

used to confirm an appropriate amount of mixing using a cutoff of R̂ < 1.01 (Vehtari et al.,

2021). Since each of our summary statistics is a function of the model parameters, we can

easily obtain credible intervals for each statistic by using draws from the joint posterior.

4.4 Application

In this section, we apply our model to two Spanish Communities separately. In Section

4.4.1, we treat all of Castilla-Leon as a single region, which is mainly used as an exploratory

analysis to inform our multi-region (spatial) model. In 4.4.1, we apply our multi-region

model to the 245 subregions of Castilla-Leon and quantify the risk associated with travelling
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during the pandemic. We then apply our model to the 179 subregions of Madrid in Section

4.4.2.

4.4.1 Assessing the risk associated with travelling in Castilla-Leon

Castilla-Leon - aggregated model

A plot of the case, test, and mobility data for all of Castilla-Leon is shown in Figure 4.1a.

As noted by other authors, there is often a large time lag between a peak in mobility and the

subsequent peak in cases, and this effect appears to change over time (Gottumukkala et al.,

2021). However, mobility should only affect the relative change in the number of infections,

as mobility can only affect cases through current infectious individuals coming into contact

with susceptibles. To examine the relationship between mobility and infectiousness, we

compute the Crude Reff over time and look at the cross correlation between it and mobility.

We found that mobility at time t− 2 and t− 1 show strong correlation with the crude Reff

at time t, followed by a sharp drop in correlation when mobility is lagged by 3 or more time

units. For this reason, we will consider the following mean as a starting point:

λt = αEX + αARyt−1 + αmob
1 wt−1yt−1 + αmob

2 wt−2yt−1

The fitted values of this model are shown in Figure A1. This plot suggests that mobility

is explaining a very large portion of the case counts. However, this seems too large and

warrants investigation. If we plot the Crude Reff versus the mobility (Figure A3), we can

see that there are two extremely high leverage points with high mobility and Crude Reff.

These two points correspond to the first weeks of March 2020, when people were moving a

lot, and there were no mask mandates or policies enacted to slow the spread. As a result of

these high leverage points, the effect of mobility (slope of the green line in Figure A3) is too

high. Although this plot is an oversimplification of exactly what our model is doing when

estimating the effect of mobility, they warrant our attention. If we remove these points, the

least squares line becomes much shallower and fits the Crude Reff estimates much better,

as seen by the red line in Figure A3.

We now fit the model without the first three weeks of March, the results are shown in
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Figure 4.2: Multi-region mobility extended EE model. For both Castilla-Leon (left) and
Madrid (right), we present the results for the entire region, alongside a region that showed
a strong mobility effect, and a region showing a weaker mobility effect. The 95% credible
interval for each model component is presented, alongside their aggregation (λ†t). Observed
case counts are shown as black points.
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Figure A2, where the autoregressive component is much more substantial relative to the

mobility component. For this reason, we will exclude these first three weeks of data when

extending our model to multiple regions.

Castilla-Leon – Spatial Model

The model fit from the spatial model is shown in Figure 4.2. The movement component

appears to be the strongest, followed by the autoregressive components and the spatial

component. In some regions the movement component was very small, while it dominated

the infections in others. Given that our results can be sensitive to one or two time points,

we suspect that the region-level mobility effects are noisy. However, the aggregation of them

is more likely to produce a clear signal.

When adjusting for testing using the method described in Section 4.3.4, we found that

the estimated testing probability was very close to 1. We explored several minor alterations

of this method with little or no change in the estimate. This is likely a limitation of the

data, indicating that we may need region level testing to tease out the potentially spatially

heterogenous effect. For this reasons, we did not control for testing in Castilla-Leon, and

simply acknowledge this limitation. Although this doesn’t affect our PCAtM and dominant

eigenvalue summary statistics, it will cause us to underestimate infections per infected trip.

The proportion of cases attributable to movement (PCAtM) is presented in Table 4.1

for four different models

1. No serial interval, two mobility lags, and no testing adjustment

2. No serial interval, two mobility lags, and testing adjustment (method 2)

3. Serial interval of 2 weeks, 3 mobility lags, and no testing adjustment

4. No serial interval, 3 mobility lags, and no testing adjustment

Adjusting for testing had little effect on the PCAtM. Similarly, using a serial interval of 2

weeks (as opposed to 1 week) had little effect on the PCAtM, but the additional mobility

lag seems to be accounting for additional cases. For this reason, we present statistical

summaries for Model 4 above.
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PCAtM (95% CrI) ρ1

Castilla

No SI, No testing 44.96 (43.75, 46.31) -
No SI, testing 43.79 (42.55, 44.88) -
SI, no testing, additional lag 56.99 (55.95, 58.03) > 0.999
No SI, no testing, additional lag 57.01 (55.94, 57.98) -

Madrid
No SI, with testing 17.00 (16.11, 18.03) -
SI, with testing 14.00 (13.12, 15.02) < 0.001
SI, no Madrid City, with testing 28.54 (26.76, 30.68) < 0.001

Table 4.1: Percentage of cases attributable to movement (PCAtM) for various models fit
to Castilla-Leon and Madrid data. In models with a serial interval (SI), ρ1 is presented.
Posterior median and 95% CrI’s are presented.

The proportion of cases attributable to movement (PCAtM) and the trips per infection

for each region is shown in Figures 4.3a and 4.3b. Both the PCAtM and the trips per

infection show a high amount of heterogeneity between regions. The temporal variation in

trips per infection, averaged across Castilla-Leon are shown in Figure 4.4a. Based on this

model, it takes roughly 70 infected trips to see a new infection.

The temporally changing dominant eigenvalues computed from (4.5) are shown in Figure

4.5. The dominant eigenvalue exceeding one seems to correspond with increases in case

counts in Castilla, with the exception of the third viral wave. This may be due to properties

of the virus at this time (such as a new variant), the drastic increase in testing that we had

trouble accounting for, or some other confounding factors.

4.4.2 Assessing the risk associated with travelling in the Community of

Madrid

For completeness, we present the results for Madrid with two major caveats: 1) a single

large region (Madrid City) contains 49.6% of the Community of Madrid’s population and

51% of the COVID-19 cases and 2) the intra-regional mobility in Madrid City (10.2% of the

Community of Madrid’s mobility) shows a highly different pattern (see Figure B1) than the

rest of the mobility in the region, with a peak during the first lockdown. Since the trend in

case counts is roughly the same as the rest of the region, but the mobility is highly different,

we do not believe that our model accurately captures the relationship between mobility and

infectiousness in Madrid City.
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Figure 4.1b displays time series of weekly trips, tests, and cases aggregated across the

community of Madrid. After removing the first three weeks of data (as with Castilla-Leon)

and correcting for changes in testing, we find that our assumption regarding the reproduc-

tion number being a linear function of mobility is reasonable (see Figure B2). Furthermore,

we adjusted the per-contact-probability of infection for vaccinations (as described in Ap-

pendix 4.C), but found no substantial difference in our results.

The model fit for the spatial Madrid model is shown in Figure 4.2. Mobility accounts

for a substantial proportion of the cases, but the autoregressive term explains the most.

The proportion of cases attributable to movement is shown in Table 4.1, for a model with

no serial interval, and one with a serial interval of two weeks. In the model with the serial

interval, ρ1 was very close to zero, indicating that the model with the serial interval is more

appropriate. However, this may have occurred due to the lag one mobility effect being very

small, and our model is avoiding including that term.

The spatial distribution of the PCAtM is shown in Figure 4.3c. Note that the regions

with a low PCAtM tend to be very close to Madrid City, while the regions with high

PCAtM don’t show a spatial pattern. The number of infections per infected trip is shown

both spatially and temporally in Figures 4.3d and 4.4b. Figure 4.3d suggests that the trips

required for a new infection are spatially correlated, indicated by the clusters of regions of

the same colour. Figure 4.4b suggests that, excluding Madrid City, roughly 140 infected

trips are required for a new infection to arise.

4.5 Discussion

In this chapter we developed an infectious disease model where the number of contacts

between people is a linear function of trips between regions. We showed that this model is

an extension of Endemic-Epidemic models frequently found in the literature. We applied

this model to two Spanish Communities with the intention of quantifying the risk associated

with travelling in each Community. In Castilla-Leon, we found that we could relate just

over half of the trips to our cellphone mobility data, while this was much lower in Madrid.

