STA257 (Probability and Statistics I) Lecture Notes, Fall 2024

by Jeffrey S. Rosenthal, University of Toronto, www.probability.ca

(Last updated: October 24, 2024)

Note: I will update these notes regularly, posting them on the course web page each <u>evening</u> after lectures (though without annotations). However, they are just rough, point-form notes, with no guarantee of completeness or accuracy. They should in no way be regarded as a substitute for <u>attending</u> and learning from all the lectures, <u>studying</u> the course textbook, and <u>doing</u> the suggested homework exercises.

Introduction

• <u>Course Information</u>: See the course web page at: probability.ca/sta257

• <u>Register for PollEverywhere:</u> probability.ca/sta257/pollinfo.html <u>USE UofT EMAIL!</u>

• Who here is doing a specialist or major program involving: Statistics / Data Science? Mathematics? Actuarial Science? Computer Science? Economics/Commerce? Physics/Chemistry/Biology? Education? Psychology/Sociology? Engineering? Other?

• Who here has seen probabilities in elementary school? high school? STA130?

 \rightarrow Don't worry, we will start from scratch. (Just need math.)

• Life is full of randomness and uncertainty: lotteries, card games, computer games, gambling, weather, TTC, airplanes, friends, jobs, classes, science, finance, elections, diseases, safety/risk, demographics, internet routing, legal cases, ... whenever we're not sure of the outcome or what will happen next.

• Lots of interesting probability questions to solve! Such as

 \rightarrow What's the probability you'll win the Lotto Max jackpot, i.e. that you will choose the correct 7 distinct numbers between 1 and 50?

 \rightarrow If 200 students each flip a fair coin, then how many Heads is the most likely? How likely? What's the probability of more than 150 Heads?

 \rightarrow If you repeatedly roll a fair 6-sided die [show], then how many rolls will there be <u>on average</u> before the first time you roll a 5?

 \rightarrow At a party of 40 people, what is the probability that some pair of them have the same birthday?

 \rightarrow If a disease affects one person in a thousand, and a test for the disease has 99% accuracy, and you test positive, then what is the probability you have the disease?

 \rightarrow If you pick a number uniformly at random between 0 and 1, then what is the probability that you pick exactly the number 3/4?

 \rightarrow Three-Card Challenge. [demonstration] What are the probabilities of the initial (front) colour? Then, what are the probabilities of the back colour?

• <u>History</u> of Mathematical Probability Theory (in brief):

 \rightarrow Mathematics is very <u>precise</u> and <u>certain</u>. For thousands of years, it simply ignored the <u>uncertainty</u> of probabilities.

 \rightarrow Then, in 1654, the French writer Antoine Gombaud (the "Chevalier de Méré") asked the mathematician Pierre de Fermat some gambling questions:

- \rightarrow Which is more likely (or are they the same) (and are they more than 50%):
- (a) Get at least one six when rolling a fair six-sided die 4 times; or
- (b) Get at least one <u>pair</u> of sixes when rolling <u>two</u> fair six-sided dice 24 times?
 - \rightarrow He thought (a) was $4 \times (1/6) = 2/3$, and (b) was $24 \times (1/36) = 2/3$. Correct?

 \rightarrow Also: (c) Suppose a gambler is playing a best-of-seven match, where whoever wins 4 (fair) games first in the winner, and so far they have won 3 times and lost 1, but then the match gets <u>interrupted</u>. What is the probability that they <u>would</u> have won the match, if it had been allowed to continue?

 \rightarrow Fermat then corresponded with the mathematician Blaise Pascal to find solutions to these questions (later!), and mathematical probability theory was born!

POLL: If you have independent probability 1/2 of winning each game, and you are up 3 games to 1, what do you <u>think</u> is the probability that you will win 4 games first? (A) 1/2. (B) 2/3. (C) 3/4. (D) 7/8. (E) No idea. [Best guess only – later.]

- So, can probabilities be studied mathematically?
 - \rightarrow Can we use <u>certain</u> mathematics to study the <u>uncertainty</u> of probabilities?
 - \rightarrow Yes! That's why we're here! To be certain about our uncertainty!
 - \rightarrow But we have to define our terms carefully ...

Sample Space (§1.2) (i.e. Section 1.2 of the textbook)

• The first part of any probability model is the sample space, written S, which is the set of all possible outcomes.

- \rightarrow e.g. flip a coin: $S = \{$ Heads, Tails $\}$, or $S = \{H, T\}$.
- \rightarrow e.g. flip a coin <u>three</u> times in a row:
- $S = \{HHH, HHT, HTH, HTT, THH, THT, TTH, TTT\}.$
 - \rightarrow Or, if we only care about the number of Heads: $S = \{0, 1, 2, 3\}$.
 - \rightarrow e.g. tonight's dinner: $S = \{\text{Beef, Chicken, Fish}\}.$
 - \rightarrow e.g. Canada's next Olympic medal: $S = \{$ Gold, Silver, Bronze $\}$.
 - \rightarrow e.g. the number of bees I will see on my walk home: $S = \{0, 1, 2, 3, \ldots\}$.
 - \rightarrow e.g. the price of IBM stock next month: $S = [0, \infty)$.
 - \rightarrow e.g. the height (in cm) of the next student I meet: $S = (0, \infty)$.
 - \rightarrow e.g. your grade in this class: $S = \{0, 1, 2, 3, \dots, 100\}.$
 - \rightarrow e.g. roll one six-sided die: $S = \{1, 2, 3, 4, 5, 6\}.$
 - \rightarrow e.g. roll <u>two</u> six-sided dice: $S = \{1, 2, 3, 4, 5, 6\}^2$, i.e.
- $S = \{11, 12, 13, 14, 15, 16, 21, 22, 23, 24, 25, 26,$
 - 31, 32, 33, 34, 35, 36, 41, 42, 43, 44, 45, 46,
 - 51, 52, 53, 54, 55, 56, 61, 62, 63, 64, 65, 66.
 - \rightarrow Or, if we only care about the <u>sum</u>, instead maybe take $S = \{2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12\}$.
 - \rightarrow e.g. "Pick any integer between 1 and 10": $S = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}$.

 \rightarrow e.g. "Pick any number between 0 and 1": S = [0, 1]. (important case!)

• Summary: The sample space S can be <u>any</u> non-empty set which contains <u>all</u> of the possible outcomes. Simple!

• But it gets more interesting when we also have ...

Probabilities and Events (§1.2)

- An event A is "any" subset $A \subseteq S$.
- For any event A, we can define the probability P(A) that it will occur.

 \rightarrow e.g. flip a "fair" coin: P(H) = P(T) = 1/2.

 \rightarrow (Note: We often use e.g. "P(H)" as shorthand for "P({H})", etc.)

 \rightarrow e.g. roll a fair six-sided die: P(1) = P(2) = P(3) = P(4) = P(5) = P(6) = 1/6.

 \rightarrow e.g. Olympic medal: maybe P(Gold)=0.40, P(Silver)=0.15, and P(Bronze)=0.45.

 \rightarrow (Note: We could also write P(Bronze) = 45%, etc. Usually percentages are good for intuition, but pure probabilities (not percentages) are better for calculation.)

- \rightarrow e.g. flip three fair coins: $P(HHH) = P(HHT) = \ldots = P(TTT) = 1/8$.
- \rightarrow e.g. roll two fair dice: P(11) = P(12) = ... = P(65) = P(66) = 1/36.
- \rightarrow e.g. Pick any integer between 1 and 10. [Try it!]

<u>Could</u> be "uniform", i.e. P(1) = P(2) = ... = P(10) = 1/10. Or <u>instead</u>, maybe ... P(3)=P(6)=P(7)=0.2, and P(5)=0.1, and P(1)=P(2)=P(4)=P(8)=P(9)=P(10)=0.05.

→ e.g. Pick any number between 0 and 1, "uniformly" ("Uniform[0,1]"): P([0, 1/2]) = 1/2, P([1/2, 1]) = 1/2, P([0, 1/3]) = 1/3, P([1/3, 2/3]) = 1/3, and in general P([a, b]) = b - a whenever $0 \le a \le b \le 1$. Diagram:

Basic Properties of Probabilities (§1.2)

- Let's begin with a specific example (and then we will generalise):
- e.g. Olympic medal, with P(Gold)=0.40, P(Silver)=0.15, and P(Bronze)=0.45.

→ Probability of Gold <u>or</u> Silver = $P({Gold, Silver}) = P({Gold}) + P({Silver}) = 0.40 + 0.15 = 0.55.$

 \rightarrow Probability of <u>any</u> medal = Probability of Gold or Silver or Bronze = P({Gold, Silver, Bronze}) = P({Gold}) + P({Silver}) + P({Bronze}) = 0.40 + 0.15 + 0.45 = 1.

 \rightarrow Probability next medal <u>not</u> Gold <u>nor</u> Silver <u>nor</u> Bronze = P(\emptyset) = 0.

- In general, certain properties <u>must</u> hold for <u>any</u> probability model ("axioms"):
- If A is an event, then $0 \le P(A) \le 1$.
- If A = S is the event corresponding to <u>all</u> outcomes, then P(A) = P(S) = 1.
- Or, if $A = \emptyset$ is the event corresponding to <u>no</u> outcomes, then $P(A) = P(\emptyset) = 0$.

• Additivity: If A and B are <u>disjoint</u> events (i.e. $A \cap B = \emptyset$), e.g. $A = \{\text{Gold}\}$ and $B = \{\text{Silver}\}$, then $P(A \cup B) = P(A) + P(B)$.

• More generally, if A_1, A_2, A_3, \ldots are any sequence (finite or infinite) of <u>disjoint</u> events (i.e. $A_i \cap A_j = \emptyset$ whenever $i \neq j$), then $P(\bigcup_i A_i) = \sum_i P(A_i)$.

- \rightarrow So, in particular, since P(S) = 1, <u>all</u> of the probabilities have to add up to 1.
- \rightarrow e.g. P(Heads) + P(Tails) = 0.5 + 0.5 = 1.
- \rightarrow e.g. P(Gold) + P(Silver) + P(Bronze) = 0.40 + 0.15 + 0.45 = 1.

Suggested Homework: 1.2.1, 1.2.2, 1.2.3, 1.2.4, 1.2.8, 1.2.9, 1.2.10, 1.2.11, 1.2.12, 1.2.13, 1.2.14, 1.2.15.

END WEDNESDAY #1 –

Derived Properties of Probabilities (§1.3)

• Once we know the above properties, then we can <u>use</u> them to prove others too:

• Fact: If A^C is the complement of A, i.e. the set of all outcomes which are <u>not</u> in A, then $P(A^C) = 1 - P(A)$. (Important! Remember this! Use this!)

→ Proof: Note that A and A^C are disjoint, so $P(A \cup A^C) = P(A) + P(A^C)$. But $P(A \cup A^C) = P(S) = 1$, so $1 = P(A) + P(A^C)$, i.e. $P(A^C) = 1 - P(A)$.

 \rightarrow e.g. P(Bronze) = P(<u>not</u> Gold or Silver) = 1-P(Gold or Silver) = 1-0.55 = 0.45.

• Fact: For any events A and B, $P(A) = P(A \cap B) + P(A \cap B^{C})$. (*) Diagram:

→ Proof: The events $A \cap B$ and $A \cap B^C$ are disjoint, and $(A \cap B) \cup (A \cap B^C) = A$, so by additivity, $P(A \cap B) + P(A \cap B^C) = P(A)$.

→ e.g. integer between 1 and 10: $P(even) = P(even and \le 4) + P(even and \ge 5) = P(\{2,4\}) + P(\{6,8,10\}).$

- Re-arranging (*) also gives that: $P(A \cap B^C) = P(A) P(A \cap B)$. (**)
- Fact: If $A \supseteq B$, then $P(A) = P(B) + P(A \cap B^C)$. (***)
 - \rightarrow Proof: This follows from (*), since if $A \supseteq B$, then $A \cap B = B$.
 - \rightarrow e.g. integer between 1 and 10: $P(\leq 7) = P(\leq 4) + P(\leq 7 \text{ but } \geq 5)$.
- Monotonicity: If $A \supseteq B$, then $P(A) \ge P(B)$. (Remember this!)
- \rightarrow Proof: We must have $P(A \cap B^C) \ge 0$, so from (***),
- $\mathbf{P}(A) = \mathbf{P}(B) + \mathbf{P}(A \cap B^C) \ge \mathbf{P}(B) + \mathbf{0} = \mathbf{P}(B). \quad \blacksquare$
 - \rightarrow e.g. P({Gold, Silver}) = 0.55 $\ge 0.40 = P({Gold}).$

• Law of Total Probability – Unconditioned Version: Suppose A_1, A_2, \ldots are a sequence (finite or infinite) of events which form a <u>partition</u> of S, i.e. they are disjoint

 $(A_i \cap A_j = \emptyset \text{ for all } i \neq j)$ and their union equals the entire sample space $(\bigcup_i A_i = S)$, and let B be any event. Diagram:

Then $P(B) = \sum_i P(A_i \cap B)$. That is: $P(B) = P(A_1 \cap B) + P(A_2 \cap B) + \dots$

→ Proof: Since the $\{A_i\}$ are disjoint, and $A_i \cap B \subseteq A_i$, therefore the $\{A_i \cap B\}$ are also disjoint. Furthermore, since $\bigcup_i A_i = S$, therefore $\bigcup_i (A_i \cap B) = S \cap B = B$. Hence, $P(B) = P(\bigcup_i (A_i \cap B)) = \sum_i P(A_i \cap B)$.

→ e.g. integer between 1 and 10: Suppose $A_1 = \{ \le 4 \} = \{1, 2, 3, 4\}$, and $A_2 = \{ \ge 5 \} = \{5, 6, 7, 8, 9, 10\}$, and $B = \{ \text{even} \} = \{2, 4, 6, 8, 10\}$. Then P(even) = P(even and ≤ 4) + P(even and ≥ 5), i.e. P($\{2, 4, 6, 8, 10\}$) = P($\{2, 4\}$) + P($\{6, 8, 10\}$).

• Principle of Inclusion-Exclusion: $P(A \cup B) = P(A) + P(B) - P(A \cap B)$.

 \rightarrow (Of course, if they're disjoint $(A \cap B = \emptyset)$, then $P(A \cup B) = P(A) + P(B)$.)

 \rightarrow Intuition: P(A) + P(B) counts each element of $A \cap B$ twice, so we have to subtract one of them off.

 \rightarrow Proof: The events $A \cap B$, and $A \cap B^C$, and $A^C \cap B$, are all disjoint, and their union is $A \cup B$. Diagram:

Hence, $P(A \cup B) = P(A \cap B) + P(A \cap B^C) + P(A^C \cap B)$.