Our model appears to work better when regions are small, as our cellphone mobility data
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Figure 4.3: Spatial distribution of proportion of cases attributable to movement (PCAtM)
and the number of trips associated with one new infection. The trips per infection in Madrid
City (white region in 3d) was calculated to be 3753.



CHAPTER 4. LEVERAGING MOBILITY NETWORKS TO ASSESS COVID-19 TRAVEL RISK 73

64

68

72

76

Apr 2020 Jul 2020 Oct 2020 Jan 2021

In
fe

ct
io

ns
 p

er
 in

fe
ct

ed
 tr

ip

(a) Castilla-Leon

130

150

170

Apr 2020 Jul 2020 Oct 2020 Jan 2021 Apr 2021

In
fe

ct
ed

 T
rip

s 
pe

r 
N

ew
 In

fe
ct

io
n

(b) Madrid

Figure 4.4: Temporal variation of number of trips associated with one new infection. Madrid
City was excluded from this analysis, as the data quality issues caused this number to be
implausibly high. The posterior median, alongside 95% credible intervals are presented.
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Figure 4.5: Posterior median and 95% credible interval of dominant eigenvalue in Castilla-
Leon. A dominant eigenvalue > 1 will generally lead to an increase in cases.

is more informative.

We found that this class of models is sensitive to large changes in case counts that

occurred early in the pandemic, as well as rapid changes in testing capacity. Although we

took great care in specifying each model component, developing robust methods for mod-

eling the infectiousness of the disease when using this class of models should be researched

further. We stress the importance that exploratory and diagnostic plots can greatly im-

prove inference and interpretation when using Endemic-Epidemic, or any infectious disease

model.

One strength of this work is that we utilize rich mobility data and spatial data to model

disease spread through a carefully parametrized infectious disease model. In doing so we

were able to assign a number to the risk associated with travelling during a pandemic.

A further strength of this work is that it was done during a time period prior to mass

vaccinations and the introduction of the major COVID-19 variants, which could have con-

founded our analysis. This could also be viewed as a limitation, as we could have introduced

a changepoint when the Delta and Omnicron variants arose, and could easily account for

higher vaccination rates using the methodology from this chapter. In our analysis of the

Community of Madrid, too few people had been vaccinated for it to make any major dif-

ference in our results. Ideally, we would have mobility data over the course of the entire

pandemic, so that we could see how the risk associated with travelling changes with new
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variants and increasing levels of immunity in the population.

A limitation of our work that we must emphasize is that we cannot associate individual

trips to individual infections, and thus cannot infer causality. Although we are confident that

mobility is required for COVID-19 to spread, we cannot be sure that the trips recorded in

our data are causing cases according to our model specification, as there may be confounding

factors associated with between-region mobility and case counts.

A further limitation of this work is that we rely on the rare disease assumption. If the

study period extended later into 2021, we would have to relax this assumption, leading to

an alternate model formulation that would not lead to an Endemic-Epidemic model. Of

course an Endemic-Epidemic model could still be used, but it would not have as nice of an

interpretation.

This work opens the door for many avenues of future research. Firstly, robust methods

for modeling infectiousness as a function of mobility (or any covariate) would be extremely

useful. For instance, a method utilizing quantiles would be insensitive to rapid changes in

the observed cases. Furthermore, we need to rethink how to compute temporally changing

reproductive numbers from this class of models, especially as the model becomes more

complex.

Although this study has focussed on COVID-19, we want to emphasize that the model

and associated principles can be extended to a wide variety of infectious diseases, and various

forms of network data. Extensions and simplifications should be made on a case-by-case

basis, and should be guided by careful data exploration.
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4.A Treating Castilla-Leon as a single region
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Figure A1: Single region, mobility-extended EE model fit to aggregate Castilla-Leon data,
separated into components.
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Figure A2: Single region, mobility-extended EE model fit to aggregate Castilla-Leon data
with the first three weeks of data removed.
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4.B Madrid: Supplementary plots regarding modelling deci-
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first three weeks of data.

Figure B2
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4.C Accounting for Vaccinations in the Community of Madrid

In Spain, vaccines started to reach the general public in January of 2021, with about 30%

of the public having at least one dose of the vaccine by May 2021. Thus, this may impact

our Madrid results and should be explored. The immunity induced by vaccines should

reduce the per-contact-probability of infection. Using the univariate model with D = 1 as

an example, our force of infection is now

λvacc
t = C(wt−1)× p(ut−1)× yt−1

N

where

g[p(ut−1)] = p0 − τut−1

with τ being a reduction in infection probability due to vaccination, g being a link function,

and ut is the proportion of the population that is vaccinated at time t. The force of infection

becomes

λvacc
t = (cAR + cmobwt−1) · g−1(p0 − τut−1)

yt−1

N
.

The identity link would lead to

λvacc
t =

(
αAR + αmobwt−1 − (cAR + cmobwt−1)τut−1

)yt−1

N

which allows for potentially negative values of λt without some numerically unstable con-

straints. Furthermore, this would assume a linear relationship between proportion vacci-

nated and infection probability, which seems unrealistic. Instead, we used a log link leading

to

λvacc
t =

(
αAR + αmobwt−1)e−τut−1

)yt−1

N
.
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Chapter 5

A Bayesian approach to estimating

COVID-19 incidence and infection

fatality rates

Abstract

Naive estimates of incidence and infection fatality rates (IFR) of COVID-19 suffer from

a variety of biases, many of which relate to preferential testing. This has motivated epi-

demiologists from around the globe to conduct serosurveys that measure the immunity of

individuals by testing for the presence of SARS-CoV-2 antibodies in the blood. These quan-

titative measures (titre values) are then used as a proxy for previous or current infection.

However, statistical methods that use this data to its full potential have yet to be devel-

oped. Previous researchers have discretized these continuous values, discarding potentially

useful information. In this chapter, we demonstrate how multivariate mixture models can

be used in combination with poststratification to estimate cumulative incidence and IFR

in an approximate Bayesian framework without discretization. In doing so, we account for

uncertainty from both the estimated number of infections and incomplete deaths data to

provide estimates of IFR. This method is demonstrated using data from the Action to Beat

Coronavirus (Ab-C) serosurvey in Canada.

85



CHAPTER 5. A BAYESIAN APPROACH TO ESTIMATING COVID-19 INCIDENCE AND IFR 86

5.1 Introduction

As of April 1, 2022, there have been close to 500 million confirmed cases of COVID-19

worldwide (World Health Organization, 2022). However, the general consensus is that this

number is an underestimate of the true cumulative incidence of the disease, as this estimate

is largely dependent on the number of tests being administered, the accuracy of testing

(Burstyn et al., 2020a,b), and to whom these tests are being issued. If testing is extensive

enough, and a correction is made for underreporting of asymptomatic cases, then a test-

based case fatality rate may be a reasonable proxy for the infection fatality rate (IFR)

(Luo et al., 2021). However, given that the testing early in the pandemic was sparse, and

estimating IFR accurately is of the utmost importance, epidemiologists across the globe are

conducting serosurveys that measure immunity of individuals by testing for the presence of

SARS-CoV-2 antibodies in the blood (Chen et al., 2021). This quantitative measure (which

we will call a titre value) is then used as a proxy for previous or current infection. However,

how exactly this data should be used to accurately estimate important epidemiological

quantities (like incidence and IFR) is an active area of research.

The standard approach is to label everyone who has a titre value above some threshold

as “infected”, and consider everyone else not infected. This leads to the problem of selecting

the cutoff, which can be made based on known cases/controls and analysis of the Receiver

Operating Characteristic (ROC) Curve. The ROC plots the true positive rate (sensitivity)

vs the false positive rate (1-specificity) and it is typical to select the cutoff that results

in the highest Youden Index (sensitivity + specificity - 1) (Krzanowski and Hand, 2009).

Gelman and Carpenter (2020) suggest that the uncertainty in sensitivity and specificity

can be considered parameters to be estimated in a Bayesian hierarchical model assuming

that informative priors are used for the sensitivity and specificity. Although this method

accounts for uncertainty in the sensitivity and specificity, it still suffers from the loss of

information in the discretization process. Particularly in COVID-19 applications, a subject

with an extremely high level of antibodies should have a lower probability of being a false-

positive than someone who is just barely above the threshold. This could be partially

remedied by allowing sensitivity and specificity to be a function of covariates, but ideally
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methods that avoid these issues all together are preferable.

Mixture models are a natural choice to overcome the limitations of using a fixed cutoff,

as they allow infection status and associated uncertainty to depend on the magnitude of

individuals’ titre values. Mixture models have been widely applied when studying the

prevalence of infectious diseases in animals (Ødeg̊ard et al., 2003, 2005; Nielsen et al., 2007)

and in humans (Vink et al., 2015, 2016; Kyomuhangi and Giorgi, 2022). There are several

other papers that have modeled the COVID-19 antibody levels directly to infer cumulative

incidence through the use of mixture models. Bouman et al. (2021) showed that mixture

models can outperform the methods of Gelman and Carpenter (2020) for estimation of

cumulative incidence of COVID-19. Furthermore, Bottomley et al. (2021) apply mixture

models to Kenyan serosurvey data and show that mixture of skew normal distributions more

accurately estimates cumulative incidence than methods based on thresholds. However, the

applications of these models thus far has been rather limited. For instance, some unexplored

questions include: how do we use these mixture models to account for survey bias and get

cumulative incidence rates for the general population? How do we incorporate multiple titre

values per person? How do we estimate cumulative incidence in the presence of vaccinated

individuals? How do we use these mixture models to estimate IFR while accounting for

uncertainty in both the number of infections and deaths?

In this chapter, we demonstrate how mixture models can be used to estimate cumula-

tive incidence in an approximate Bayesian framework without discretization. Specifically,

we apply a mixture of multivariate t-distributions to the log of the titre values, using a

logistic regression model for the mixing parameter to account for covariates. We then use

poststratification to obtain estimates of cumulative incidence and its associated uncertainty.

Furthermore, we estimate the number of COVID-19 related deaths using partially complete

data, and use this in combination with incidence estimates to estimate the IFR across

Canada.

5.1.1 Data

Dry blood spot (DBS) samples were collected from participants of the Action to Beat

Coronavirus (Ab-C) study (https://www.abcstudy.ca/). This chapter is concerned with
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the first two phases of the study. In Phase 1, DBS samples from 9123 participants were

collected from June to November 2020 and roughly corresponding to the first viral wave

(April 1 to July 31, 2020). In Phase 2, DBS samples from 7299 were collected from December

2020 to May 2021 and roughly correspond to the second viral wave (October 1, 2020 to

March 1, 2021). These blood spots were tested for prevalence of Immunoglobin G (IgG)

antibodies, measured using three antigens: Spike (SmT1), RBD, and nucleocapsid (NP).

Two different versions of the SmT1 antigen test were used on the Phase 1 blood spots,

while all three were applied to Phase 2 blood spots. All three titres will show larger values

for participants who have been exposed to COVID-19, but only SmT1 and RBD will show

larger values for mRNA vaccinated individuals. This is because the mRNA vaccines do not

contain the nucleocapsid (NP) protein. Therefore, people who received an mRNA vaccine

and did not have a history of prior infection, will not develop anti-NP antibodies. Those

that were previously infected, regardless of vaccination status, will have anti-NP antibodies

(Houlihan and Beale, 2020). This will be helpful for distinguishing between vaccinated and

infected individuals in Section 5.3.3. In Phase 1, 8919 people had one SmT1 measurement,

and 8704 had two SmT1 titre measurements, along with complete covariate information.

In Phase 2, 7065 had all three measurements, along with complete covariate information.

Of those 7065, 624 joined the study in Phase 2 (6441 participants had complete Phase 1

and Phase 2 data). These data have been previously analyzed by Tang et al. (2022) using

a simpler model. Additional medical details regarding these antigen tests can be found in

their paper. Tang et al. (2022) also investigated the representativeness of study participants

when compared to the Canadian population. They found that the study population tended

to be older, more university educated, more likely to be indigenous, etc. See eTable 3 in

their paper for further reading.

Although serosurveys are a proven way to accurately measure seroprevalence, the notion

of seroprevalence itself has several drawbacks. Firstly, there is a chance that participants

got infected and returned their blood spots soon after. Antibodies generally take between

7 and 14 days to be measurable from the onset of infection (Centre for Disease Control

and Prevention, 2022). This may cause a slight under-estimation of incidence. Secondly,

antibodies wane slowly over time. However, they have been shown to remain elevated for
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many months after infection. In a study (Alfego et al., 2021) evaluating 39,086 individuals

with confirmed positive COVID-19 infection by RT-PCR between March 2020 to January

2021, the anti-NP antibody maintained a rate of 68.2% [95% Cl: 63.1-70.8%] after 293 days,

while anti-SmT1 antibody maintained a rate of 87.8% [95% Cl: 86.3-89.1%] through 300

days. Note that the majority of people in our study were likely infected far less than 300

days prior to submitting their blood spots, so the maintenance rate in our study was likely

higher than those in Alfego et al. (2021). At this point, we simply note these limitations

of seroprevalence, and examine the potential impact of waning immunity on our results in

Appendix 5.E.

Population demographics (age, sex, province, ethnicity, education, and long-term care

residency) were obtained from 2016 census data from Statistics Canada (Statistics Canada,

2016). We are using the 2016 Census data because as the 2021 Census data is not yet

complete. Although the total population of Canada has increased by about 5%, the ge-

ographic and age distributions seem to be similar between 2016 and 2021 based on the

data that we do have available. This information will be used for poststratification as de-

scribed in Section 5.2.3. The long-term care (LTC) COVID-19 deaths were obtained from

https://ltc-covid19-tracker.ca (Samir et al., 2022) between Sept 2020 and March 2021 for

each province. The total deaths for each province by age and sex were obtained from the

different provincial governments (Ontario, Alberta, and Quebec). For additional provinces,

where deaths by age and sex could not be obtained, we used the distribution of nearby

provinces to approximate those deaths. The age/sex distribution of deaths in Alberta was

used to infer the distribution of deaths in British Columbia and Saskatchewan. The age/sex

distribution of deaths in Quebec was used to infer the distribution for the Atlantic region

(New Brunswick, Nova Scotia, Newfoundland, and Prince Edward Island). Manitoba re-

ported different age groups than Ontario, but seemed to have a similar distribution. Thus

we used Ontario data to infer Manitoba’s age/sex deaths for the different age groups. This

means that although the aggregate IFR estimates for the Atlantic region, Manitoba, British

Columbia, and Saskatchewan are likely valid, the estimates by age/sex should be treated

with caution due to the imputations noted above.
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Figure 5.1: Mixture of t-distributions for the Phase 1 univariate model fit to the SmT1
titre values. The posterior median for each parameter is used. The vertical dashed line
represents the cutoff used in Tang et al. (2022). Keep in mind that this plot does not
display uncertainty in the model parameters of the t-distributions.

5.2 Methods

Our first goal is to estimate the cumulative incidence of SARS-CoV-2 in Canada. We

define cumulative incidence in Phase 1 to be the number of SARS-CoV-2 infections up

until September 30th 2020, divided by the population size. The cumulative incidence in

Phase 1 and 2 has the cumulative number of infections up until March 31st 2021 as the

numerator. We define the incidence proportion in Phase 2 to be the number of infections

from Oct 1st 2020 to March 31st 2021, divided by the population size. We recognize

that the terms cumulative incidence and incidence proportion are used interchangeably in

the epidemiology literature, and we are avoiding the term “cumulative” when presenting

estimates of incidence in Phase 2 alone. We estimate incidence in two steps. First, we will

fit a Bayesian mixture model to the titre values, relating an individual’s infection status,

a latent variable, to their measured covariates via a logistic regression model. Second, we

will use poststratification to account for the disparity between the population of survey
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responders versus the general Canadian population. This will yield an estimate of the

number of infections in Canada for each covariate combination, and hence, an estimate of

the cumulative incidence.

Our second goal is to estimate the Infection Fatality Rate, which is defined as the number

of COVID-19 related deaths divided by the number of infections. This will be estimated

in Phase 1, Phase 1 and 2, and Phase 2 alone with the same time periods as mentioned

previously. We do this by building a Bayesian model for the number of deaths in Canada

by age/sex/province group, and dividing this by the estimated number of infections. This

will allow for estimates of IFR in any age/sex/province category that we want, accounting

for uncertainty in both the deaths and the infections.