But from (**), $P(A \cap B^C) = P(A) - P(A \cap B)$ and $P(A^C \cap B) = P(B) - P(A \cap B)$. Hence, $P(A \cup B) = P(A \cap B) + [P(A) - P(A \cap B)] + [P(B) - P(A \cap B)]$ $= P(A) + P(B) - P(A \cap B)$.

→ e.g. integer between 1 and 10: $P(\text{even } \underline{\text{or}} \le 4) = P(\text{even}) + P(\le 4) - P(\text{even} \underline{\text{and}} \le 4) = P(\{2, 4, 6, 8, 10\}) + P(\{1, 2, 3, 4\}) - P(\{2, 4\}).$

 \rightarrow Or, P(even <u>or</u> perfect square) = P(even) + P(perfect square) - P(even <u>and</u> perfect square) = P({2, 4, 6, 8, 10}) + P({1, 4, 9}) - P({4}).

• <u>Optional</u>: A more general Inclusion-Exclusion formula is in <u>Challenge 1.3.10</u>.

• Now, $P(A \cap B) \ge 0$, so $P(A \cup B) = P(A) + P(B) - P(A \cap B) \le P(A) + P(B)$. (!)

• Subadditivity: For any sequence of events $A_1, A_2, \ldots, \underline{\text{not}}$ necessarily disjoint, we still always have $P(A_1 \cup A_2 \cup \ldots) \leq P(A_1) + P(A_2) + \ldots$

 \rightarrow (Of course, it would be <u>equal</u> if they are <u>disjoint</u>.)

 \rightarrow Proof (§1.7): Let $B_1 = A_1$, and $B_2 = A_2 \cap (A_1)^C$, and $B_3 = A_3 \cap (A_1 \cup A_2)^C$, and $B_4 = A_4 \cap (A_1 \cup A_2 \cup A_3)^C$, and so on. (That is, each new B_n is the part of A_n which is <u>not</u> already part of A_1, \ldots, A_{n-1} .) Diagram: Then the $\{B_i\}$ are <u>disjoint</u> by construction, and $\bigcup_i B_i = \bigcup_i A_i$. [Formally, the above construction ensures that $\bigcup_{i=1}^n B_i = \bigcup_{i=1}^n A_i$ for each finite n. Then, in the infinite case, $\bigcup_{i=1}^{\infty} B_i = \bigcup_{n=1}^{\infty} (\bigcup_{i=1}^n B_i) = \bigcup_{n=1}^{\infty} (\bigcup_{i=1}^n A_i) = \bigcup_{i=1}^{\infty} A_i$.] Also $B_i \subseteq A_i$ so $P(B_i) \leq P(A_i)$. Hence, $P(A_1 \cup A_2 \cup \ldots) = P(B_1 \cup B_2 \cup \ldots) = P(B_1) + P(B_2) + \ldots \leq P(A_1) + P(A_2) + \ldots$.

→ Alternative proof (for a <u>finite</u> number of events): Use induction! For n = 2 events, this follows from Inclusion-Exclusion. Then for $n \ge 3$ events, $P(A_1 \cup ... \cup A_n) = P((A_1 \cup ... \cup A_{n-1}) \cup A_n)$, which by Inclusion-Exclusion is $\le P(A_1 \cup ... \cup A_{n-1}) + P(A_n)$, which by induction is $\le (P(A_1) + ... + P(A_{n-1})) + P(A_n)$.

 \rightarrow e.g. integer between 1 and 10: P(even <u>or</u> ≤ 4) \leq P(even) + P(≤ 4), i.e. P($\{1, 2, 3, 4, 6, 8, 10\}$) \leq P($\{2, 4, 6, 8, 10\}$) + P($\{1, 2, 3, 4\}$).

[Note that we do <u>not</u> have "uncountable" subadditivity, e.g. for uniform on S = [0, 1], if $A_x = \{x\}$ for each $x \in S$, then $P(\bigcup_{x \in S} A_x) = P(S) = P([0, 1]) = 1$, even though $P(A_x) = P(\{x\}) = 0$ for each individual $x \in S$, so also $\sum_{x \in S} P(A_x) = \sum_{x \in S} (0) = 0$.]

Suggested Homework: 1.3.1, 1.3.2, 1.3.3, 1.3.4, 1.3.5, 1.3.7, 1.3.8, 1.3.9.

Uniform Probabilities on Finite Spaces (§1.4)

• Suppose $S = \{s_1, s_2, \ldots, s_n\}$ is some <u>finite</u> sample space, of finite size |S| = n, and each element is <u>equally likely</u>.

 \rightarrow Then $P(s_1) = P(s_2) = \ldots = P(s_n) = 1/n$. ("discrete uniform distribution")

 \rightarrow And for any event $A = \{a_1, a_2, \dots, a_k\}$, by additivity we have

 $P(A) = P(a_1) + P(a_2) + \ldots + P(a_k) = \frac{1}{n} + \frac{1}{n} + \ldots + \frac{1}{n} = \frac{k}{n} = \frac{|A|}{|S|}.$

 \rightarrow So, in this case, we just need to <u>count</u> the number of elements in A, and divide that by the number of elements in S. Easy!?! Sometimes!

- e.g. Roll a fair six-sided die. What is $P(\geq 5)$?
 - \rightarrow Here $S = \{1, 2, 3, 4, 5, 6\}$ so |S| = 6. All equally likely.
 - \rightarrow Also $A = \{5, 6\}$ so |A| = 2.

 \rightarrow So, P(≥ 5) = P(A) = |A| / |S| = 2/6 = 1/3. Easy!

• Flip <u>two</u> fair coins. What is P(# Heads = 1)?

<u>POLL</u>: (A) 1/4. (B) 1/3. (C) 1/2. (D) 3/4. (E) 1. (F) No idea.

- \rightarrow Here $S = \{HH, HT, TH, TT\}$, all equally likely. So, |S| = 4.
- \rightarrow And, $A = \{HT, TH\}$. So, |A| = 2.
- \rightarrow Hence, P(A) = |A| / |S| = 2/4 = 1/2. Easy!

• e.g. Roll <u>one</u> fair six-sided die, and flip <u>two</u> fair coins.

What is P(# Heads = Number Showing On The Die)? (Best guess?)

POLL: (A) 1/6. (B) 1/8. (C) 1/12. (D) 1/16. (E) 1/24. (F) No idea.

 \rightarrow Here $S = \{1HH, 1HT, 1TH, 1TT, 2HH, \dots, 6TT\}$. All equally likely.

 \rightarrow But what is |S|?

 \rightarrow Multiplication Principle: If S is made up by choosing one element of each of the subsets S_1, S_2, \ldots, S_k , i.e. if $S = S_1 \times S_2 \times \ldots \times S_k$, then what is |S|? Well, \ldots $|S| = |S_1| |S_2| \ldots |S_k|$.

→ In our example, $S_1 = \{1, 2, 3, 4, 5, 6\}$, and $S_2 = \{H, T\}$, and $S_3 = \{H, T\}$, so $|S| = |S_1| |S_2| |S_3| = 6 \cdot 2 \cdot 2 = 24$.

 \rightarrow And what about A? Well, think about the possibilities ...

 $A = \{1HT, 1TH, 2HH\}$. (No other combination works. Why?) So, |A| = 3.

 \rightarrow Hence, P(# Heads = Number Showing On The Die) = |A| / |S| = 3/24 = 1/8.

$$\rightarrow$$
 [Alternatively (later): $(1/6)(1/2) + (1/6)(1/4) = (1/12) + (1/24) = 3/24 = 1/8.$]

- e.g. Roll <u>three</u> fair six-sided dice. What is $P(sum \ge 17)$?
 - \rightarrow Here $S = \{1, 2, 3, 4, 5, 6\}^3$ so $|S| = 6^3 = 216$. All equally likely.
 - \rightarrow But what is A? Think about it ...

Here $A = \{666, 566, 656, 665\}$ (why?), so |A| = 4.

- → So, P(sum ≥ 17) = P(A) = |A| / |S| = 4/216 = 1/54.
- \rightarrow Exercise: What about P(sum ≥ 16)? P(sum ≥ 15)?
- Chevalier de Méré's historical 1654 questions:
- (a) What is P(get at least one six when rolling a fair six-sided die 4 times)?

 \rightarrow Here $S=\{1,2,3,4,5,6\}^4,$ so $|S|=6^4=1296.$ All equally likely.

- \rightarrow And what is |A|? Tricky. Easier to consider ...
- $\rightarrow A^{C} = \{\text{no sixes in four rolls}\} = \{1, 2, 3, 4, 5\}^{4}, \text{ so } |A^{C}| = 5^{4} = 625.$
- \rightarrow So, P(A^C) = |A^C| / |S| = 5⁴ / 6⁴ = 625 / 1296 \doteq 0.482.
- \rightarrow So, $P(A) = 1 P(A^C) \doteq 1 0.482 = 0.518$. More than 50%.

 \rightarrow (Alternatively: By "independence" [later], $P(A) = 1 - (5/6)^4 \doteq 0.518$.)

• (b) What is P(get at least one <u>pair</u> of sixes when rolling a <u>pair</u> of fair six-sided dice 24 times)?

- \rightarrow Here $S = (\{1, 2, 3, 4, 5, 6\}^2)^{24}$, so $|S| = (6^2)^{24} = 6^{48}$ (>10³⁷). All equally likely.
- \rightarrow And what is |A|? Tricky. Again, easier to consider \ldots

 $\rightarrow A^{C} = \{\text{no pair of sixes in 24 rolls}\} = \{11, 12, 13, \dots, 64, 65\}^{24}, \text{ so } |A^{C}| = 35^{24}.$

- \rightarrow So, P(A^{C}) = $|A^{C}| / |S| = 35^{24}/6^{48} \doteq 0.509$.
- \rightarrow So, P(A) = 1 P(A^C) \doteq 1 0.509 = 0.491. <u>Less</u> than 50%.
- \rightarrow (Again, alternatively by independence [later], P(A) = 1 (35/36)^{24} \doteq 0.491.)

Suggested Homework: 1.4.1, 1.4.9, 1.4.10, 1.4.11, 1.4.12, 1.4.13.

END MONDAY #1

• (c) In a best-of-seven match with fair (50%) games, if a player has won 3 games and lost 1, then what is the probability they will win the match?

 \rightarrow Various paths to victory: win right away, lose then win, etc. Tricky.

- \rightarrow One solution: Pretend 3 more games will <u>always</u> be played. (Result unchanged.)
- \rightarrow Then $S = {$ Win, Lose 3 , so $|S| = 2^3 = 8$, all equally likely.
- \rightarrow What about A? Well, here $A^C = \{\text{Lose, Lose}\}, \text{ so } |A^C| = 1.$
- \rightarrow Hence, $P(A^C) = |A^C|/|S| = 1/8$, and so $P(A) = 1 P(A^C) = 7/8$.
- \rightarrow Exercise: What if the player has won just 2 games and lost 1? (Trickier.)

Warning about Non-Uniform Probabilities

• e.g. Roll two fair dice. What is $P(\text{sum is } \leq 3)$?

→ POSSIBLE SOLUTION: The sum is in $S = \{2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12\}$. So, |S| = 11. And, the event "≤ 3" corresponds to $A = \{2, 3\}$, so |A| = 2. Hence, P(sum is ≤ 3) = |A|/|S| = 2/11. Right?

 \rightarrow WRONG! These sums are <u>not</u> all equally likely, i.e. it is <u>not</u> uniform! So, $P(A) \neq |A|/|S|$. That formula is <u>only</u> when all outcomes are equally likely. Important!

 \rightarrow INSTEAD: Let $S = \{$ all ordered pairs of two dice $\}$, i.e. $S = \{11, 12, 13, \dots, 65, 66\}$. Then |S| = 36. Now each outcome in S is equally likely. And, now $A = \{11, 12, 21\}$. So, P(A) = |A|/|S| = 3/36 = 1/12. Correct!

- Also, note that sometimes the sample space S is a discrete <u>infinite</u> set:
 - \rightarrow e.g. $S = \mathbf{N} := \{1, 2, 3, \ldots\}$, with $P(i) = 2^{-i}$ for each $i \in S$.
 - \rightarrow Valid? Yes, since $2^{-i} \ge 0$, and $\sum_{i=1}^{\infty} 2^{-i} = \frac{2^{-1}}{1-2^{-1}} = 1$. (Geometric series.)
 - \rightarrow Then e.g. P(Even Number) = $\sum_{i=2,4,6,\dots} 2^{-i} = \frac{1}{4} + \frac{1}{16} + \frac{1}{64} + \dots = \frac{1/4}{1-(1/4)} = 1/3.$
 - \rightarrow And, $P(\leq 10) = \sum_{i=1}^{10} 2^{-i} = \frac{2^{-1} 2^{-11}}{1 2^{-1}} = \frac{(1/2) (1/2048)}{1 (1/2)} = 1023/1024$. Close to 1.
 - \rightarrow But on a discrete <u>infinite</u> space, <u>cannot</u> ever have a uniform distribution!
- Summary: Don't assume it's uniform when it isn't!

<u>More Finite Uniform Probabilities (§1.4)</u>

• Distinct, in order: e.g. Suppose there are ten people at a party, and you randomly pick three of the people, in order (1-2-3). What is the probability that your choices will also be the three <u>richest</u> people at the party, in the same order?

- $\rightarrow S$ is the set of all ways of picking three people, in order. All equally likely.
- \rightarrow But what is |S|?
- \rightarrow The first person can be picked in 10 different ways.
- \rightarrow Then, the second person can be picked in 9 different ways.
- \rightarrow Then, the third person can be picked in 8 different ways.
- \rightarrow So, $|S| = 10 \cdot 9 \cdot 8 = 720$.
- \rightarrow Also, |A| = 1 since there is only one matching choice.

 \rightarrow So, P(you picked the three richest, in order) = |A|/|S| = 1/720.

• More generally, the number of ways of picking k distinct items, in order, out of n items total, is equal to n(n-1)(n-2)...(n-k+1) = n!/(n-k)!. ("permutations")

 \rightarrow In particular, if k = n, then the number of ways of picking <u>all</u> n items in order is equal to $n(n-1)(n-2)\dots(1) = n!$. ("n factorial")

• "The Birthday Problem": Suppose 40 (say) people at a party are each equally likely to be born on any one of 365 days of the year. Then what is the probability that at least one <u>pair</u> of them have the same birthday? (Any guesses?)

 \rightarrow Here, S is the set of all 40-tuples of possible birthdays. All equally likely.

- \rightarrow (List their birthdays in <u>order</u>, since they might not all be distinct.)
- \rightarrow So, by the Multiplication Principle, $|S| = 365^{40}$.
- \rightarrow What about |A|? Not easy ...
- \rightarrow Instead, consider A^C . (Then can use that $P(A) = 1 P(A^C)$.)
- $\rightarrow A^C$ is the set of all ways of picking 40 <u>distinct</u> birthdays, in order.
- \rightarrow So, $|A^{C}| = 365 \cdot 364 \cdot 363 \cdot \ldots \cdot 326 = 365! / 325!.$
- \rightarrow So, P(A^C) = (365!/325!) / 365⁴⁰ \doteq 0.109.
- \rightarrow So, $P(A) = 1 P(A^C) \doteq 0.891$. Over 89%. Very likely! (Make a bet?)
- \rightarrow Intuition: Even with just 40 people, have $\binom{40}{2} = 780$ pairs of people lots!
- \rightarrow Or, if 23 people, P(A^C) = (365!/342!) /365²³ \doteq 0.493, so P(A) \doteq 0.507 > 50%.

POLL: With <u>60 people</u>, what is P(some pair have same birthday)? (guess) (A) 92.8%. (B) 95.1%. (C) 99.4%. (D) 99.86%. (E) 99.993%.

- \rightarrow With 60 people: $P(A^C) = (365!/305!)/365^{60} \doteq 0.059; P(A) \doteq 0.994 = 99.4\%.$
- \rightarrow (For discussion with "C" people, see the textbook's Challenge 1.4.21.)

• Distinct, unordered: Suppose we are still picking k distinct objects, but now we don't care about the <u>order</u>. Then, we have to <u>divide</u> by the number of different <u>orderings</u> of k items, which is: $k! = k(k-1)(k-2)\dots(2)(1)$.

 \rightarrow So, the number of ways of picking k distinct items out of n items total, <u>ignoring</u> order, is equal to $n(n-1)(n-2) \dots (n-k+1) / k! = n!/(n-k)! k!$. ("combinations"; "choose formula", or "binomial coefficient") Also written as: $\binom{n}{k}$.

<u>POLL</u>: Suppose there are ten people at a party, and you randomly pick a collection of three of the people, but <u>ignoring</u> order. What is the probability that your choices will also be the three <u>richest</u> people at the party (in <u>any</u> order)?

(A) 1/60. (B) 1/120. (C) 1/240. (D) 1/360. (E) 1/720. (F) No idea.

- \rightarrow But what is |S|?
- \rightarrow Here $|S| = \binom{10}{3} = \frac{10!}{7! \, 3!} = 120.$
- \rightarrow And, again |A| = 1 since there is only one matching choice.

 $[\]rightarrow$ Here S is all ways of picking three people (ignoring order). All equally likely.

- \rightarrow So, P(you picked the three richest, ignoring order) = |A|/|S| = 1/120.
- \rightarrow Six times as large as before! Makes sense since 3! = 6.
- e.g. Lotto Max jackpot:
 - \rightarrow Here $S = \{$ all choices of 7 distinct numbers between 1 and 50 $\}$.
 - \rightarrow All equally likely. And, we do <u>not</u> care about the order.
 - \rightarrow So, $|S| = \frac{50!}{43!7!} = 99,884,400 \doteq 100$ million.
 - \rightarrow Also, A is the <u>one</u> correct choice. So, |A| = 1.

→ So, P(jackpot) = P(choose the correct 7 distinct numbers between 1 and 50) = $|A| / |S| = 1/99,884,400 \doteq 1/100,000,000 = 0.000001\%$. Very small!

 \rightarrow (For \$5, you get <u>three</u> separate choices of 7 numbers, which increases P(jackpot) to 3 / 99,884,400 = 1 /33,294,800 ... still very small ...)

• Recall that a standard deck of <u>playing cards</u> has four <u>suits</u> (Clubs, Spades, Hearts, Diamonds), and each suit has 13 <u>ranks</u> (A,2,3,4,5,6,7,8,9,10,J,Q,K), so 52 cards total:

- A card's <u>value</u> is its number, counting A as 1, J as 11, Q as 12, and K as 13.
- Suppose we pick one playing card from a standard deck, uniformly at random.
 - \rightarrow So S is the set of all cards in the deck, with |S| = 52, all equally likely.
 - \rightarrow Then what is P(Club <u>or</u> 7)? Can solve this directly, or ...
 - \rightarrow Here P(Club) = 13/52 = 1/4, and P(7) = 4/52 = 1/13.
 - \rightarrow Also, P(Club <u>and</u> 7) = P(7-of-Clubs) = 1/52.

→ So, by Inclusion-Exclusion, P(Club or 7) = P(Club) + P(7) - P(Club and 7) = 1/4 + 1/13 - 1/52 = 16/52 = 4/13.

<u>POLL</u>: Suppose we draw a <u>pair of distinct cards</u> uniformly from a standard deck. What is P(both are Face Cards), i.e. P(both are J/Q/K)? (A) $(3/52)^2$. (B) $(12/52)^2$. (C) $12/\binom{52}{2}$. (D) $\binom{12}{2}/\binom{52}{2}$. (E) No idea.

- \rightarrow Here $S = \{$ all distinct pairs of cards, <u>ignoring</u> order $\}$.
- \rightarrow So, $|S| = {\binom{52}{2}} = 52 \cdot 51/2 = 1326.$
- \rightarrow And $A = \{ \text{all distinct pairs of Face Cards} \}$, so $|A| = {\binom{12}{2}} = 12 \cdot 11/2 = 66.$

 \rightarrow So, P(A) = $|A|/|S| = {\binom{12}{2}}/{\binom{52}{2}} = 66/1326 \doteq 0.0498 \doteq 1/20.$

 \rightarrow <u>Alternatively</u>, could let $S = \{$ all distinct pairs of cards <u>in order</u> $\}$. Then $|S| = 52 \cdot 51 = 2652$, and $|A| = 12 \cdot 11 = 132$. So, P(A) = |A|/|S| = 132/2652, which gives the same answer as before.

 \rightarrow (Or, conditional probability [next]: P(A) = (12/52) \cdot (11/51) = 132/2652.)

Suggested Homework: 1.3.6, 1.4.4, 1.4.6, 1.4.7, 1.4.8. Trickier: 1.4.5.

END WEDNESDAY #2

Simulating Using the Computer Software "R"

• There is lots of computer software available for statistical computation. (Even spreadsheets etc.) One package used by most statisticians (and STA courses) is "R".

- \rightarrow Free and easy to install on any computer, e.g. on your laptop!
- \rightarrow For some basic info and links, see: probability.ca/Rinfo.html
- \rightarrow Also discussed in Appendix B of the textbook.
- \rightarrow In this course, you do <u>not</u> need to learn it.
- \rightarrow But I will use it for occasional demonstrations.
- \rightarrow It is interesting, and insightful, and used in other courses. [Try it!]
- For now, just a few simulation commands to get us started:
- \rightarrow sample(c("H", "T"), 1) [one random sample from $\{H, T\}$]
- \rightarrow sample(1:6, 1) [one random sample from $\{1, 2, 3, 4, 5, 6\}$]
- \rightarrow sample(1:6, 3) [three random samples, without replacement]
- \rightarrow sample(1:6, 3, replace=TRUE) [three samples, with replacement]
- \rightarrow sample(c("Gold","Silver","Bronze"), 1, prob=c(0.40,0.15,0.45)) [with probs]
- \rightarrow rgeom(1, 1/2) + 1 [sample where $P(i) = 2^{-i}$]

A Bit More Finite Uniform Probabilities (§1.4)

POLL: Suppose we flip 4 fair coins. What is P(exactly 2 Heads)? (A) 1/2. (B) 1/4. (C) 1/8. (D) 3/8. (E) 5/8. (F) No idea.

- \rightarrow Here S = all 4-tuples of H and T (in order). $|S| = 2^4 = 16$. All equally likely.
- \rightarrow And A = all 4-tuples with two H and two T. What is |A|?
- \rightarrow Can write them all out [let's do it now]:

 \rightarrow So |A| = 6, and P(A) = |A|/|S| = 6/16 = 3/8. Simpler way? (More coins?)

 \rightarrow Each element of A can be specified by choosing <u>which 2</u> of the 4 coins were H (<u>without</u> caring about the order).

→ So, |A| = number of choices of 2 coins out of $4 = \binom{4}{2} = 4!/((4-2)! 2!) = 24/(2 \cdot 2) = 6$, and P(A) = |A|/|S| = 6/16.

 \rightarrow Same answer as before, but more systematic, and easier to use when we have <u>lots</u> of coins. Clear?

• e.g. Suppose we flip <u>ten</u> fair coins. What is P(exactly <u>six</u> Heads)?

 \rightarrow S is the set of all "10-tuples" of H and T, i.e. length-10 sequences (in order) of H and T.

 \rightarrow All equally likely. But what is |S|? Well, by the Multiplication Principle, $|S| = 2 \cdot 2 \cdot \ldots \cdot 2 = 2^{10} = 1024.$

 \rightarrow What about |A|? Well, $A = \{HHHHHHTTTT, HHHHHTHTTT, \dots, TTTTHHHHHH\}$. But how many elements does it include?

 \rightarrow Well, an element of A is specified by "choosing" which 6 of the 10 coins are Heads. So, the size of A is equal to the corresponding binomial coefficient:

$$|A| = \binom{10}{6} = \frac{10!}{6! (10-6)!} = \frac{10!}{6! 4!} = \frac{10 \cdot 9 \cdot 8 \cdot 7}{4 \cdot 3 \cdot 2 \cdot 1} = \frac{5040}{24} = 210$$

 \rightarrow So, P(exactly six Heads) = $|A| / |S| = 210/1024 = 105/512 \doteq 0.205 = 20.5\%$.

• In general, if flip *n* fair coins, then P(exactly *k* Heads) = $\binom{n}{k}/2^n$, for $0 \le k \le n$. \rightarrow (Special case of the "Binomial Distribution" – more later.)

Suggested Homework: 1.4.2, 1.4.3, 1.4.15, 1.4.16, 1.4.19, 1.4.21.

Conditional Probability (§1.5)

- e.g. Flip three fair coins.
 - \rightarrow Then $S = \{HHH, HHT, HTH, HTT, THH, THT, TTH, TTT\}.$
 - \rightarrow All equally likely. So, P(first coin Heads) = 4/8 = 1/2.
 - \rightarrow Suppose we are <u>told</u> that exactly 2 coins were Heads.

POLL: Now what is the probability that the first coin was Heads? (B) 1/2. (C) 2/3. (D) 3/4. (E) No idea.

 \rightarrow Well, the outcome must be in {*HHT*, *HTH*, *THH*}. Still all equally likely.

 \rightarrow And, two of these three outcomes have the first coin Heads.

 \rightarrow So, <u>now</u> the probability that the first coin was Heads is equal to 2/3.

 \rightarrow That is: The probability that the first coin was Heads, given that 2 coins were Heads, is equal to 2/3.

 \rightarrow In symbols: P(first coin Heads | 2 coins were Heads) = 2/3.

• In general, if A and B are two events, then the conditional probability of A given B is written as P(A | B), and represents the <u>fraction</u> of the times when B occurs, in which A <u>also</u> occurs. [Diagram.] So, it is equal to:

$$\mathbf{P}(A \mid B) = \frac{\mathbf{P}(A \cap B)}{\mathbf{P}(B)}.$$

• Note: If P(B) = 0, then P(A | B) is ...

undefined! It <u>only</u> makes sense if P(B) > 0.

 \rightarrow (Reasonable since if P(B) = 0, then B will "never" happen.)

- In the above example, $A = \{$ first coin Heads $\}$, and $B = \{2 \text{ coins Heads}\}$.
 - \rightarrow Then, $B = \{HHT, HTH, THH\}$, so P(B) = |B| / |S| = 3/8.
 - \rightarrow Also, $A \cap B = \{HHT, HTH\}$, so $P(A \cap B) = |A \cap B| / |S| = 2/8$.
 - \rightarrow Hence, $P(A \mid B) = P(A \cap B) / P(B) = (2/8) / (3/8) = 2/3$, same as before.

POLL: Roll three fair six-sided dice. What is P(first die is 3 | at least one 3)? (guess) (A) Less than 1/6. (B) 1/6. (C) Between 1/6 and 1/3. (D) More than 1/3.

- \rightarrow Here $S = \{111, 112, \dots, 665, 666\}$. So, $|S| = 6 \cdot 6 \cdot 6 = 6^3 = 216$.
- \rightarrow Here $A = \{$ first die is 3 $\}$, and $B = \{$ at least one 3 $\}$. What is P(B)?
- \rightarrow Well, $B^C=$ {no 3}, i.e. each die in {1, 2, 4, 5, 6}. (So, 5 choices.)
- \rightarrow So, $|B^{C}| = 5^{3}$, and $P(B^{C}) = |B^{C}|/|S| = 5^{3}/6^{3} = 125/216$.
- \rightarrow Then, $P(B) = 1 P(B^C) = 1 \frac{125}{216} = \frac{91}{216}$. What about P(A)?

 \rightarrow Well, $A = \{311, 312, \dots, 366\}$, so $|A| = 6^2 = 36$, and P(A) = 36/216 = 1/6.

(Of course – "independence" – coming soon.) But what we really need is ...

 \rightarrow P(A \cap B). But A \subseteq B, so A \cap B = A, so P(A \cap B) = P(A) = 36/216 = 1/6.

→ Hence, $P(A | B) = P(A \cap B)/P(B) = (1/6)/(91/216) = (36/216)/(91/216) = 36/91 \doteq 0.396$. Much more than $1/6 \doteq 0.167$, or even $1/3 \doteq 0.333$. Surprising?

POLL: Roll three fair six-sided dice. What is P(first die is $3 \mid \text{sum is} \leq 5$)? (guess) (A) Less than 1/6. (B) 1/6. (C) Between 1/6 and 1/3. (D) More than 1/3.

- \rightarrow Here $S = \{111, 112, \dots, 665, 666\}$. So, $|S| = 6 \cdot 6 \cdot 6 = 216$.
- \rightarrow Here $A = \{$ first die is 3 $\}$, and $B = \{$ sum is $\leq 5 \}$. What is |B|?
- \rightarrow Well, $B = \{111, 112, 113, 121, 122, 131, 211, 212, 221, 311\}.$
- \rightarrow So, |B| = 10, and P(B) = |B| / |S| = 10/216.
- \rightarrow What about $A \cap B$? Here $A \cap B = \{311\}$, so $P(A \cap B) = 1/216$.
- → Then $P(A | B) = P(A \cap B) / P(B) = (1/216) / (10/216) = 1/10 = 10\% < 1/6.$
- Or, what is P(at least one $3 \mid \text{sum is} \le 5$)?
 - \rightarrow Here $A = \{ \text{at least one } 3 \}$, and $B = \{ \text{sum is } \le 5 \}$. So, |B| = 10 as above.
 - \rightarrow What about A? Well, $A = \{311, 312, 313, \ldots\}$. Tricky? Use A^C !
 - \rightarrow Here $|A^{C}| = 5^{3} = 125$, so $P(A^{C}) = 125/216 \doteq 0.579$, so $P(A) \doteq 0.421$.
 - \rightarrow But wait, here we don't need to know A, we only need $A \cap B!$
 - \rightarrow By looking at B, we see that $A \cap B = \{113, 131, 311\}.$
 - \rightarrow So, $|A \cap B| = 3$, and $P(A \cap B) = |A \cap B| / |S| = 3/216$.
 - → Then $P(A | B) = P(A \cap B) / P(B) = (3/216) / (10/216) = 3/10 = 30\%$.