5.2.1 Notation

Lower case Latin letters are used to represent (potentially vector-valued) observed data; x

are observed covariates, w is observed titre values, and d is observed deaths. The exception

is p, which is an unknown probability of infection. Upper-case Latin letters represent latent

variables (“missing data”), such as the unknown number of infections Y , an unknown

number of deaths D, and the latent infection status Z of an individual. Greek letters will

be used for model parameters.

5.2.2 Mixture models

In this subsection we will introduce three mixture models that will be used to infer cumula-

tive incidence. First, we will introduce a univariate (one titre value), two-component (“not

infected” and “infected”) mixture model, relating each study participant’s covariates to

their probability of infection. We will then extend this model to the bivariate case with two

titre values in 5.2.2. These two models will be fit to the Phase 1 data. We will then present

a trivariate, three-component (“unvaccinated, not infected”, “unvaccinated, infected”, and

“vaccinated, not infected”) mixture model that will be fit to the Phase 2 data. Note that

the “infected” group here contains both vaccinated and unvaccinated people as our titres

values are not precise enough to determine vaccination status if a person is infected. This

is likely inconsequential as we will explain shortly.
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Univariate mixture of t-distributions - Phase 1.

The infectivity status, Zi, of an individual i is latent and is measured through an anti-

body lab test (titre), which is a quantitative measure. The density of the logged Phase

1 SmT1 titre values is shown in Figure 5.1. Notice that there is an approximately sym-

metric mound around 0.15 which is likely to be comprised of individuals who never had

COVID-19. Previously, Gaussian distributions were used to model the logged titre values

in non-infected individuals (Bottomley et al., 2021). However, we expected a heavier-tailed

distribution would be needed, and employ a t-distribution for both the negative and positive

individuals.

The univariate, two-component version of our mixture model can be written as follows:

log(wi)|Zi = k ∼ f1(µk, σk, νk), k = 0, 1

Zi|xi ∼ Bernoulli(pi) (5.1)

logit(pi) = βTxi

where wi is the titre value of invidual i, Zi is the latent variable indicating SARS-CoV-2

infection (Zi = 1) or non-incidence (Zi = 0), xi is a m × 1 vector of covariates, β is a

1 × (m + 1) vector of regression coefficients which will be used for poststratification as

described in Section 5.2.3, f1 is the univariate (shifted and scaled) t-density, and pi =

logit−1(βTxi) is the probability that individual i has been infected with COVID-19. That

is, the probability that someone had COVID-19 is a function of their covariates, but the

parameters of the t-distributions are not. The covariates used in our mixture models were

age (< 20, 20-29, 30-39, 40-49, 50-59, 60-69, 70-79, 80+), sex (male, female), province

(Alberta, Atlantic Region, British Columbia, Manitoba, Ontario, Quebec, Saskatchewan),

ethnicity (white, indigenous, not white or indigenous), and education (university degree,

college degree, less than college degree), meaning that m = 18.

Since Zi is a latent discrete variable, certain MCMC software programs cannot sample

it directly. However, we can marginalize Zi out to obtain the following likelihood:

π(log(wi);β, ξ, xi) = [1−logit−1(βTxi)]f1[log(wi)|µ0, σ0, ν0]+logit−1(βTxi)f1[log(wi)|µ1, σ1, ν1]
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where ξ = {µ0, µ1, σ0, σ1, ν0, ν1} is a vector of parameters which need to be estimated, but

are not used to infer incidence directly.

For both Phase 1 and Phase 2, we have continuous values for multiple titres, and thus

will now extend this univariate mixture model to a mixture of multivariate t-distributions.

A bivariate mixture model for Phase 1.

For Phase 1, we have two measurements of SmT1 for each sample. Using both titres should

improve our ability to identify individuals who were infected. Our model naturally extends

to the bivariate case by replacing the univariate t-distribution by a bivariate t-distribution

(f2):

log(wi)|Zi = k, xi ∼ f2(µk,Σk, νk), k = 0, 1

Zi|xi ∼ Bernoulli(pi) (5.2)

logit(pi) = βTxi

where µk is a vector of length 2, Σk is a 2x2 covariance matrix, and the rest of the parameters

are the same as Section 5.2.2. Note that the logistic regression model for Zi in the second

level is still univariate. This allows the model to accomodate multiple titre values per person

without the number of parameters getting out of control. We fit this bivariate model on

the two Phase 1 titre values using MCMC to obtain posterior samples of β which will be

used later for poststratification.

A trivariate, three-component mixture model for Phase 2.

In Phase 1, vaccinations had not yet been made available and Zi could only take on two val-

ues: “infected” or “not infected”. However, during Phase 2, a non-negligible proportion (≈

2.5%) had claimed to have been vaccinated. Given that vaccinated people are distinguish-

able from infected people based on the three titre values that we have available, we now

have three mutually exclusive values for Zi: “unvaccinated, not infected”,“unvaccinated,

infected”, and “vaccinated, not infected”. We did not include a fourth group ”vaccinated,

infected”, as there were likely to be very few participants in this category. Note that we can
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Figure 5.2: Probability of infection given each individual’s titre values using the bivariate
mixture of t-distributions in Phase 1. Each dot represents a participant in the Ab-C study.
On the x-axis is the titre value that was used in the univariate model. On the y-axis is an
second SmT1 protein assay. A red dot indicates that this model predicts a high probability
of infection, with blue being a low probability of infection, and purple being indeterminate.

differentiate between “vaccinated, not infected” and “unvaccinated, infected” individuals

because infected individuals will tend to have high titre values for all three titres, while

vaccinated individuals should not have an elevated titre value for NP. That is, if a partic-

ipant shows a high value of SmT1 and RBD, and a low value for NP, it should predict a

small probability of infection. If a participant has a large value for all three, then the model

should predict a large probability of infection.

Furthermore, we decided not to use self reported vaccination status as data, as only

about half of the participants who claimed to be vaccinated were showing large values of

SmT1 and RBD. This may be because they had only received one dose, or perhaps they

had provided their blood spot less than two weeks since their second dose. Either way,

we want the data (titre values) to determine SARS-CoV-2 incidence, rather than rely on

self-reported claims of vaccination.

In addition to having three infected statuses, we also now have three titre values which



CHAPTER 5. A BAYESIAN APPROACH TO ESTIMATING COVID-19 INCIDENCE AND IFR 95

0.05

0.10

0.20

0.50

1.00

2.00

4.00

0.02 0.05 0.10 0.20 0.50 1.00 2.00 4.00
RBD

N
P

0.1

0.5

0.9

Infection
Probability

(a) NP vs. RBD

0.05

0.10

0.20

0.50

1.00

2.00

4.00

0.05 0.10 0.20 0.50 1.00 2.00
SmT1

N
P

0.1

0.5

0.9

Infection
Probability

(b) NP vs SmT1

0.02

0.05

0.10

0.20

0.50

1.00

2.00

4.00

0.05 0.10 0.20 0.50 1.00 2.00
SmT1

R
B

D

0.1

0.5

0.9

Infection
Probability

(c) RBD vs SmT1

Figure 5.3: Probability of infection given each individual’s titre values using the trivariate
mixture of t-distributions in Phase 2. A red dot indicates that this model predicts a high
probability of infection, with blue being a low probability of infection, and purple being
indeterminate. In theory, participants who have never been infected or vaccinated should
have low values for all three titres. Vaccinated, but never infected individuals should have
high SmT1 and RBD, but low NP, and infected individuals have high values for all three.
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we can use to define a mixture of three trivariate t-distributions (f3). The likelihood for

this trivariate model is:

π(log(wi);β, ξ, xi) = (1− ρ)[1− logit−1(βTxi)]f3(log(wi)|µ0,Σ0, ν0)

+ logit−1(βTxi)f3(log(wi)|µ1,Σ1, ν1)

+ ρ[1− logit−1(βTxi)]f3(log(wi)|µ2,Σ2, ν2)

where ρ = Prob(yi = 2|yi 6= 1). Here, Prob(yi = 0) = Prob(yi = 0|yi 6= 1)Prob(yi 6= 1) =

(1 − ρ)(1 − logit−1(βTxi)). We fit this trivariate model to Phase 2 data using Bayesian

MCMC to obtain posterior samples of β which will be used for poststratification.