• Conditional Multiplication Formula: Since $P(A | B) = P(A \cap B)/P(B)$, therefore $P(A \cap B) = P(B) P(A | B)$. Similarly, $P(A \cap B) = P(A) P(B | A)$. Useful!

• e.g. Suppose we are dealt two cards, in order, from a standard deck.

- \rightarrow What is P(both are Face Cards)? Can instead use conditional prob ...
- \rightarrow Let $A = \{$ first card is Face Card $\}$, and $B = \{$ second card is Face Card $\}$.
- \rightarrow Then P(A) = 12/52. What about $P(B \mid A)$?

 \rightarrow Well, once we <u>know</u> that the first card is a Face Card, then there are 11 Face Cards remaining, out of 51 total remaining cards. So, $P(B \mid A) = 11/51$.

 \rightarrow Then $P(A \cap B) = P(A) P(B \mid A) = (12/52) (11/51)$. Same as before. Easier?

• Combining this Conditional Multiplication Formula with our previous Law of Total Probability gives a new version:

• Law of Total Probability – Conditioned Version: Suppose A_1, A_2, \ldots are a sequence (finite or infinite) of events which form a <u>partition</u> of S, i.e. they are disjoint $(A_i \cap A_j = \emptyset$ for all $i \neq j$) and their union equals the entire sample space $(\bigcup_i A_i = S)$, and let B be any event. Then $P(B) = \sum_i P(A_i) P(B | A_i)$, or equivalently $P(B) = P(A_1) P(B | A_1) + P(A_2) P(B | A_2) + \ldots$

• e.g. Flip one fair coin. If Heads, roll <u>one</u> die; if Tails, roll <u>two</u> dice. What is P(get at least one 5)?

 \rightarrow Here $B = \{ \text{at least one 5} \}$, and $A_1 = \{ \text{Heads} \}$, and $A_2 = \{ \text{Tails} \}$.

- \rightarrow Then A_1, A_2 form a partition. And $P(A_1) = P(A_2) = 1/2$. Need $P(B \mid A_i)$.
- \rightarrow Well, $P(B | A_1) = P(\text{get at least one 5 when you roll <u>one</u> die}) = 1/6.$
- \rightarrow Also, $P(B \mid A_2) = P(\text{get at least one 5 when you roll two dice}) = ??$
- \rightarrow Well, its <u>complement</u> is P(get <u>no</u> 5 when you roll <u>two</u> dice) = $5^2/6^2 = 25/36$.

 \rightarrow So, P(B | A₂) = 1 - (25/36) = 11/36.

 \rightarrow Then, from the above Law of Total Probability,

$$P(B) = \sum_{i} P(A_i) P(B | A_i) = P(A_1) P(B | A_1) + P(A_2) P(B | A_2)$$
$$= (1/2)(1/6) + (1/2)(11/36) = 17/72 \doteq 0.236.$$

• Three-Card Challenge: Have three cards: C1=Blue-Blue, C2=Yellow-Yellow, C3=Blue-Yellow. Pick a card uniformly at random. Then pick one <u>side</u> of that card, uniformly at random. What is P(the card is C2 | the side is Yellow)?

 \rightarrow Let $B = \{$ the side is Yellow $\}$. First of all, what is P(B)?

 \rightarrow Use Law of Total Probability! Since we pick <u>one</u> of the three cards, the three cards C1,C2,C3 form a partition.

→ So, P(B) = P(C1) P(B | C1) + P(C2) P(B | C2) + P(C3) P(B | C3)= (1/3)(0) + (1/3)(1) + (1/3)(1/2) = 1/3 + 1/6 = 1/2. (Of course.)

 \rightarrow Now, let $A = \{$ the card is C2 $\}$. Then what is P $(A \cap B)$?

 \rightarrow Well, $A \cap B = \{$ choose C2, then Yellow $\} = \{$ choose C2, then <u>either</u> side $\}$.

 \rightarrow So, $P(A \cap B) = P(A) P(B \mid A) = P(C2) P(Yellow Side \mid C2) = (1/3) (1) = 1/3.$

→ Hence, P(the card is C2 | the side is Yellow) = $P(A | B) = P(A \cap B)/P(B) = (1/3)/(1/2) = 2/3$. Surprising? (Try it!)

 \rightarrow Intuition: We picked one of the three Yellow <u>sides</u>, of which two are on C2.

• Related question: The Monty Hall Problem!

See Challenge 1.5.18, and/or my article at probability.ca/monty.

• In the above "two Face Cards" question, suppose we <u>ignore</u> the first card. Then what is P(second card is Face Card)?

 \rightarrow Well, if $B = \{$ second card is Face Card $\}$, and $A_1 = \{$ first card is Face Card $\}$ and $A_2 = \{$ first card is NOT Face Card $\}$ then $\{A_1, A_2\}$ is a <u>partition</u>, so $P(B) = P(A_1)P(B \mid A_1) + P(A_2)P(B \mid A_2) = (12/52)(11/51) + (40/52)(12/51) = 12/52 = 3/13$, exactly the same as if it was the only card picked.

 \rightarrow Makes sense, since <u>ignoring</u> the first card is the same as not picking it at all.

• e.g. Suppose a disease affects one person in a thousand, and a test for the disease has 99% accuracy.

 \rightarrow This means that P(test positive | have disease) = 0.99, P(test negative | have disease) = 0.01, P(test positive | do NOT have disease) = 0.01, and P(test negative | do NOT have disease) = 0.99.

 \rightarrow Suppose someone is selected at random, and is tested for the disease.

<u>POLL</u>: (i) What is P(they test positive)? **(A)** 1/1000. **(B)** (1/1000) (0.99). **(C)** (1/1000) (0.99) + (999/1000) (0.01). **(D)** (999/1000) (0.99) + (1/1000) (0.01).

 \rightarrow Use the Law of Total Probability! Here $B = \{\text{test positive}\}$. And, partition is $A_1 = \{\text{have disease}\}$ and $A_2 = \{\text{do not have disease}\}$.

→ So, $P(B) = P(A_1) P(B | A_1) + P(A_2) P(B | A_2)$ = (1/1000)(0.99) + (999/1000)(0.01) = 0.01098.

POLL: (ii) What is P(they test positive <u>and</u> have the disease)? (A) 1/1000. (B) (1/1000) (0.99). (C) (1/1000) (0.99) + (999/1000) (0.01). (D) (999/1000) (0.99) + (1/1000) (0.01).

→ Use the Conditional Multiplication Formula! Here $P(A_1 \cap B) = P(A_1) P(B \mid A_1) = (1/1000)(0.99) = 0.00099.$

<u>POLL:</u> (iii) <u>Given</u> that they tested positive (i.e., <u>conditional</u> on them testing positive), what is the conditional probability that they have the disease?
(A) (0.00099) / (0.01098). (B) (0.01098) / (0.00099).
(C) (0.00099) / (0.00099 + 0.01098). (D) (0.01098) / (0.00099 + 0.01098).

 \rightarrow This is $P(A_1 | B) = P(A_1 \cap B)/P(B)$. And we know these!

→ So, $P(A_1 | B) = P(A_1 \cap B)/P(B) = (0.00099)/(0.01098) = 0.0901639 \doteq 9\% \doteq 1/11$. Small! Why?

 \rightarrow Intuition: So many more people do <u>not</u> have the disease, that even their false positives (1%) are <u>more</u> than the number of people who have the disease (0.1%).

• In the above example, we knew $P(B | A_1)$ (it was 99%), but we wanted $P(A_1 | B)$.

 \rightarrow What is the connection between them?

• In general, $P(B \mid A) = P(A \cap B) / P(A)$, and $P(A \mid B) = P(A \cap B) / P(B)$.

 \rightarrow So ... $P(A | B) = \frac{P(A)}{P(B)} P(B | A)$. ("Bayes Theorem", or "Bayes Rule")

 \rightarrow (Aside: This formula is the inspiration for "Bayesian Statistics" ...)

 \rightarrow In particular, if $P(A) \neq P(B)$, then $P(A \mid B) \neq P(B \mid A)$. Different!

Suggested Homework: 1.5.1, 1.5.2, 1.5.3, 1.5.4, 1.5.6, 1.5.7, 1.5.8, 1.5.10, 1.5.11, 1.5.12, 1.5.13, 1.5.16, 1.5.17.

Independence (§1.5)

• Recall: If we roll three fair six-sided dice, then $P(\underline{\text{first}} \text{ die shows } 5) = \dots$ 1/6. Of course! Why? Because the first die doesn't "care" about the other dice!

 \rightarrow And, P(first die shows 5 | second die shows 4) = 1/6, too. Doesn't care!

 \rightarrow More formally, we say the first die is "independent" of the other dice.

• If A and B are any two events, then saying they are independent means that they do not affect each others' probabilities, i.e. that P(A | B) = P(A), and P(B | A) = P(B).

→ But $P(A | B) = P(A \cap B) / P(B)$, so P(A | B) = P(A) if and only if ... $P(A \cap B) = P(A) P(B)$. This is the official definition of independence. (Better, since it is symmetric in A and B, and it is valid even if P(A) = 0 or P(B) = 0.)

 \rightarrow If A and B are independent, and P(B) > 0, then $P(A \mid B) = P(A)$.

END MONDAY #2

• If two parts of an experiment are physically completely unrelated, like two different coins, or a coin and a die, or multiple dice, then they must be independent.

 \rightarrow We already implicitly used this fact, e.g. if you flip two coins, then P(both Heads) = P(first is Heads) P(second is Heads) = (1/2)(1/2) = 1/4, and so on.

 \rightarrow But now we know why it was okay to multiply!

• e.g. Roll two dice. Are the two results independent?

 \rightarrow Yes of course, since they are physically unrelated.

• Can two events be independent even if they are not physically separated, i.e. they deal with the same objects? Maybe!

• Flip two fair coins. So, $S = \{HH, HT, TH, TT\}, |S| = 4$, all equally likely.

 \rightarrow Let $A = \{$ first coin Heads $\}, B = \{$ second coin Heads $\},$ and

 $C = \{ \text{both coins are the } \underline{\text{same}} \}.$

<u>POLL</u>: Which <u>pairs</u> of these events are independent?

(A) A and B, only. (B) A and C, only. (C) B and C, only. (D) <u>All</u> three pairs (A and B, A and C, and B and C). (E) <u>None</u> of the pairs are independent.

 \rightarrow Well, let's see ...

 \rightarrow Are A and B independent? Yes, of course! (physically unrelated)

→ Check: $P(A) = |{HH, HT}| / 4 = 2/4 = 1/2$, and $P(B) = |{HH, TH}| / 4 = 2/4 = 1/2$, and $P(A \cap B) = |{HH}| / 4 = 1/4 = (1/2)(1/2) = P(A)P(B)$.

 \rightarrow What about A and C? Well, $P(C) = |\{HH, TT\}| / 4 = 2/4 = 1/2$, and $P(A \cap C) = |\{HH\}| / 4 = 1/4$, So, $P(A \cap C) = 1/4 = (1/2)(1/2) = P(A) P(C)$.

 \rightarrow So, A and C are independent! And similarly, B and C are independent.

 \rightarrow So, A and B and C are all <u>pairwise</u> independent, i.e. each <u>pair</u> is independent.

 \rightarrow Hence, $P(A \mid C) = P(A) = 1/2$, and $P(C \mid A) = P(C) = 1/2$, etc. Surprising?

 \rightarrow But are they all truly independent? Well, suppose we know A and <u>also</u> know B. Then we would know that C is true, too!

 \rightarrow That is, $P(C \mid A \cap B) = 1 \neq 1/2 = P(C)$.

 \rightarrow Why? Since $P(A \cap B \cap C) = |\{HH\}| / 4 = 1/4 \neq (1/2)(1/2)(1/2).$

 \rightarrow For A and B and C to be truly independent, we <u>also</u> need $P(A \cap B \cap C) = P(A) P(B) P(C)$. That would guarantee that e.g. $P(C \mid A \cap B) = P(C)$, etc.

• In general, a collection A_1, A_2, A_3, \ldots of events are called independent if $P(A_{i_1} \cap A_{i_2} \cap \ldots \cap A_{i_k}) = P(A_{i_1}) P(A_{i_2}) \ldots P(A_{i_k})$ for any finite subcollection of the events.

 \rightarrow If truly independent, then we can always multiply <u>all</u> the probabilities.

• e.g. Flip 5 fair coins: P(all Heads) = (1/2)(1/2)(1/2)(1/2)(1/2) = 1/32.

• e.g. Flip 3 fair coins. Let $A = \{$ first coin Heads $\}, B = \{$ second coin Heads $\},$ and $C = \{HHH, THH, THT, TTH\}$. Then $P(A \cap B \cap C) = P(HHH) = 1/8 = P(A) P(B) P(C)$, but $P(A \cap C) = P(HHH) = 1/8 \neq P(A) P(C)$.

 \rightarrow So, A, B, C are <u>not</u> independent, although $P(A \cap B \cap C) = P(A) P(B) P(C)$.

<u>POLL</u>: Suppose A and B are independent. Does this necessarily imply that A and B^C are independent? (A) Yes, always. (B) Yes, but only if P(B) > 0. (C) No, not necessarily. (D) No idea.

 \rightarrow Well, let's see ...

 \rightarrow We know from (**) before, that $P(A \cap B^C) = P(A) - P(A \cap B)$.

 \rightarrow If A and B are independent, then $P(A \cap B) = P(A)P(B)$.

$$\rightarrow \text{So, } P(A \cap B^C) = P(A) - P(A \cap B)$$
$$= P(A) - P(A) P(B) = P(A)[1 - P(B)] = P(A) P(B^C)$$

 \rightarrow So, yes, A and B^C must be independent, always!

• Can A and B be both independent and disjoint?

 \rightarrow Well, yes, but if so, then $A \cap B = \emptyset$, so $P(A \cap B) = P(\emptyset) = 0$, but $P(A \cap B) = P(A) P(B)$, so P(A) P(B) = 0, so either P(A) = 0 or P(B) = 0 (or both).

 \rightarrow If P(A) > 0 and P(B) > 0, then A and B <u>not</u> both independent and disjoint.

Suggested Homework: 1.5.9, 1.5.14, 1.5.15, 1.5.20.

• Does it matter? Ask Sally Clark! Solicitor in Cheshire, England. Had two sons; each suffocated and died in infancy.

 \rightarrow Sudden Infant Death Syndrome (SIDS)? Or murder!?!

 \rightarrow 1999 testimony by paediatrician Sir Roy Meadow: "the odds against two [SIDS] in the same family are 73 million to one".

 \rightarrow Sally Clark was arrested, jailed, and vilified, and her third son was temporarily taken away. Was this justified?

 \rightarrow How did Meadow compute that "73 million to one"?

 \rightarrow He said the probability of <u>one</u> child dying of SIDS was one in 8,543, so for <u>two</u> children dying, we <u>multiply</u>:

 $(1/8, 543) \times (1/8, 543) = 1/72, 982, 849 \approx 1/73, 000, 000.$ Was this valid?

 \rightarrow (Also, even the figure "one in 8,543" was misleading, since he included factors which lower the SIDS probability, but neglected other factors which raise it.)

 \rightarrow (Separate point: Even if two SIDS deaths are quite unlikely, two murders are also unlikely! So, how to compare and evaluate? Even unlikely things will happen sometime to someone. Statistical inference! Interesting, but not part of this course.)

 \rightarrow So what happened? Convicted! Jailed for three years! Then overturned.

 \rightarrow More info in my article: probability.ca/justice

Continuity of Probabilities (§1.6)

POLL: Suppose we have <u>any</u> probabilities P defined on $S = \mathbf{N} = \{1, 2, 3, \ldots\}$. Does there necessarily exist some <u>finite</u> number $n \in \mathbf{N}$ with $P\{1, 2, \ldots, n\} = 1$? (C) Yes. (D) No. (E) Not sure.

 \rightarrow No! e.g. in above example with $P(i) = 2^{-i}$, we have $P\{1, 2, ..., n\} = \sum_{i=1}^{n} 2^{-i} = \frac{2^{-1}-2^{-n-1}}{1-2^{-1}} = 1 - 2^{-n}$, which is always < 1. (e.g. if n = 10, it equals 1023/1024 < 1.)

<u>POLL</u>: For any probabilities P on $S = \{1, 2, 3, ...\}$, does there necessarily exist some finite $n \in \mathbb{N}$ with $P\{1, 2, ..., n\} > 0.99$? (C) Yes. (D) No. (E) Not sure.

 \rightarrow Let's see . . .

• Recall: For a function $f : \mathbf{R} \to \mathbf{R}$, "continuity" means if $\lim_{n \to \infty} x_n = x$, then $\lim_{n \to \infty} f(x_n) = f(x)$. Is there something similar for probabilities $P(A_n)$? Sort of ...

- e.g. $S = \mathbf{N} := \{1, 2, 3, \ldots\}$, with $P(i) = 2^{-i}$ for each $i \in S$.
 - \rightarrow Let $A_n = \{1, 2, 3, \dots, n\}$. Does A_n "converge" to S?
 - \rightarrow If so, then does $P(A_n)$ converge to P(S) = 1?

• Definition: Write that $\{A_n\} \nearrow A$ if $\bigcup_n A_n = A$, and they are "nested increasing", i.e. $A_n \subseteq A_{n+1}$ for all n, i.e. $A_1 \subseteq A_2 \subseteq A_3 \subseteq \dots$ <u>Like</u> $\lim_{n \to \infty} A_n = A$. Diagram:

 \rightarrow e.g. if $A_n = \{1, 2, \dots, n\}$, then $\{A_n\} \nearrow \mathbf{N}$. [Check!] And therefore?

• Continuity Of Probabilities Theorem: If $\{A_n\} \nearrow A$, then $\lim P(A_n) = P(A)$.

END WEDNESDAY #3

- \rightarrow Proof (§1.7): Let $B_1 = A_1$, and $B_n = A_n \cap A_{n-1}^C$ for $n \ge 2$.
- \rightarrow Then A is the disjoint union of all of the B_n . [Diagram.]
- \rightarrow Hence, by additivity, $P(A) = \sum_{i=1}^{\infty} P(B_i) \equiv \lim_{n \to \infty} \sum_{i=1}^{n} P(B_i)$.
- \rightarrow But also, A_n is the disjoint union of just B_1, B_2, \ldots, B_n .
- \rightarrow So, by additivity, $P(A_n) = \sum_{i=1}^n P(B_i)$.
- \rightarrow Combining these two, $P(A) = \lim_{n \to \infty} \sum_{i=1}^{n} P(B_i) = \lim_{n \to \infty} P(A_n)$.

• Similarly, write that $\{A_n\} \searrow A$ if $\bigcap_n A_n = A$, and they are nested <u>decreasing</u>, i.e. $A_n \supseteq A_{n+1}$ for all n, i.e. $A_1 \supseteq A_2 \supseteq A_3 \supseteq \ldots$ Diagram:

<u>POLL</u>: If $\{A_n\} \searrow A$, does it necessarily follow that $\lim_{n\to\infty} P(A_n) = P(A)$? (C) Yes. (E) No. (F) Not sure.

 \rightarrow Well, $\{A_n\} \searrow A$ if and only if $\{A_n^C\} \nearrow A^C$. [Exercise!]

 \rightarrow Hence, if $\{A_n\} \searrow A$, then $\{A_n^C\} \nearrow A^C$, so $\lim_{n\to\infty} P(A_n^C) = P(A^C)$, i.e. $\lim_{n\to\infty} [1 - P(A_n)] = 1 - P(A)$, so $\lim_{n\to\infty} P(A_n) = P(A)$, just like before.

• e.g. Suppose we have any probabilities P defined on $S = \mathbf{N} = \{1, 2, 3, \ldots\}$.

 \rightarrow Does there necessarily exist some <u>finite</u> number $n \in \mathbb{N}$ with $P\{1, 2, \dots, n\} = 1$?

 \rightarrow No! e.g. above example with $P(i) = 2^{-i}$: always have $P\{1, 2, \dots, n\} < 1$.

 \rightarrow Is it necessarily true that $\lim_{n\to\infty} P\{1, 2, \dots, n\} = 1$?

→ Yes! Since $\{1, 2, ..., n\} \nearrow \mathbf{N} = S$, by Continuity Of Probabilities, we must have $\lim_{n\to\infty} \mathbf{P}\{1, 2, ..., n\} = \mathbf{P}(S) = 1$.

 \rightarrow Does there necessarily exist some <u>finite</u> $n \in \mathbb{N}$ with $\mathbb{P}\{1, 2, \dots, n\} > 0.99$?

 \rightarrow Yes! Since $\lim_{n\to\infty} P\{1, 2, \dots, n\} = 1$, therefore $P\{1, 2, \dots, n\} > 0.99$ for all sufficiently large n.

• e.g. Suppose we flip an <u>infinite</u> number of (independent) fair coins. (!)

POLL: What is P(all the coins are all Heads)?

(A) 1/2. (B) 0. (C) Undefined. (D) Not sure.

- \rightarrow How to even think about this?
- \rightarrow Let $A = \{$ all the coins are Heads $\}$, and $A_n = \{$ the first n coins are Heads $\}$.
- \rightarrow Then $A_n \supseteq A_{n+1}$. Also $\bigcap_{n=1}^{\infty} A_n = A$. So, $\{A_n\} \searrow A$.
- \rightarrow Hence, P(all coins Heads) = $\lim_{n\to\infty} P(A_n) = \lim_{n\to\infty} (1/2)^n = 0.$
- \rightarrow So, {all coins Heads} is "possible", but has probability 0; will <u>never</u> happen.
- e.g. Suppose we pick a number between 0 and 1.

 \rightarrow Suppose we <u>only</u> know that P([a, b]) = b - a whenever $0 \le a < b \le 1$. Diagram:

POLL: Which fact <u>follows logically</u> from this?

- (A) $P({x}) = 0$ for each individual $x \in [0, 1]$.
- **(B)** P((a, b)) = b a whenever $0 \le a < b \le 1$.
- (C) P([a,b)) = b a whenever $0 \le a < b \le 1$.
- (D) P((a, b]) = b a whenever $0 \le a < b \le 1$.
- (E) All of the above.
- (F) None of the above.

• Start with an example. Know that e.g. $P\left(\left[\frac{1}{2}, \frac{2}{3}\right]\right) = \frac{2}{3} - \frac{1}{2} = \frac{1}{6}$.

 \rightarrow What about the <u>open</u> interval $P((\frac{1}{2}, \frac{2}{3}))$? Is it necessarily the same?

- \rightarrow Use Continuity Of Probabilities!
- \rightarrow Let $A = (\frac{1}{2}, \frac{2}{3})$, and $A_n = [\frac{1}{2} + \frac{1}{n}, \frac{2}{3} \frac{1}{n}]$. Diagram:
- → Then $A_{n+1} \supseteq A_n$, and $\bigcup_{n=1}^{\infty} A_n = A$, so $\{A_n\} \nearrow A$. → Also, we know that $P\left(\left[\frac{1}{2} + \frac{1}{n}, \frac{2}{3} - \frac{1}{n}\right]\right) = \left[\frac{2}{3} - \frac{1}{n}\right] - \left[\frac{1}{2} + \frac{1}{n}\right] = \frac{1}{6} - \frac{2}{n}$. → Hence, by Continuity Of Probabilities, $P(A) = \lim_{n \to \infty} P(A_n)$, i.e. $P\left(\left(\frac{1}{2}, \frac{2}{3}\right)\right) = \lim_{n \to \infty} \left[\frac{1}{6} - \frac{2}{n}\right] = \frac{1}{6}$. • Similarly, using $A_n = [a + \frac{1}{n}, b - \frac{1}{n}]$ shows $P\left((a, b)\right) = b - a$ for $0 \le a < b \le 1$. → Or, for e.g. [a, b), use $A_n = [a, b - \frac{1}{n}]$ instead, then have $\{A_n\} \nearrow A := [a, b)$.
 - What about $P(\{x\})$, for $x \in \mathbf{R}$? Zero? Let $A_n = [x \frac{1}{n}, x + \frac{1}{n}]$. Then ... \rightarrow Here $\{A_n\} \searrow A := \{x\}$ Hence by Continuity of Probabilities

$$\rightarrow$$
 Here $\{A_n\} \searrow A := \{x\}$. Hence, by Continuity of Probabilities,

 $P(\{x\}) = \lim_{n \to \infty} P([x - \frac{1}{n}, x + \frac{1}{n}]) = \lim_{n \to \infty} ((x + \frac{1}{n}) - (x - \frac{1}{n})) = \lim_{n \to \infty} \frac{2}{n} = 0.$

 \rightarrow So, yes, it's (E) All of the above!

Suggested Homework: 1.6.1, 1.6.2, 1.6.3, 1.6.4, 1.6.5, 1.6.6, 1.6.7, 1.6.8, 1.6.9, 1.6.10. Optional: 1.6.11.

[END OF TEXTBOOK CHAPTER #1]

Random Variables (§2.1)

• A random variable is "any" function from S to \mathbf{R} .

 \rightarrow Intuitively, it represents some <u>random quantity</u> in an experiment.

- e.g. Roll 3 dice: X = number showing on the first die.
 - $\rightarrow X$ could be 1,2,3,4,5,6, depending on result: X(265) = 2, X(513) = 5, etc.
 - \rightarrow Or, $Y = \underline{\text{sum}}$ of the three numbers showing, so Y(265) = 13, Y(513) = 9, etc.
 - \rightarrow Or, Z = first number divided by third number: Z(265) = 2/5, Z(513) = 5/3.
- <u>Or</u>: Roll three fair dice, X(s) = number of 5's, Y(s) = number of 3's, Z = X Y. \rightarrow Then X(335) = 1, Y(335) = 2, Z(335) = -1, etc. Values can be negative, too!
- e.g. Flip 10 coins: X = # of Heads, or $Y = (\# \text{ of Heads})^2$, or

Z = 1 if first coin Heads otherwise Z = 0, etc.

- \rightarrow So X(HHHTTTHTTT) = 4, X(TTHHHHHHHT) = 7, etc.
- \rightarrow In this example, can also write $Y = X^2$ (function of another random variable).
- e.g. X(s) = 5 for all $s \in S$: "constant random variable". (Or any constant.)
- Special case: $I_A(s) = 1$ if $s \in A$ otherwise $I_A(s) = 0$. "<u>indicator function</u>"
- e.g. $S = \mathbf{N} := \{1, 2, 3, \ldots\}$, with $P(i) = 2^{-i}$ for each $i \in S$.
 - \rightarrow Maybe X(s) = s, and $Y(s) = s^2$. What are their <u>largest</u> possible values?
 - \rightarrow None! They can be arbitrarily large. "unbounded random variables"
 - \rightarrow Also, for all $s \in S$ we have $s \leq s^2$, i.e. $X(s) \leq Y(s)$ for all $s \in S$, so " $X \leq Y$ ".
- Fun Fact: 1950s Doob/Feller argument, "random variable" or "chance variable"?

Suggested Homework: 2.1.1, 2.1.2, 2.1.4, 2.1.5, 2.1.6, 2.1.10, 2.1.11, 2.1.12, 2.1.15.

Distributions of Random Variables (§2.2)

• The distribution of a random variable is the collection of all of the probabilities of the variable being in every possible subset of **R**.

• e.g. Olympic medal, with $S = \{\text{Gold}, \text{Silver}, \text{Bronze}\}$, and P(Gold)=0.40, P(Silver)=0.15, and P(Bronze)=0.45. Let X(Gold)=1, X(Silver)=2, X(Bronze)=5.

POLL: What is $P(X \le 3)$? (A) 0.40. (B) 0.15. (C) 0.45. (D) 0.55. (E) 1.

 \rightarrow Probabilities for X? Here $P(X = 1) = P{Gold} = 0.40$, and $P(X = 2) = P{Silver} = 0.15$, and $P(X = 5) = P{Bronze} = 0.45$. What about $P(X \le 3)$?

 \rightarrow Well, $P(X \le 3) = P{Gold, Silver} = 0.40 + 0.15 = 0.55$. And P(X = 7) = 0.

 \rightarrow And P(X < 20) = P{Gold, Silver, Bronze} = 0.40 + 0.15 + 0.45 = 1.

 \rightarrow And P(1 < X < 6) = P{Silver, Bronze} = 0.15 + 0.45 = 0.60. And so on.

• In general, " $P(X \in B)$ " means $P(X^{-1}(B)) := P\{s \in S : X(s) \in B\}$.

→ e.g. If B is the event "≤ 3", then $B = \{x \in \mathbf{R} : x \leq 3\}$, so $P(X \in B) = P(X \leq 3) = P(X \in (-\infty, 3]) = P(X^{-1}(-\infty, 3])$, which equals 0.55 in this case.

• Can also write in this example that for "any" subset $B \subseteq \mathbf{R}$, we have (using "indicator functions") that $P(X \in B) = 0.40 I_B(1) + 0.15 I_B(2) + 0.45 I_B(5)$.

→ e.g. If B is the event "≤ 3", then $I_B(1) = 1$, $I_B(2) = 1$, and $I_B(5) = 0$, so $P(X \in B) = 0.40(1) + 0.15(1) + 0.45(0) = 0.55$, like before.