5.2.3 Estimating incidence using poststratification

Incidence is defined as the number of people with an infection in a given time frame, divided

by the population. We estimate incidence of COVID-19 in a subgroup of Canadians G by

taking posterior samples of IG where

IG =

∑
h`j∈G Yh`j∑
h`j∈G nh`j

=
YG
nG

,

h is ethnicity/education, ` is age/sex, j is province, ph`j is the probability of COVID-

19 infection (as in Equation 5.2) for a person with covariate combination h`j, Yh`j is the

number of people in Canada with covariate combination h`j who were infected with COVID-

19, and nh`j is the number of people in Canada with covariate combination h`j. To obtain

samples of IG we first fit the mixture models presented in Section 5.2.2 to obtain T posterior

samples of ph`j . We then use poststratification (Little, 1993) to generalize these results to

the Canadian population. That is, we draw one sample from

Y
(t)
h`j ∼ Bin(nh`j , p

(t)
h`j)
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for each t = 1...T . We then compute

I
(t)
G =

∑
h`j∈G Y

(t)
h`j∑

h`j∈G nh`j

for t = 1...T , which are then used to obtain point estimates and credible intervals for

cumulative incidence in Phase 1 and Phase 1 and 2 combined. The incidence proportion

in Phase 2 is estimated by computing these two cumulative incidence estimates for each t,

then taking the difference.

5.2.4 Estimating infection fatality rates outside of long-term care homes

The infection fatality rate (IFR) is a measure of the deadliness of a disease. It is defined as

IFR =
Number of deaths from disease

Number of infected individuals
.

The methods described in Sections 5.2.2 and 5.2.3 provide estimates of the denominator with

associated uncertainty, but we still need to estimate the number of deaths in the numerator.

The number of COVID-19 related deaths in Canada are publicly available, but include

long-term care (LTC) residents. Our target of inference is the IFR for the “community-

dwelling” Canadian population and does not apply to people living in LTC homes. The

spread of COVID-19 is substantially different in LTC homes than in the general population

and residents of LTC homes are particularly vulnerable to severe illness and death from

infection; see Danis et al. (2020). Indeed nearly 80% of the reported deaths from COVID-19

prior to Sept. 2020 in Canada were in LTC homes (Samir et al., 2022). Modeling the spread

and mortality of COVID-19 within LTC homes will require unique approaches and should

be considered in a separate analysis; see the recommendations of Pillemer et al. (2020).

The Ab-C study excludes residents of LTC and thus we need to exclude this population

from our numerator as well. To do this, we will extend our poststratified mixture models

to estimate the deaths outside of long-term care homes, using publicly available COVID-19

deaths data and long-term care deaths data described in Section 5.1.1.

In the rest of this section, we describe the extended mixture model and algorithm used
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to estimate IFR in this chapter. We start by displaying the full model with a description

of each component. We then provide a Directed Acyclic Graph (DAG) that displays the

relationship between all quantities in the model. We then provide a full factorization of the

posterior distribution and explain how our algorithm approximates this posterior.

The complete model.

The full model is shown in Equations 5.3a-5.3h, followed by a description of each compo-

nent. Equations 5.3a-5.3c represent the mixture model and post-stratification described

previously, and will be referred to as “Module 1” of our IFR model. Equations 5.3d-5.3h

represent the model extension to estimate the number of deaths outside of long-term care,

and will be referred to as “Module 2”. Left aligned are the model components, right aligned

are the nomenclature used in the posterior factorization in Section 5.2.4.

log(W i)|Zi = k, xi ∼ fd(µk,Σk, νk) π(W |ξ, Z) (5.3a)

Prob(Zi = 1|xi, β) = ph`j[i] = logit−1(βTxi) π(Z|β, x) (5.3b)

Yh`j ∼ Bin(n1h`j , ph`j) π(Y |β, x) (5.3c)

D1`j ∼ Bin(Y·`j , η`j) π(D|Y, η) (5.3d)

d`j ∼ Pois(λ1`j + λ2lj) π(d|Y, η, θ) (5.3e)

d2·j ∼ Pois
(∑

l

λ2`j

)
π(d2|θ) (5.3f)

λ1`j = Y·`jη`j (5.3g)

λ2`j = n2`jθ`j (5.3h)

� Indices: h, `, and j represent education/ethnicity, age/sex, and province groups re-

spectively. Subscripts 1 and 2 are used to distinguish between quantities outside and

within long-term care respectively.

� 5.3a: The log of the titre values, wi, of individual i follow a (shifted and scaled) mul-

tivariate t-distribution, with parameters that depend on the infectious status Zi = k
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of that individual. k=0: “unvaccinated, not infected”, k=1: “unvaccinated, infected”,

k=2: “vaccinated, not infected” (for Phase 2 only).

� 5.3b: an individual’s infection status, Zi, depends on the infection probability corre-

sponding to that individual’s covariate combination, ph`j[i].

� 5.3c: The number of infections in Canada with covariate combination h`j is deter-

mined by the number of people in Canada with that covariate combination, nh`j , and

the probability, ph`j , that a person with that covariate combination was infected.

� 5.3d: The number of deaths outside long-term care in age/sex/province group `j, D1`j ,

depends on the number of infections in that group, Y·`j , and the infection fatality rate

in that group, η`j . Note that we do not attempt to estimate the deaths by education

and ethnicity, which is why we sum over h in Y·`j .

� 5.3e: The total number of COVID-related deaths in age/sex/province group `j, d`j ,

has death rate equal to the sum of the death rates outside long-term care, λ1`j , and

the death rate inside long-term care, λ2`j .

� 5.3f: Outside long-term care, we only know the death rates aggregated by province (the

age/sex distribution is unknown). If we assume that the number of deaths outside

long-term care in age/sex group ` and province j follows an independent Poisson

process with mean λ2`j , then the deaths aggregated by province, d2·j , will be Poisson

distributed with mean
∑

` λ2`j . Note that if we knew d2`j , there would be no need for

Module 2.

� 5.3g: In each age/sex/province group, the mean number of deaths (death rate) outside

long-term care, λ1`j , is the product of the number of infections outside of long-term

care Y`j , and the infection fatality rate outside long-term care, η`j .

� 5.3h: In each age/sex/province group, the mean number of deaths (death rate) within

long-term care, λ2`j , is the product of the number of people in Canada in long-term

care n2`j , and the COVID-19 death rate in long-term care, θ`j .
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Approximating the Bayesian posterior.

Figure 5.4 displays the model represented in Equations 5.3a-5.3h as a Directed Acyclic

Graph (DAG). Based on this DAG, the full posterior can be factored as follows:

π(Y,D, η, β, ξ, θ, Z|x,W , d, d2)

∝ π(D|Y, η)π(Y |β, x, d)π(W , d, d2|η, β, ξ, θ, Z, x)π(η, β, ξ, θ, Z)

= π(Y |β, x, d)π(W |ξ, Z)π(Z|β, x)π(β)π(ξ)︸ ︷︷ ︸
Module 1

·π(D|Y, η)π(d|Y, η, θ)π(d2|θ)π(η)π(θ)︸ ︷︷ ︸
Module 2

(5.4)

However, sampling from this posterior poses a computational challenge, as Y and D are both

discrete latent variables, and all three terms in π(D|Y, η) are unknown. Instead, we sample

from the “cut distribution” (Plummer, 2015), which is the same as Equation 5.4 but the

dependence on d in π(Y |β, x, d) is dropped. The removal of this dependence is sometimes

referred to as “cutting feedback”. Since we are not allowing our deaths data to influence

our infection estimates, we are only approximating Bayesian inference when computing IFR.

The cut distribution has been shown to give more sensible results than the full posterior

in some scenarios where certain portions (modules) of the model are misspecified, or data

quality is poor (Lunn et al., 2009). It is important to note that our serosurvey data is very

high quality individual level data, but our deaths data is partially imputed and is from an

unofficial source. The cut model allows us to base our estimates of incidence solely on the

serosurvey data (and census data), while still utilizing all data sources to estimate IFR. We

sample from the cut distribution using the following two step algorithm:

1) We first sample from the joint posterior of the parameters in the first module:

π(Y, β, ξ, Z|x,W ) ∝ π(Y |β, x)π(W |, ξ, Z)π(Z, ξ, β)

= π(Y |β, x)π(W |ξ, Z)π(Z|β, x)π(β)π(ξ)

which is the same as the Module 1 portion of Equation 5.4 but with the dependence of d

dropped in the first term. We sample from this distribution by obtaining T (post burn-in)

posterior samples of each parameter using π(β, ξ, Z|x,W ) = π(W |ξ, Z)π(Z|β, x)π(β)π(ξ)
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Module 1

Module 2

Figure 5.4: Directed acyclic graph corresponding to the model presented in equations 5.3a-
5.3h, with subscripts omitted. Lower case Latin letters are known, all other terms are
unknown. Module 1 is the portion of the model concerned with estimating infections.
Module 2 is the portion of the model concerned with estimating deaths. The red arrows
indicate a one-directional flow of information, and are the reason we are sampling from the
cut distribution as opposed to the Bayesian posterior. β is the effect of covariates, x, on the
log(odds) of infection; Z is infection status, w represents titre values from the serosurvey; ξ
are the parameters of the multivariate t-distributions; Y is the number of infections outside
of long-term care; D is the number of deaths outside long-term care; d is the total number of
deaths by age/sex/province; d2 is the number of deaths inside long-term care by province;
η is the population average probability of death given infection; θ is the COVID-19 death
rate in long-term care.
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as a target distribution in MCMC. We then draw a sample, Y (t), from π(Y |β(t), x) for

t = 1...T .

2) For each t = 1...T , we use MCMC to obtain 1 post burn-in sample from the posterior of

Module 2. To do this, we first obtain one post burn-in sample using π(d|Y (t), η, θ)π(d2|θ)π(η)π(θ)

as the target in MCMC for each t = 1...T . We then sample D(t) from π(D|Y (t), η(t)) for

t = 1...T .

We used this algorithm for both Phase 1 and Phase 2 data, obtaining T samples of

(Y·`j , D1`j) from πcut(Y,D). We then estimate IFR by computing samples from πcut(IFRG)

for any subgroup of Canadians G outside of long-term care:

IFR
(t)
G =

∑
`j∈GD

(t)
1`j∑

`j∈G Y
(t)
·`j

(5.5)

for each t = 1...T . We can then compute point estimates with uncertainty for all of Canada,

and any age/sex/province combination that we so please. We compute the IFRG for var-

ious age/sex/province combinations using univariate and bivariate models to estimate the

denominators for the Phase 1 data, and the multivariate model for Phase 1 and 2 combined.

We do not attempt to estimate IFR by education/ethnicity, so we sum over h in Y·`j .

Since individuals who were likely to be positive in Phase 1 were also likely to be positive

in Phase 2, estimating incidence and deaths just based on Phase 2 data will also include

people who were likely infected in Phase 1. In order to estimate the new infections and

deaths (and as a result, IFR) in just Phase 2, we found posterior samples of Y from the

multivariate model and subtracted the posterior samples from the bivariate model to get

the denominator. The same was done for the deaths D for each posterior sample, allowing

us to calculate IFR for any subgroup we desire.

5.2.5 Priors

In all three mixture models, a weakly informative prior of N(0, 1) was used for each β.

This will stabilize estimates in groups with a small amount of data, and have little effect

on those that have a lot of data. A weakly informative penalized complexity prior was

put on the degrees of freedom in all three models (see Appendix 5.A). In the multivariate
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cases, informative priors were used to overcome well-known computational challenges of

fitting Bayesian mixture models as noted in the Stan documentation (Betancourt, 2017).

We describe our informative priors and their justifications in detail in Appendix 5.D.1. In

the reproducible example that we provide in the supplemental materials, we show that our

results are not too sensitive to “mis-specified” informative priors on the mixture compo-

nents. We also note that it is primarily the estimation of β’s that influence the results of

this chapter. A weakly informative prior was used on Σ as recommended by Section 1.13

of the Stan User’s Guide (Stan Development Team, 2021). A complete list of priors for all

models is presented in Appendix 5.D.

5.2.6 Inference

Each model was run using No-U-Turn sampling, a form of Hamiltonian Monte Carlo that

is readily available in the Stan software (Carpenter et al., 2017; Stan Development Team,

2021). Four chains with 1000 iterations, with the first half being warmup, were used for each

model component. Traceplots were used to visually assess convergence of Markov chains,

alongside values of Rhat < 1.01 confirming an appropriate amount of mixing (Vehtari

et al., 2021). Point estimates are taken to be the 50th percentile of the (approximate)

posterior distributions, and credible intervals (CrI’s) are computed using the 2.5th and

97.5th quantiles.

5.3 Results

5.3.1 Univariate model - Phase 1

Estimated cumulative incidence and IFR by age group is presented in Figure 5.5. Using

the univariate model, the overall estimated cumulative incidence in Phase 1 (Feb - Sept

2020) is 1.79% (95% CrI: 1.21%, 2.66%), which is similar to the estimate presented in Tang

et al. (2022) of 1.9% (95% CI: 0.7%, 4.7%). Using this model for the denominators in the

IFR calculation leads to an estimated infection fatality rate of 0.35% (95% CrI: 0.24%,

0.52%) for all Canadians outside of long-term care homes. This is, again, consistent with

the estimates presented in Tang et al. (2022) of 0.373 (95% CI: 0.153%, 1.024%).
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When we look at the age distribution of cumulative incidence, we see a general downward

trend with increasing age, with estimates for the age group 70+ being the smallest at 0.71%

(95% CrI: 0.24%,1.74%). However, the credible intervals all overlap which suggests that

incidence is similar between age groups. We see an upward trend in IFR with increasing

age, with non-overlapping credible intervals. This is to be expected, as COVID-19 is now

known to be much deadlier in older populations (Williamson et al., 2020).

A plot of the two univariate t-distributions is shown in Figure 5.1. Notice that the

density plot for the positive group has mass to the left of the cutoff used by Tang et al.

(2022), and the negative group has mass to the right of the cutoff. Large values of titres

(> 2) will show high probability of SARS-CoV-2 incidence from our model, but this is not

true for titre values around 0.5. If these values had been discretized using a fixed cutoff,

participants with very large titre values would be indistinguishable from those with values

of ≈ 0.5, thus would have the same probability of being false positives. Although this

univariate case works well to demonstrate our method, we will use the results from the

bivariate model when computing estimates for Phase 1.

5.3.2 Bivariate model - Phase 1

Figure 5.5 presents estimated cumulative incidence and infection fatality rates for the bi-

variate model in Phase 1 using both SmT1 titres. The overall cumulative incidence for

Canada was 1.60% (95% CrI: 1.15%, 2.23%). This point estimate is somewhat consistent

(slightly lower) with the univariate results, with a smaller credible interval. This is reassur-

ing, since our uncertainty should decrease as more data is used in the model. Our Phase 1

estimates are comparable with the estimate for seroprevalence in Canada from O’Driscoll

et al. (2021) of 1.4% (CI: 1.16%, 1.68%, as of September 1st 2020). The estimated overall

infection fatality rates for residents outside of long-term care homes was 0.39% (95% CrI:

0.27%, 0.56%), which is also consistent with our univariate results. We will use the bivariate

results for Phase 1 going forward.

When broken down by age, we see very similar trends in both cumulative incidence

and IFR as with the univariate model. We also see slightly reduced uncertainty in all age

groups, which is to be expected since we are adding more information (an extra titre value)
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into the model. The decrease in uncertainty is small, suggesting that the additional assay

didn’t provide much additional information when predicting infection. We can investigate

which titre value had more influence on the probability of infection by computing

Prob(Zi = 1|wi) =
Prob(wi|Zi = 1)Prob(Zi = 1)

Prob(wi)

That is, we compute the probability of infection given the titre values, which are easily

computed based on results from (5.2).

Figure 5.2 shows the probability of infection given each individual’s titre values using the

Bivariate mixture of t-distributions. Our model seems to “trust” the Sinai titre value more,

given that it predicts a high probability when the Sinai value is high, even if the Euroimmune

titre value is low. Our model seems to be indeterminate around the cutoff (Sinai titre value

≈ 0.5) that was chosen by Tang et al. (2022), which implies some agreement between the

two methods.

5.3.3 Trivariate model - Phase 2

Estimates of cumulative incidences and infection fatality rates in Phase 2 are presented

in Figures 5.5c and 5.5d. Using a trivariate mixture of t-distributions with three latent

groups and poststratification, the estimated incidence proportion in Phase 2 was 6.81%

(95% CrI: 5.35%, 8.42%). This is obviously much higher than our estimates in Phase 1,

which is to be expected. The estimated infection fatality rate in Phase 2 was 0.31% (95%

CrI 0.25%, 0.39%), which is slightly lower than Phase 1. This is comparable, but slightly

lower than other estimates for Canadian IFR (∼ 0.65% from O’Driscoll et al. (2021)), which

is unsurprising since our study excluded those in nursing homes.