Suggested Homework: 2.2.1, 2.2.2, 2.2.3, 2.2.4, 2.2.5, 2.2.6, 2.2.8, 2.2.9, 2.2.10.

Discrete Random Variables (§2.3)

- A random variable is called discrete if $\sum_{x \in \mathbf{R}} P(X = x) = 1$.
 - \rightarrow i.e., <u>all</u> of its probability is on individual values.

 \rightarrow Not always true! e.g. if we "pick a number uniformly between 0 and 1", then we know that P(X = x) = 0 for all values of x, so $\sum_{x \in \mathbf{R}} P(X = x) = 0 < 1$.

• If it's true, there's a distinct sequence $x_1, x_2, x_3, \ldots \in \mathbf{R}$, and corresponding probabilities $p_1, p_2, p_3, \ldots \geq 0$, with $\sum_i p_i = 1$, such that $P(X = x_i) = p_i$ for each *i*.

 \rightarrow In above example, $x_1 = 1$, $x_2 = 2$, $x_3 = 5$, with $p_1 = 0.40$, $p_2 = 0.15$, $p_3 = 0.45$.

• Can also define the "probability function" as $p_X(x) := P(X = x)$.

 \rightarrow So, $p_X(x_i) = p_i$ for all i, with $p_X(x) = 0$ for all $x \notin \{x_1, x_2, \ldots\}$.

 \rightarrow In above example, $p_X(1)=0.40$, $p_X(2)=0.15$, $p_X(3)=0.45$, otherwise $p_X(x)=0$.

- e.g. Flip one fair coin, and let X = # Heads.
 - \rightarrow Then P(X = 0) = 1/2, and P(X = 1) = 1/2.
 - \rightarrow So, here $x_1 = 0$, and $x_2 = 1$, and $p_1 = p_2 = 1/2$.
 - → Also, $p_X(0) = 1/2$ and $p_X(1) = 1/2$, with $p_X(x) = 0$ for all $x \neq 0, 1$.
- e.g. Flip two fair coins, and let X = # Heads.

<u>POLL</u>: The probability function $p_X(x)$ for this X is given by:

(A) $p_X(1) = p_X(2) = 1/2$, otherwise $p_X(x) = 0$.

- **(B)** $p_X(0) = p_X(1) = p_X(2) = 1/3$, otherwise $p_X(x) = 0$.
- (C) $p_X(0) = 1/4$ and $p_X(1) = 1/2$ and $p_X(2) = 1/4$, otherwise $p_X(x) = 0$.
- (D) $p_X(0) = 1/4$ and $p_X(1) = 3/4$ and $p_X(2) = 1/4$, otherwise $p_X(x) = 0$.
- (E) $p_X(0) = 1/4$ and $p_X(1) = 2/3$ and $p_X(2) = 1/4$, otherwise $p_X(x) = 0$.

• We know that $P(X = k) = {n \choose k}/2^n = {2 \choose k}/4$. So, $P(X = 0) = {2 \choose 0}/2^2 = 1/4$, and $P(X = 1) = {2 \choose 1}/2^2 = 2/4 = 1/2$, and $P(X = 2) = {2 \choose 2}/2^2 = 1/4$. \rightarrow So $x_1 = 0$, and $x_2 = 1$, and $x_3 = 2$, and $p_1 = 1/4$, and $p_2 = 1/2$, and $p_3 = 1/4$. \rightarrow Also, $p_X(0) = 1/4$ and $p_X(1) = 1/2$ and $p_X(2) = 1/4$, otherwise $p_X(x) = 0$.

Suggested Homework: 2.3.1, 2.3.2, 2.3.3, 2.3.4, 2.3.5.

Some First Discrete Distributions (§2.3.1)

• e.g. Shoot one "free throw" in basketball, with probability " θ " of scoring (for some value of θ with $0 < \theta < 1$, e.g. $\theta = 0.5$, or $\theta = 1/3$, or ...).

 \rightarrow Let X = 1 if you score, or X = 0 if you miss. Probabilities for X?

 \rightarrow Here P(X = 1) = P{score} = θ , and P(X = 0) = P{miss} = 1 - θ .

- \rightarrow This is the "Bernoulli(θ) distribution".
- \rightarrow Can also write $X \sim \text{Bernoulli}(\theta)$.

 \rightarrow e.g. Bernoulli(0.5), or Bernoulli(1/3), or ...

 \rightarrow (Of course, it doesn't have to be free throws! This distribution applies to <u>any</u> situation involving any "attempt" or "trial" having probability θ of "success" and probability $1 - \theta$ of "failure". And similarly for the below, too.)

• e.g. Shoot <u>2</u> free throws, each <u>independent</u> with probability θ of scoring (for some value of θ with $0 < \theta < 1$ like 0.5 or 1/3).

 \rightarrow Let X = # Successes. Probabilities for X?

 $\rightarrow \text{Here P}(X=0) = P\{\text{miss-miss}\} = (1-\theta)(1-\theta) = (1-\theta)^2.$

(We can <u>multiply</u> because they are <u>independent</u>.)

 \rightarrow And, $P(X = 2) = P\{\text{score-score}\} = (\theta)(\theta) = \theta^2$.

<u>POLL</u>: What is P(X = 1)? (A) $\theta(1 - \theta)$. (B) $2\theta(1 - \theta)$. (C) $\theta + (1 - \theta)$. (D) $\theta - 2(1 - \theta)$. (E) Not sure.

 \rightarrow Here P(X = 1) = P{score-miss, miss-score} = (θ)(1- θ)+(1- θ)(θ) = 2 θ (1- θ).

 \rightarrow So, $p_X(0) = (1 - \theta)^2$, $p_X(1) = 2\theta(1 - \theta)$, $p_X(2) = \theta^2$, otherwise $p_X(x) = 0$.

 \rightarrow This is the "Binomial(2, θ) distribution".

• e.g. Shoot "n" free throws, each <u>independent</u> with probability θ of scoring (for some value of θ with $0 < \theta < 1$, and some value of $n \in \mathbf{N}$ like 2 or 10 or 286).

POLL: Let X = # Successes. What is the probability function for X? (A) $p_X(k) = \theta^k$, for any $k \in \{0, 1, 2, ..., n\}$, otherwise 0. (B) $p_X(k) = \theta^k (1 - \theta)^{n-k}$, for any $k \in \{0, 1, 2, ..., n\}$, otherwise 0. (C) $p_X(k) = \binom{n}{k} \theta^k$, for any $k \in \{0, 1, 2, ..., n\}$, otherwise 0. (D) $p_X(k) = \binom{n}{k} \theta^k (1 - \theta)^{n-k}$, for any $k \in \{0, 1, 2, ..., n\}$, otherwise 0. (E) No idea

- (E) No idea.
 - \rightarrow Here P(X = 0) = P{miss-miss-...-miss} = (1 θ)ⁿ.
 - \rightarrow And, $P(X = n) = P\{\text{score-score-}\dots\text{-score}\} = \theta^n$.
 - \rightarrow And, $P(X = 1) = P\{\text{score-miss-}\dots\text{-miss}, \text{miss-score-miss-}\dots\text{-miss}, \dots\} = ??$
 - \rightarrow Well, each such sequence has probability $\theta(1-\theta)\dots(1-\theta)=\theta(1-\theta)^{n-1}$.
 - \rightarrow And, there are *n* such sequences (one for each shot which could score).
 - \rightarrow So, P(X = 1) = $n\theta(1-\theta)^{n-1}$.
 - \rightarrow What about P(X = k) for any integer $k \in \{0, 1, 2, \dots, n\}$?
 - \rightarrow Well, $P(X = k) = P\{\text{all sequences of } k \text{ scores and } n k \text{ misses}\}.$
 - \rightarrow Each such sequence has probability $\theta^k (1-\theta)^{n-k}$.
 - \rightarrow And, the number of such sequences is $\binom{n}{k}$. ("Choose" which k shots scored.)

$$\to$$
 So, $p_X(k) := P(X = k) = {n \choose k} \theta^k (1 - \theta)^{n-k}$, for any $k \in \{0, 1, 2, \dots, n\}$

- \rightarrow This is the "Binomial (n, θ) distribution". Can write $X \sim \text{Binomial}(n, \theta)$.
- Check: k = 0: $P(X = 0) = {n \choose 0} \theta^0 (1 \theta)^{n-0} = (1 \theta)^n$. Yep!
 - \rightarrow Check: k = n: $P(X = n) = {n \choose n} \theta^n (1 \theta)^{n-n} = \theta^n$. Yep!
 - \rightarrow Check: k = 1: $P(X = 1) = {n \choose 1} \theta^1 (1 \theta)^{n-1} = n\theta (1 \theta)^{n-1}$. Yep!
 - \rightarrow Check: $P(X = k) \ge 0$. Yep!

• Check:
$$\sum_{k=0}^{n} P(X=k) = \sum_{k=0}^{n} {n \choose k} \theta^{k} (1-\theta)^{n-k} = ??$$

 \rightarrow Well, recall the "Binomial Theorem": $(a+b)^n = \sum_{k=0}^n {n \choose k} a^k b^{n-k}$.

- \rightarrow Set $a = \theta$ and $b = 1 \theta$: $\sum_{k=0}^{n} {n \choose k} \theta^k (1-\theta)^{n-k} = [\theta + (1-\theta)]^n = 1^n = 1$. Yep!
- Special case: If $\theta = 1/2$, then the Binomial(n, 1/2) distribution has

 $P(X = k) = {\binom{n}{k}} (1/2)^k (1 - (1/2))^{n-k} = {\binom{n}{k}} (1/2)^n = {\binom{n}{k}} / 2^n$, same as coins before.

- Special case: Binomial $(1, \theta)$ is the <u>same</u> as Bernoulli (θ) .
- Suppose $X_1, X_2, \ldots, X_n \sim \text{Bernoulli}(\theta)$, for <u>independent</u> trials.

 \rightarrow Let $Y = X_1 + X_2 + \ldots + X_n$. What is the distribution of Y?

 \rightarrow Here Y represents the number of successes in n independent attempts, each with probability θ of success, so $Y \sim \text{Binomial}(n, \theta)$.

POLL: e.g. Suppose 1/4 of students have long hair. You pick four students at random, with replacement. What is P(exactly 2 of them have long hair)? (A) $(1/4)^2$. (B) $(3/4)^2$. (C) $(1/4)^2(3/4)^2$. (D) $3(1/4)^2(3/4)^2$. (E) $6(1/4)^2(3/4)^2$.

→ Let Y = # students with long hair. Then $Y \sim \text{Binomial}(4, 1/4)$. So, $P(Y = 2) = \binom{4}{2} (1/4)^2 (1 - (1/4))^{4-2} = 6(1/4)^2 (3/4)^2 = 54/256 = 27/128 \doteq 0.21.$

Suggested Homework: 2.3.7, 2.3.11, 2.3.14, 2.3.24.

END MONDAY #3 -

Geometric Distribution (§2.3.1)

POLL: e.g. Repeatedly shoot free throws, each independent with probability θ of scoring. What is P(miss exactly 3 times before first score)? (A) $\theta/4$. (B) θ^3 . (C) $(1-\theta)^3$. (D) $\theta^3(1-\theta)$. (E) $(1-\theta)^3\theta$. (F) No idea.

• In this example, let Z = # misses <u>before the first score</u>. Probabilities for Z?

 \rightarrow Here P(Z = 0) = P(score first time) = θ .

 \rightarrow And, P(Z = 1) = P(miss-score) = $(1 - \theta)\theta$.

 \rightarrow And, P(Z = 2) = P(miss-miss-score) = $(1 - \theta)^2 \theta$.

 \rightarrow And, P(Z = 3) = P(miss-miss-score) = $(1 - \theta)^3 \theta$. (E)

 \rightarrow In general, $P(Z = k) = P(miss-miss-...-miss-score) = (1 - \theta)^k \theta$, valid for all k = 0, 1, 2, 3, ...

 \rightarrow This is the "Geometric(θ) distribution". Can write $Z \sim \text{Geometric}(\theta)$.

• Check: $P(Z = k) \ge 0$ for all k. Yep!

 $\rightarrow \text{Check: } \sum_{k=0}^{\infty} (1-\theta)^k \theta = \theta [1+(1-\theta)+(1-\theta)^2+(1-\theta)^3+\ldots] \\ = \theta [\frac{1}{1-(1-\theta)}] = \theta [\frac{1}{\theta}] = 1. \text{ (Geometric series.) Yep!}$

• [Some books count # attempts up to <u>and including</u> first success: one more.]

POLL: e.g. Suppose 1/4 of students have long hair. You repeatedly pick students at random, with replacement. What is P(the <u>sixth</u> student is the <u>first</u> with long hair)? (A) (1/4)(3/4). (B) $(1/4)^5(3/4)$. (C) $(1/4)(3/4)^5$. (D) $(1/4)^6(3/4)$. (E) $(1/4)(3/4)^6$.

 \rightarrow Let X = # students <u>before</u> first one with long hair. Then we want to find P(X = 5). And, here $X \sim \text{Geometric}(1/4)$.

→ So,
$$P(X = 5) = (1/4) (1 - (1/4))^5 = (1/4)(3/4)^5 = 243/4096 \doteq 0.059.$$

• Suppose again that $X \sim \text{Geometric}(1/4)$. What is $P(X = \infty)$?

 $\begin{array}{l} \rightarrow \text{ Well, } \mathcal{P}(X < m) = \sum_{k=0}^{m-1} \mathcal{P}(X = k) = \sum_{k=0}^{m-1} (1/4) (3/4)^k = (1/4) [1 + (3/4) + (3/4)^2 + \ldots + (3/4)^{m-1}] = (1/4) \frac{1 - (3/4)^m}{1 - (3/4)} = 1 - (3/4)^m. \quad \text{This is } < 1. \\ \rightarrow \text{ So, } \mathcal{P}(X \geq m) = 1 - \mathcal{P}(X < m) = 1 - [1 - (3/4)^m] = (3/4)^m. \end{array}$

 \rightarrow So, $P(X \ge m) = (3/4)^m > 0$ for any $m \in \mathbb{N}$. ("unbounded random variable")

- \rightarrow But also, $\{X \ge m\} \searrow \{X = \infty\}$. [check!]
- \rightarrow Hence, by <u>Continuity of Probabilities</u>,

 $P(X = \infty) = \lim_{m \to \infty} P(X \ge m) = \lim_{m \to \infty} (3/4)^m = 0.$ Phew!

• If $X \sim \text{Geometric}(\theta)$ for any $0 < \theta < 1$, and any $m \in \mathbf{N}$, then we still have $P(X \ge m) = (1 - \theta)^m > 0$, unbounded, but still $P(X = \infty) = 0$.

Suggested Homework: 2.3.6, 2.3.10, 2.3.15, 2.3.16(a,b), 2.3.23, 2.3.27.