The incidence proportion in Phase 2 was comparable across age groups, with the IFR

again trending upwards with age. In Phase 2, see that each age category had a lower

IFR than Phase 1. Our estimates of IFR by age were highly comparable to international

estimates (see Table S3 of O’Driscoll et al. (2021)).

The cumulative incidence and IFR’s for Phase 1 and Phase 2 combined are shown in

Figures 5.5e and 5.5f. The cumulative incidence estimate is 8.41% (95% CrI: 7.04%, 9.92%),
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Figure 5.5: Incidence/IFR by age (years) for each time period. Posterior medians are used
as point estimates, and the 2.5th and 97.5th posterior quantiles define the error bars.
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with an IFR of approximately 0.31% (95% CrI: 0.27%, 0.37%). The patterns in incidence

and IFR by age are highly similar to those in Phase 2 alon. The probabilities of infection

given the titre values of each participant are shown in Figure 5.3. Since our outcome is

three-dimensional, three separate plots are required. Blue dots in the bottom right corner

of Figures 5.3a and 5.3b, and the top right corner of Figure 5.3c, identify participants that

are likely showing immunity due to being vaccinated, as vaccinated individuals should be

low on NP and high on the other two. We see that our model tends to “trust” the NP and

SmT1 titres more when predicting infection. People who are high on NP or SmT1 tend

to have higher probabilities, while people with only high RBD values tend to have a low

probability of infection.

5.3.4 Cumulative incidence and IFR by province

One advantage to the methods presented in this chapter, is that once we have posterior

samples for infections and deaths outside of long-term care, we can break the results down

by any covariate combination that we so please. Figure B2 shows the cumulative incidence

and infection fatality rates by province in both phases. In Phase 1, Ontario had the highest

point estimate for cumulative incidence, and Quebec had the highest IFR. Our estimated

IFR in Ontario was 0.27% (95% CrI: 0.19%, 0.41%) in Phase 1, which is much lower

than the estimate given by Public Health Ontario at the time (2.8% as of May 17, 2020

(Public Health Ontario, 2020)). Although these numbers aren’t directly comparable, as our

estimates do not include people in nursing homes, this likely doesn’t account for all of the

disparity. Public Health Ontario’s number was estimated based on IFR numbers obtained

using individual-level data from China (Verity et al., 2020), and was adjusted to match

the age distribution of Ontario. We therefore remain somewhat skeptical of the numbers

presented in Public Health Ontario (2020). When comparing our overall estimate to the

estimate in Verity et al. (2020) (0.657%, CI 0.389% - 1.33%), our number is much more

comparable.

In Phase 1, Quebec had a very high reported number of deaths, which was not propor-

tional to the number of long-term-care home deaths, resulting in a high IFR. In Phase 2

Quebec’s incidence went up substantially, while the IFR dropped significantly. In Phase 2,
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the credible intervals for both cumulative incidence and IFR overlap between provinces.

Estimates by age group in each province are shown in Figure B1. In all provinces,

incidence in Phase 1 was highest in 18 to 39 year olds, and lowest in 70+ year olds. With

the exception of Alberta, this pattern did not hold in Phase 2, as incidence seems to be less

predictable as a function of age. In each province and phase, IFR reliably trends upwards

with age.

Estimates of incidence by ethnicity in each province are shown in Appendix 5.C. In

both phases, the white and indigenous groups have comparable incidences in each province.

The “not white or indigenous” group (NWoI) has relatively high incidence in Ontario and

British Columbia in both phases, and low incidence in the Atlantic region and Saskatchewan

in Phase 2. Note that estimates of IFR are not reported by ethnicity, as we do not have

(even aggregate) COVID-19 deaths data by ethnicity.

5.4 Discussion

In this chapter, we developed an approximate Bayesian approach to estimate cumulative

incidence and IFR using a multivariate mixture of t-distributions. We used data from the

Ab-C serosurvey to estimate the probability that individuals were infected with COVID-

19 based on their titre values and covariate combinations, and used poststratification to

generalize our results to the Canadian population that resides outside of long-term care.

Our Phase 1 cumulative incidence estimates were slightly lower than previous estimates

based on fixed cutoffs. Our Phase 2 estimate was higher than the one in the literature.

Furthermore, our method accounts for uncertainty in both the number of infections and the

number of deaths, and is essentially a cut model where we do not allow the deaths data to

affect the estimation of the number of infections.

Estimates of incidence by age do not show any noteworthy patterns other than a slight

upward trend in Phase 1. In both Phase 1 and Phase 2, IFR increased with age. Further-

more, IFR was higher in Phase 2 than Phase 1 in each age group, although the overall IFR

was the same.

The main strength of our approach is that it uses the exact titre values as outcomes in
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our model, as opposed to a discretized version which discards information. Furthermore, we

can leverage multiple titre values in a multivariate model to improve estimated probabilities

of infection, while being able to differentiate between previously infected and vaccinated

individuals. An additional strength of our study is that error is correctly accounted for in

both the calculation of the number of infections and deaths outside long-term care, and

consequently, IFR. We have not considered under-reporting of COVID-19 deaths, and we

acknowledge this could be a potential issue. One way to accommodate this would be to

make an assumption that a known proportion of COVID-19 deaths go unreported and

include draws of unreported deaths in each posterior sample of the IFR. In the absence of

information of what this proportion should be, we have treated the reported death counts

as correct with the caveat that the estimated IFRs only refer to deaths directly attributed

to COVID-19.

A methodological limitation of this study is that we are assuming that both the infected

and uninfected groups follow a multivariate t-distribution. This may not be the most

appropriate distribution for these data, and perhaps a distribution that allows for skewness

may be more appropriate. Although our model makes no direct assumption about sensitivity

and specificity, these two quantities are directly related to the length of the tails of the t-

distributions for any given cutoff. However, the parameters of the multivariate t-distribution

are estimated from the data, so our method is analogous to a non-discretized version of the

methodology presented in Gelman and Carpenter (2020), where sensitivity and specificity

are parameters to be estimated in the model.

A second limitation is that some responses to the survey happened before the end

of the survey, such that they could have returned a “negative” dry blood spot sample

and subsequently gotten infected. This would lead to slightly underestimating incidence

(overestimating IFR). On the other hand, there is a time lag between infection and death,

so if we counted infections up until the end of September 2020, then those infected people

could experience death several weeks later and not be recorded. However, given that the

vast majority of participants returned their blood samples study more than two weeks prior

to each Phase’s end date (see Figure F1), we figured that accounting for this time lag was

not necessary.
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A third limitation of our methodology is that we were unable to incorporate information

regarding Phase 1 infection probabilities (from SmT1 protein) into our Phase 2 estimates

of incidence. Although Phase 1 and Phase 2 SmT1 protein titre values are not directly

comparable (due to the assays being calibrated slightly differently), we recognize that there

is some potential to treat the SmT1 titre longitudinally from Phase 1 to Phase 2. However,

we figured that this would require a drastic reworking of our current model and inference

framework, and thus we deemed it out of the scope of this chapter. The potential conse-

quence of this is a slight underestimate of cumulative incidence at the end of Phase 2, as

some “infected” individuals in Phase 1 would have their immunity wane. However, Tang

et al. (2022) show that roughly 80% of people retain their “seropositivity” status from Phase

1 to Phase 2. Furthermore, the exploratory analysis presented in Appendix 5.E suggests

that waning may not be a large issue.

A direction for future work will be to apply these methods to upcoming Phase 3 and

Phase 4 data that includes a much larger vaccinated population, as well as breakthrough

infections in people who have been vaccinated. Furthermore, we will have to account for

reinfections as the populations’ immunity wanes and new variants emerge. This could

involve a longitudinal mixture model or Hidden Markov Model. Furthermore, an improved

serosurvey design and associated statistical methodology that allowed for estimation of

incidence (and consequently, IFR) in real-time would be an ambitious and highly interesting

area of future research.

This study only looks at humoral immune response, but cellular immunity also plays an

important role in the immune response to SARS-CoV-2. Other studies have evaluated the

effects of T-cell response in infected people (Guo et al., 2022; Moss, 2022). An interesting

line of future work would be to develop similar methods to incorporate T-cell response data

into estimates of incidence and IFR.

Although we focused on SARS-CoV-2 infections and deaths in this chapter, the methods

presented can be applied to a variety of outcomes for any infectious disease of interest in

which serosurvey data is available. There are plenty of potential extensions to this model

that can be implemented to suit a variety of problems in epidemiology and biostatistics.
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5.A Penalized complexity prior on degrees of freedom

As mentioned in 5.2.2, we noticed that a Normal distribution is likely not heavy-tailed

enough to accurately model the log(titre) of the non-infected group. The t-distribution

adds a degrees of freedom parameter, ν, which controls how heavy-tailed the t-distribution

is relative to the Normal distribution. The t-distribution reduces to a Normal distribution

as ν → ∞. Therefore we can view ν in this case as a parameter that adds complexity to

a base model, the Normal model. The closer ν is to 1, the more “complex” the model is.

Simpson et al. (2017) outlines a framework for penalizing model component complexity as

a function of the distance to a base model. We used a penalized complexity (PC) prior on

ν that will encourage ν to be large (closer to the Normal model) unless there is appropriate

evidence in the data.

Rather than putting a prior on ν itself, Simpson et al. suggest putting a prior on the

root Kullback-Leibler (KL) distance:

δ(ν) =
√

2 ·DKL[tν(µ,Σ)||N (µ,Σ)] (5.6)

where tν and N denote the multivariate t and normal densities respectively, and DKL is

the KL divergence. Note that the shifting (µ) and scaling (Σ) parameters cancel out, and

hence DKL is only a function of ν (Villa and Rubio, 2018). Unfortunately, DKL in Equation

(5.6) has no closed form that the authors are aware of, so we computed it numerically as

described in Appendix 5.A.

(Villa and Rubio, 2018) showed that the Kullback-Liebler Divergence between two d-

dimensional Multivariate-t distributions, f(x|µ,Σ, ν), and f(x|µ,Σ, ν ′), is

log
K(d, ν)

K(d, ν ′)
− ν + d

2
Ef

[
log
(

1 +
xTx

ν

)]
+
ν ′ + d

2
Ef log

(
1 +

xTx

ν ′

)

where

K(d, ν) =
Γ(ν+d

2 )

Γ(ν2 )
√

(πν)d
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The two expectations are shown to be

Ef

[
log
(

1 +
xTx

ν

)]
= Ψ

(ν + d

2

)
−Ψ

(ν
2

)
Ef

[
log
(

1 +
xTx

ν ′

)]
= K(d, ν)

π
d
2

Γ(d2)

∫ ∞
0

(
1 +

t

ν

)− ν+d
2
t
d
2
−1 log

(
1 +

t

ν ′

)
dt

Meaning that the d-dimensional integral can be reduced to one dimensional integral. Since

we are interested in the KLD between a multivariate T and a multivariate normal, we

substitute ν ′ = 200, and compute this integral numerically as a function of ν. We then

approximate the distance, δ(ν) =
√

2 ·DKL with a polynomial. For example, δ(ν) for the

bivariate model was δ(ν) ∝ ν−1.3. We then say that

π(δ(ν)) ∼ exp(λ)

with λ = − log(α)/δ(U) where α and U are chosen such that our prior belief is that there

is a 50% chance that ν is greater than 30.
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5.B Estimates by age and Province
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Figure B1: Incidence/IFR by age (years) in each province. Posterior medians are used as
point estimates, and the 2.5th and 97.5th posterior quantiles define the error bars.
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Figure B2: Incidence/IFR by province. Posterior medians are used as point estimates, and
the 2.5th and 97.5th posterior quantiles define the error bars.
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5.C Estimates by province and ethnicity
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Figure B3: Incidence by ethnicity in each province. Posterior medians are used as point
estimates, and the 2.5th and 97.5th posterior quantiles define the error bars.
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5.D Prior distributions

Parameter Prior

µ0, µ1 N(0, 10)
σ0, σ1 N+(0, 10)
β N(0, 1)
νk Prob(ν > 10) = 0.5

Table D1: Priors used in Phase 1 univariate model

Parameter Prior

µ0 MVN

([
−2
−2

]
,

[
0.5 0
0 0.5

])

µ1 MVN

([
0
0

]
,

[
0.5 0
0 0.5

])
β N(0, 1)
νk Prob(ν > 10) = 0.5

Σk = diag(τ)× Ω× diag(τ)

τ Cauchy+(0, 1)
Ω LKJCorr(2)

Table D2: Priors used in Phase 1 bivariate model

5.D.1 Phase 2 model prior justification

As mentioned in the main text, we require informative priors for computational reasons. In

this Section, we justify our choices of informative priors for the Phase 2 trivariate model.

We note that these priors are not very sensitive to

� µ0 corresponds to the means of the “not infected” group. The first element of µ0

corresponds to the mean NP titre values in “not infected individuals”. Alongside the

NP titre values collected from the survey, the lab also provided us with “control”

samples of known negatives. We found that the vast majority of the control samples

fell between -2.5 and -1 on the log scale. Therefore we are very confident that the

mean of NP titre values from “not infected” people should be in this range. Therefore

we applied the conservative but informative prior N(−1.75, 0.25). Similar reasoning

was used for the prior on the second element of µ0, corresponding to the mean of RBD

titre values in “not infected” people.
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Parameter Prior

µ0 MVN

( −1.75
−2.4
−1.918

 ,
0.25 0 0

0 0.2 0
0 0 0.03

)

µ1 MVN

( −0.5
0

−0.065

 ,
0.2 0 0

0 0.1 0
0 0 0.07

)

µ2 MVN

( −0.6
0.6

 ,
− − −
− 0.2 0
− 0 0.2

)
β N(0, 1)
νk Prob(νk > 30) = 0.5
ρ N+(0.015, 0.0025)

Σk = diag(τ)× Ωk × diag(τ)

τ Cauchy+(0, 1)
Ωk LKJCorr(0.5)

∏
cN(c|mc, sc)

Table D3: Priors used in Phase 2 mixture model

Parameter Prior

η N+(0.004, 0.05)
θ N+(0.01, 0.1)

Table D4: Priors used in deaths module (Section 5.2.4)

� When setting priors for the “not vaccinated, not infected” and “infected” groups based

on Smt1 titre values, we used the corresponding posterior distributions from Phase 1.

Although the tests are calibrated slightly differently, and there will be a small amount

of waning between phases, we do expect these values to be somewhat similar.

� To determine the posterior of the mean of the infected group for NP titre values (first

element of µ1), we consider the fact that any titre value above mean+3SDs is likely a

previous infection (this is how the cutoff was chosen in Tang et al.). We then ensure

that the bulk of the prior distribution for the positive N group was above this value,

with some overlap. We used similar reasoning for the RBD positive group.

� To determine the prior for the mean RBD/SmT1 titre values in the vaccinated groups,

we used similar reasoning as above, trying to ensure that the prior has most of it’s

mass above that of the infected group’s with some overlap.

� We used a weakly informative prior for Ωk using the the LKJ distribution with
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shape=0.5. This provides a roughly uniform distribution across positive-semidefinite

3x3 matrices. We then add additional information for each off-diagonal by multi-

plying by normal densities. For instance, if we suspect that the correlation between

two parameters should be positive (i.e off-diagonal element c of Ωk is positive), we

multiply the prior for c by N(c|0.5, 0.2) which gently encourages the the correlation

to be positive, but still has mass below 0.

5.E Potential waning immunity

It is well known that antibodies decay over time, but how much this effects our results is

unclear. Unfortunately, we can’t simply compare antibody results from Phase 1 to Phase

2, as these numbers are not directly comparable. Instead, we compared the Phase 1 and

Phase 2 probabilities of participants who had a high probability of infection in Phase 1. A

comparison of these predicted probabilities is shown in Figure E1. It appears that those

with large predicted probabilities in Phase 1 still had large predicted probabilities in Phase

2. This is largely because in Phase 2, we see relatively lower parameter estimates for the

means of the infected group. This likely will also make estimates of infection noisier, as

the variance will also increase. So although our model does not appear to be underestimat-

ing Cumulative Incidence due to waning, waning likely does cause more uncertainty when

predicting infection. More work needs to be done to confirm this assertion.
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Figure E1: Phase 1 vs Phase 2 predicted probabilities for participants who had large pre-
dicted probabilities in Phase 1. Points above the red line indicate that Phase 1 predicted
probability was higher.

5.F Date distributions of samples received

Figure F1: Distribution of dates of samples received for Phase 1 and Phase 2.
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