• Suppose $X \sim \text{Geometric}(\theta)$, and $a, b \in \mathbb{N}$. Then what is $P(X \ge a + b \mid X \ge a)$?

$$\Rightarrow \operatorname{P}(X \ge a + b \mid X \ge a) = \frac{\operatorname{P}(X \ge a + b \text{ and } X \ge a)}{\operatorname{P}(X \ge a)} = \frac{\operatorname{P}(X \ge a + b)}{\operatorname{P}(X \ge a)} = \frac{(1 - \theta)^{a + b}}{(1 - \theta)^{a}} = (1 - \theta)^{b}.$$

- \rightarrow So what? Well, this is equal to $P(X \ge b)$.
- \rightarrow Suppose your <u>waiting time</u> (for a bus, or an elevator, or ...) is Geometric(θ).
- \rightarrow Suppose you've <u>already</u> waited for *a* minutes.

 \rightarrow Then the probabilities for how long you <u>still</u> have to wait, are the same as they were when you started waiting!

 \rightarrow This is the "memoryless" or "forgetfulness" property of Geometric(θ).

Poisson Distribution (§2.3.1)

• e.g. Suppose Toronto has an average of $\lambda = 5$ house fires per day.

 \rightarrow Intuitively, this is caused by a very <u>large</u> number *n* of buildings, each of which has a very <u>small</u> probability θ of having a fire.

- \rightarrow Let $\lambda = n\theta$, i.e. $\theta = \lambda/n$. (Then λ is the "average" number of fires later.)
- \rightarrow Then the number of fires has the distribution Binomial $(n, \lambda/n)$, so

$$P(\#\text{fires} = k) = \binom{n}{k} \theta^k (1-\theta)^{n-k} \\ = \frac{n(n-1)(n-2)\dots(n-k+1)}{k!} (\lambda/n)^k [1-(\lambda/n)]^{n-k}.$$

 \rightarrow Now, what happens as $n \rightarrow \infty$, for a fixed value of k?

 $\begin{array}{l} \rightarrow \text{ Well, since } k \ll n, \text{ we have } \frac{n}{n} = 1, \ \frac{n-1}{n} \rightarrow 1, \ \frac{n-2}{n} \rightarrow 1, \ \dots \ \frac{n-k+1}{n} \rightarrow 1. \\ \rightarrow \text{ Hence, } \frac{n(n-1)(n-2)\dots(n-k+1)}{n^k} \rightarrow 1. \end{array}$

 \rightarrow Also, from calculus, $e^x = 1 + x + \frac{x^2}{2!} + \dots$, so for small $x \in \mathbf{R}$, $e^x \approx 1 + x$.

$$\rightarrow$$
 So, $[1 - (\lambda/n)]^{n-k} \approx [1 - (\lambda/n)]^n \approx [e^{-\lambda/n}]^n = e^{-\lambda/n}$

- \rightarrow Hence, as $n \rightarrow \infty$, we have $P(\# \text{fires} = k) \rightarrow \frac{1}{k!} \lambda^k e^{-\lambda} = e^{-\lambda} \frac{\lambda^k}{k!}$.
- \rightarrow This is the Poisson(λ) distribution: $P(k) = e^{-\lambda} \frac{\lambda^k}{k!}$, for k = 0, 1, 2, 3, ...
- Check: $\sum_{k=0}^{\infty} e^{-\lambda} \frac{\lambda^k}{k!} = e^{-\lambda} \left[1 + \lambda + \frac{\lambda^2}{2!} + \frac{\lambda^3}{3!} + \ldots\right] = e^{-\lambda} \left[e^{\lambda}\right] = 1.$ Yep!

• In general, if n is very large, and θ is very small, then $Binomial(n, \theta)$ is well approximated by $Poisson(\lambda)$ where $\lambda = n\theta$. "Poisson approximation"

• e.g. Suppose
$$Y \sim \text{Poisson(3)}$$
. What is $P(Y = 4)$?
 \rightarrow Well, $P(Y = 4) = e^{-\lambda} \frac{\lambda^k}{k!} = e^{-3} \frac{3^4}{4!} = e^{-3} \frac{81}{24} \doteq 0.168$.

POLL: e.g. Suppose $Y \sim \text{Binomial}(20000, 0.0001)$. Then the actual value of P(Y = 4), and the Poisson approximation value of P(Y = 4), are: (A) $20000 (0.0001)^4$, and $e^{-20000} \frac{(20000)^4}{4!}$.

- (**B**) $\binom{20000}{4} (0.0001)^4$, and $e^{-20000} \frac{(2)^4}{4!}$. (**C**) $\binom{20000}{4} (0.0001)^4 (0.9999)^{19996}$, and $e^{-2} \frac{(2)^4}{4!}$.
- (D) $\binom{20000}{4} (0.0001)^4 (0.9999)^{19996}$, and $e^{-20000} \frac{(2)^4}{4!}$.
 - Here $Y \sim \text{Binomial}(n, \theta)$ where n = 20000 and $\theta = 0.0001$. \rightarrow So, P(Y = 4) = $\binom{n}{4}\theta^4(1-\theta)^{n-4} = \binom{20000}{4}(0.0001)^4(0.9999)^{19996}$
 - Poisson Approximation: Here $\lambda = n\theta = 20000 \cdot 0.0001 = 2$. \rightarrow So, P(Y = 4) $\approx e^{-\lambda \frac{\lambda^4}{4!}} = e^{-2 \frac{(2)^4}{4!}}$

POLL: To how many decimal points do these two values agree? (Don't compute it, just guess.) (A) 3. (B) 4. (C) 5. (D) 6. (E) 7. (F) 8.

- \rightarrow Here $P(Y = 4) = \binom{20000}{4} (0.0001)^4 (0.9999)^{19996} \doteq 0.09022352216.$
- \rightarrow And, the approximation is $P(Y=4) \approx e^{-2} \frac{(2)^4}{4!} \doteq 0.09022352178.$
- \rightarrow (Agree to 8 decimal places! Or even 9, with rounding!)

• Or, if $Y \sim \text{Binomial}(200, 0.01)$, then still $\lambda = 200 \cdot 0.01 = 2$, so Poisson approximation is the same, but how close is it now?

POLL: Same question as above, but now for Binomial(200, 0.01).

- \rightarrow Now P(Y = 4) = $\binom{200}{4}(0.01)^4(0.99)^{200-4} \doteq 0.0902197.$
- \rightarrow Still pretty close: 4 decimals! (Or 5 with rounding!) But not <u>as</u> close.
- \rightarrow Binomial(20,0.1): P(Y=4) $\doteq 0.0897788$. (3 decimals with rounding)
- \rightarrow Binomial(10,0.2): P(Y=4) \doteq 0.0881; Binomial(5,0.4): \doteq 0.0768; worse.

Suggested Homework: 2.3.8, 2.3.12, 2.3.19, 2.3.27. Optional: 2.3.18, 2.3.30.

• We'll <u>omit</u> some other common discrete distributions (save for next year!).

 \rightarrow e.g. Negative-Binomial (r, θ) and Hypergeometric(N, M, n).

Law of Total Probability (again) (§2.3)

• If X is a discrete variable which always equals one of the values x_1, x_2, \ldots , then the events $\{X = x_i\}$ form a <u>partition</u>. So, we get that ...

• [Law of Total Probability – Discrete Random Variable Version]

If X is a discrete random variable, with possible values x_1, x_2, \ldots , and corresponding probabilities p_1, p_2, \ldots , and B is any event, then

 $P(B) = \sum_{i} P(X = x_i) P(B | X = x_i) = \sum_{i} p_i P(B | X = x_i).$

 \rightarrow In fact, since P(X = x) = 0 for all other x, we can also write this as: $P(B) = \sum_{x \in \mathbf{R}} P(X = x) P(B \mid X = x).$

END WEDNESDAY #4

POLL: Suppose we roll one fair six-sided die, and then flip a number of coins equal to the number showing on the die. Let X = # Heads. Then P(X = 3) equals: **(A)** $\sum_{y=3}^{6} (1/6) [\binom{y}{3}/2^{y}]$. **(B)** $\binom{6}{3}/2^{y}$. **(C)** $\frac{6!}{3!}/2^{3}$. **(D)** $\sum_{y=3}^{6} (1/6) [y(y-1)(y-2)/2^{y}]$. **(E)** $\sum_{y=1}^{6} (1/6) [y(y-1)(y-2)/6(2^{y})]$. **(F)** No idea.

Let Y = number on die. Then Y is discrete, with possible values {1, 2, 3, 4, 5, 6}.
→ Use the values of Y as a partition! Then ...

 $P(X = 3) = \sum_{y \in \mathbf{R}} P(Y = y) P(X = 3 | Y = y) = \sum_{y=1}^{6} P(Y = y) P(X = 3 | Y = y)$ = $\sum_{y=3}^{6} (1/6) [\binom{y}{3} / 2^{y}].$ (A) \rightarrow This equals $\frac{1}{6} \left(\frac{1}{8} + \frac{4}{16} + \frac{10}{32} + \frac{20}{64}\right) = \frac{1}{6}(1) = \frac{1}{6}.$ (Why? Coincidence!) \rightarrow And, $P(X = 4) = \sum_{y \in \mathbf{R}} P(Y = y) P(X = 4 | Y = y) = \sum_{y=1}^{6} P(Y = y) P(X = 4 | Y = y) = \sum_{y=4}^{6} (1/6) [\binom{y}{4} / 2^{y}] = \frac{1}{6} \left(\frac{1}{16} + \frac{5}{32} + \frac{15}{64}\right) = 29/384 \doteq 0.0755.$

• e.g. Suppose we roll one fair six-sided die, and then attempt a number of free throws equal to the number showing on the die. Assume we have independent probability 1/3 of scoring on each free throw. Let X = # Scores. Compute P(X = 3).

→ Let Y = number on die. Then by the Law of Total Probability, $P(X = 3) = \sum_{y \in \mathbf{R}} P(Y = y) P(X = 3 | Y = y) = \sum_{y=1}^{6} P(Y = y) P(X = 3 | Y = y)$ $y) = \sum_{y=3}^{6} (1/6) \left[{\binom{y}{3}} (1/3)^3 (2/3)^{y-3} \right] = (1/6) \left[(1)(1/3)^3 (2/3)^0 + (4)(1/3)^3 (2/3)^1 + (10)(1/3)^3 (2/3)^2 + (20)(1/3)^3 (2/3)^3 \right] = \dots = (1/6) [379/729] \doteq 0.087.$

Understanding Distributions Using the Computer Software "R"

- Recall basic info and links at: probability.ca/Rinfo.html
 - \rightarrow Also discussed in Appendix B of the textbook.
- Can use "R" to simulate from probability distributions!
 - \rightarrow e.g. "rbinom(1,10,1/2)", "rgeom(1,0.2)", "rpois(1,5)".
 - \rightarrow Can get more info with e.g. "?rbinom", etc.
- Can also plot probabilities, e.g. "plot(dbinom(0:10,10,1/2))", "plot(dgeom(0:10,0.2))"
 - \rightarrow [Also: other parameter values, and different options like "type='b'", etc.]

Continuous Random Variables (§2.4)

- A random variable X is continuous if P(X = x) = 0 for all x.
- \rightarrow Then $\sum_{x \in \mathbf{R}} P(X = x) = \sum_{x \in \mathbf{R}} 0 = 0$. The "opposite" of discrete!
- e.g. The Uniform[0,1] distribution (already mentioned):
 - $\rightarrow X \sim \text{Uniform}[0,1]$ if $P(a \leq X \leq b) = b a$ whenever $0 \leq a \leq b \leq 1$.
- → Then e.g. $P(X \in [0, 1]) = P(0 \le X \le 1) = 1 0 = 1$,
- $P(1/3 \le X \le 3/4) = (3/4) (1/3) = 5/12,$
- $P(X \ge 2/3) = P(2/3 \le X \le 1) = 1 (2/3) = 1/3$, etc.

→ Also, P(X > 1) = 0, and P(X < 0) = 0, so e.g. $P(1/3 \le X \le 5) = P(1/3 \le 1)$ $X \leq 1$ = 1 - (1/3) = 2/3, etc.

 \rightarrow And, we previously showed (using Continuity Of Probabilities) that we can always replace " \leq " with "<", or ">" by " \geq ", etc. (Also true since P(X = x) = 0.)

• Alternative representation: Let

 \rightarrow And as a check, $f(x) \ge 0$, and $\int_{-\infty}^{\infty} f(x) dx = 1$. More complicated, but ...

• A density function is "any" $f: \mathbf{R} \to \mathbf{R}$ with $f(x) \ge 0$ and $\int_{-\infty}^{\infty} f(x) dx = 1$.

- \rightarrow Given <u>any</u> density function, can define $P(a \le X \le b) = \int_a^b f(x) dx$ for $a \le b$.
- \rightarrow This defines a new distribution! Very general! ("absolutely continuous")
- Follows that $P(X = a) = P(a \le X \le a) = \int_a^a f(x) dx = 0$, i.e. X is continuous.
- If f(x) is the density function for a random variable X, write it as $f_X(x)$.

Some First Continuous Distributions (§2.4.1)

• e.g. the Uniform[5,12] distribution has density:
$$f_X(x) = \begin{cases} 0, & x < 5\\ 1/7, & 5 \le x \le 12\\ 0, & x > 12 \end{cases}$$

Diagram:

 \rightarrow Then $f_X(x) \ge 0$, and $\int_{-\infty}^{\infty} f_X(x) \, dx = \int_{-\infty}^{5} (0) \, dx + \int_{5}^{12} (1/7) \, dx + \int_{12}^{\infty} (0) \, dx =$ 0 + (1/7)(7) + 0 = 1. Good.

<u>POLL</u>: Then for any $5 \le a \le b \le 12$, the probability $P(a \le X \le b)$ is equal to: (A) b-a. (B) $\frac{1}{7}(b-a)$. (C) $\frac{2}{7}(12-a)$. (D) $\frac{2}{7}(b-5)$. (E) $\frac{1}{7}(b-a-5)$. (F) No idea.

• For any L < R, the Uniform[L,R] density is: $f_X(x) = \begin{cases} 0, & x < L \\ 1/(R-L), & L \le x \le R \\ 0, & x > R \end{cases}$ → Then $f_X(x) \ge 0$, and $\int_{-\infty}^{\infty} f_X(x) dx = \int_{-\infty}^{L} (0) dx + \int_{L}^{R} \frac{1}{R-L} dx + \int_{R}^{\infty} (0) dx = 0 + \frac{1}{R-L} (R-L) + 0 = 1$. Good. \rightarrow And then whenever $L \leq a \leq b \leq R$, then $P(a \leq X \leq b) = \frac{b-a}{R-L}$.

 \rightarrow e.g. if L = 5 and R = 12, then $P(a \le X \le b) = \frac{b-a}{R-L} = \frac{1}{7}(b-a)$. (Of course.)

• If $X \sim \text{Uniform}[L, R]$, then $P(L \leq X \leq R) = 1$. (Bounded distribution.)

• e.g. Let $f(x) = e^{-x}$ for $x \ge 0$, otherwise f(x) = 0. Diagram:

 $\rightarrow \text{Then } f(x) \ge 0, \text{ and } \int_{-\infty}^{\infty} f(x) \, dx = \int_{-\infty}^{0} (0) \, dx + \int_{0}^{\infty} e^{-x} \, dx = (0) + (-e^{-x}) \Big|_{x=0}^{x=\infty} = (-0) - (-1) = 1.$

→ If X has this density f, for $0 \le a \le b$, $P(a \le X \le b) = \int_a^b e^{-x} dx = e^{-a} - e^{-b}$. → Also $P(X \ge a) = e^{-a}$. This is the Exponential(1) distribution.

• More generally, for any $\lambda > 0$, let $f(x) = \lambda e^{-\lambda x}$ for $x \ge 0$, otherwise f(x) = 0.

→ Then $f(x) \ge 0$, and $\int_{-\infty}^{\infty} f(x) dx = \int_{-\infty}^{0} (0) dx + \int_{0}^{\infty} (\lambda e^{-\lambda x}) dx = -e^{-\lambda x} \Big|_{x=0}^{x=\infty} = (-0) - (-1) = 1.$

 \rightarrow If X has this density f, for $0 \le a \le b$, $P(a \le X \le b) = e^{-\lambda a} - e^{-\lambda b}$.

 \rightarrow Also $P(X \ge a) = e^{-\lambda a}$. This is the Exponential(λ) distribution.

 \rightarrow Many useful properties. Good model of e.g. how long a lightbulb will last.

<u>POLL</u>: What property does Exponential(λ) have, just like a previous distribution?

(A) It gives probabilities for <u>coin flips</u>, just like $Binomial(n, \theta)$.

(B) It's a <u>bounded</u> distribution, just like Uniform[L, R].

(C) It has the <u>memoryless property</u>, just like Geometric(θ).

(D) It is a limit of Binomials, just like $Poisson(\lambda)$.

(E) All of the above.

(F) Exactly $\underline{\text{two}}$ of the above.

• Suppose $X \sim \text{Exponential}(\lambda)$, and a, b > 0. Then what is $P(X \ge a + b \mid X \ge a)$? $\rightarrow P(X \ge a + b \mid X \ge a) = \frac{P(X \ge a + b \text{ and } X \ge a)}{P(X \ge a)} = \frac{P(X \ge a + b)}{P(X \ge a)} = \frac{e^{-\lambda(a+b)}}{e^{-\lambda a}} = e^{-\lambda b}.$

 \rightarrow So what? Well, this is equal to $P(X \ge b)$.

 \rightarrow If your <u>waiting time</u> is Exponential(λ), and you've <u>already</u> waited for *a* minutes, then the probabilities for how long you <u>still</u> have to wait are the same as they were when you started waiting. Just like for Geometric(θ).

 \rightarrow This is the "memoryless" or "forgetfulness" property of Exponential(λ).

Suggested Homework: 2.4.1, 2.4.2, 2.4.3, 2.4.4, 2.4.5, 2.4.6, 2.4.7, 2.4.8, 2.4.9, 2.4.10, 2.4.11, 2.4.12, 2.4.14.

The Normal Distribution (§2.4.1)

- \rightarrow Clearly $\phi(x) \ge 0$.
- \rightarrow Fact: $\int_{-\infty}^{\infty} \phi(x) dx = 1.$
- \rightarrow (Proof uses polar coordinates: p. 126.)
- \rightarrow So, it's a density. Important! Amazing!
- If X has density ϕ , then we say that X has the Normal(0,1) or N(0,1) distribution.
 - \rightarrow Then $P(a \le X \le b) = \int_a^b \phi(x) \, dx = \int_a^b \frac{1}{\sqrt{2\pi}} e^{-x^2/2} \, dx$ for all $a \le b$.
 - \rightarrow Cannot be computed analytically. (No exact anti-derivative function.)
 - \rightarrow But can be computed using software, or using tables like Appendix D.2.
- More generally, for any $\mu \in \mathbf{R}$ and $\sigma > 0$, let $f(x) = \frac{1}{\sigma\sqrt{2\pi}} e^{-(x-\mu)^2/2\sigma^2}$.
 - \rightarrow Then $f(x) \ge 0$. By change-of-variable theorem, $\int_{-\infty}^{\infty} f(x) dx = \int_{-\infty}^{\infty} \phi(x) dx = 1$.
 - \rightarrow This is the density of the Normal (μ, σ^2) or N (μ, σ^2) distribution.
 - \rightarrow Previous case was: $\mu = 0, \sigma = 1$. ("Standard normal distribution")
 - \rightarrow Curve is centered at μ , so changing μ "shifts" it.
 - \rightarrow Increasing σ makes it "fatter"; decreasing σ makes it "thinner".
 - \rightarrow [Plot in R: e.g. "plot(\(x) dnorm(x,2,3), xlim=c(-4,4), ylim=c(0,1))"]

• In fact, if $Z \sim \text{Normal}(0,1)$, and $W = \mu + \sigma Z$, then by the change-of-variable formula (coming soon), $W \sim \text{Normal}(\mu, \sigma^2)$.

- So, there is a normal density for every "location" μ and "scale" σ .
- Good model for e.g. human heights, weights of eggs, etc.
 - \rightarrow See e.g. https://www.statology.org/example-of-normal-distribution/
- The key distribution for the Central Limit Theorem and more! (Later.)
 - \rightarrow Arises naturally when there are lots of small influences.
 - \rightarrow See e.g. https://www.mathsisfun.com/data/quincunx.html

Suggested Homework: 2.4.13, 2.4.26.

• We'll <u>omit</u> some other common continuous distributions, e.g. $Gamma(\alpha, \lambda)$.

Cumulative Distribution Functions (cdf) (§2.5)

• For any random variable X, the cumulative distribution function (cdf) is the function F_X defined by $F_X(x) = P(X \le x)$ for all $x \in \mathbf{R}$.

- \rightarrow If X is discrete, then $F_X(x) = \sum_{u \leq x} P(X = u) = \sum_{u \leq x} p_X(u).$
- \rightarrow Or, if X is absolutely continuous, then $F_X(x) = \int_{-\infty}^x f_X(u) du$.

POLL: If a < b, the expression $F_X(b) - F_X(a)$ is equal to: (A) $P[X \le \min(a, b)]$. (B) $P[X \ge \max(a, b)]$. (C) P[a < X < b]. (D) $P[a < X \le b]$. (E) $P[a \le X < b]$. (F) $P[a \le X \le b]$.

• Well, for any a < b, let $A = \{X \le a\}$ and $B = \{X \le b\}$. \rightarrow Then $A \cap B = A = \{X \le a\}$. → Then, $\{a < X \le b\} = \{X \le b\} \cap \{X > a\} = \{X \le b\} \cap \{X \le a\}^C = B \cap A^C$. → Hence, $P(a < X \le b) = P(B \cap A^C) = P(B) - P(A \cap B)$ $= P(B) - P(A) = P(X \le b) - P(X \le a) = F_X(b) - F_X(a)$. So: (D).

POLL: If X has cdf F_X , then $P(a \le X \le b)$ must always be equal to: (A) $F_X(b) - F_X(a)$. (B) $F_X(b) - \lim_{n \to \infty} F_X(a - \frac{1}{n})$. (C) $F_X(b) - \lim_{n \to \infty} F_X(a + \frac{1}{n})$. (D) $\lim_{n \to \infty} F_X(b - \frac{1}{n}) - F_X(a)$. (E) $\lim_{n \to \infty} F_X(b + \frac{1}{n}) - F_X(a)$. (F) $\lim_{n \to \infty} F_X(b - \frac{1}{n}) - \lim_{n \to \infty} F_X(a - \frac{1}{n})$.

• Indeed, by Continuity Of Probabilities, $P(a \le X \le b) = P(X \le b) - P(X < a) = P(X \le b) - \lim_{n \to \infty} P(X \le a - \frac{1}{n}) = F_X(b) - \lim_{n \to \infty} F_X(a - \frac{1}{n}).$ (B)

 \rightarrow If F_X is a <u>continuous</u> function, then $P(a \le X \le b) = F_X(b) - F_X(a)$.

- Special case: $P(X = a) = P(a \le X \le a) = F_X(a) \lim_{n \to \infty} F_X(a \frac{1}{n}).$
 - \rightarrow Might equal 0, but might be positive!

→ If
$$F_X$$
 is continuous, then $P(X = a) = P(a \le X \le a)$
= $F_X(a) - \lim_{n \to \infty} F_X(a - \frac{1}{n}) = F_X(a) - F_X(a) = 0.$

- And, e.g. $P(3 < X \le 5 \text{ or } 6 < X \le 9) = [F_X(5) F_X(3)] + [F_X(9) F_X(6)]$, etc.
- So, <u>all</u> probabilities for X can be found from F_X . ("distribution function")

<u>POLL</u>: The cumulative distribution function (cdf) F_X of any real-valued random variable X <u>must</u> always satisfy the following property:

- (A) $0 \leq F_X(x) \leq 1$ for all $x \in \mathbf{R}$.
- (B) If $x \leq y$, then $F_X(x) \leq F_X(y)$, i.e. F_X is a <u>non-decreasing</u> function.
- (C) $\lim_{x\to-\infty} F_X(x) = 0.$
- (D) $\lim_{x\to\infty} F_X(x) = 1.$
- (E) All of the above.
- (F) Exactly $\underline{\text{two}}$ of the above.

END MONDAY #4 _____

• Well, let's see ...

 $\rightarrow F_X(x) = \mathbb{P}(X \leq x)$ is a probability, so $0 \leq F_X(x) \leq 1$ for all $x \in \mathbb{R}$.

 \rightarrow If $x \leq y$, and we set $A = \{X \leq x\}$ and $B = \{X \leq y\}$, then $A \subseteq B$. Hence, $P(A) \leq P(B)$, i.e. $F_X(x) \leq F_X(y)$. (non-decreasing)

 \rightarrow If $A_n = \{X \leq -n\}$, then $\{A_n\} \searrow \{X = -\infty\} = \emptyset$, so by Continuity of Probabilities, $\lim_{n\to\infty} P(A_n) = P(\bigcap_n A_n) = P(\emptyset) = 0$.

→ Similarly, if $A_n = \{X \leq +n\}$, then $\{A_n\} \nearrow \{X < \infty\} = S$, so by Continuity of Probabilities, $\lim_{n\to\infty} P(A_n) = P(\bigcup_n A_n) = P(S) = 1$.

 \rightarrow So: (E) All of the above!

<u>POLL</u>: Are cumulative distribution functions (cdfs) <u>continuous</u> functions?

- (A) Yes, they must always be continuous functions.
- (B) They must be <u>left-continuous</u>, but might not be <u>right-continuous</u>.
- (C) They must be <u>right-continuous</u>, but might not be <u>left-continuous</u>.
- (D) They might be neither left- nor right-continuous.
- (E) No idea.

 \rightarrow So, if X is a <u>continuous</u> random variable, i.e. P(X = x) = 0 for all x, then F_X is a continuous function for all x. (This is actually "if and only if".)

- In general, the jump-size of F_X at x is equal to P(X = x).
- e.g. Flip 3 coins, X = # Heads.

<u>POLL</u>: In this example, what is the cdf value $F_X(2.5)$? (A) 1/8. (B) 3/8. (C) 1/2. (D) 5/8. (E) 7/8. (F) 1.

→ Know P(X = 0) = 1/8, P(X = 1) = 3/8, P(X = 2) = 3/8, P(X = 3) = 1/8. → So, for x < 0, $F_X(x) = P(X \le x) = 0$. → And, for $0 \le x < 1$, $F_X(x) = P(X \le x) = P(X = 0) = 1/8$.

 \rightarrow And, for $1 \leq x < 2$, $F_X(x) =$ 1.0 0.8 X(x) for # Heads $P(X \le x) = P(X = 0) + P(X = 1) =$ 0.6 1/8 + 3/8 = 4/8 = 1/2.0.4 \rightarrow And, for $2 \leq x < 3$, $F_X(x) =$ 0.2 $P(X \le x) = P(X = 0) + P(X = 1) +$ 0.0 P(X = 2) = 1/8 + 3/8 + 3/8 = 7/8. (E) 0 3 4 \rightarrow And, for $x \ge 3$, $F_X(x) = P(X \le x) = P(X = 0) + P(X_x = 1) + P(X = 0)$

2) + P(X = 3) = 1/8 + 3/8 + 3/8 + 1/8 = 1.

 \rightarrow [Graph.] All properties satisfied!

<u>POLL</u>: In this example, what is the value of $F_X(1) - \lim_{n \to \infty} F_X(1 - \frac{1}{n})$? (A) 1/8. (B) 3/8. (C) 1/2. (D) 5/8. (E) 7/8. (F) 1.

$$\to F_X(1) - \lim_{n \to \infty} F_X(1 - \frac{1}{n}) = P(X \le 1) - P(X < 1) = P(X = 1) = 3/8.$$
(B)

• All <u>discrete</u> distributions have somewhat similar cdfs. (piecewise-constant)

• e.g. Y = roll of one fair six-sided die. Check that all properties of F_Y are satisfied!

Suggested Homework: 2.5.2, 2.5.3, 2.5.7, 2.5.8, 2.5.9, 2.5.12.

- \rightarrow But it is <u>so</u> important that it has its own symbol: $\Phi(x)$.
- \rightarrow It can be computed using software (R: "pnorm"), or tables like Appendix D.2.
- Furthermore, the bell curve is <u>symmetric</u>, i.e. $\phi(-u) = \phi(u)$ for all u.
 - \rightarrow This implies that $P(Z \leq x) = P(Z \geq -x)$, i.e. $P(Z \leq x) = 1 P(Z \leq -x)$.
 - \rightarrow So, $\Phi(x) = 1 \Phi(-x)$ for all $x \in \mathbf{R}$, i.e. $\Phi(x) + \Phi(-x) = 1$.
 - \rightarrow It then also follows that $\Phi(0) = 1/2$.

END WEDNESDAY #5 -

POLL: e.g. Suppose $Z \sim \text{Normal}(0, 1)$. What is $P(Z \le 1.43)$? **(A)** $\Phi(1.43)$. **(B)** $1 - \Phi(-1.43)$. **(C)** $\int_{-\infty}^{1.43} \phi(x) \, dx$. **(D)** $(1/2) + \int_{0}^{1.43} \phi(x) \, dx$. **(E)** $1 - \int_{1.43}^{\infty} \phi(x) \, dx$. **(F)** All of the above.

- \rightarrow Well, P(Z \le 1.43) = $\Phi(1.43) = 1 \Phi(-1.43)$.
- \rightarrow From the table in Appendix D.2, this is $\doteq 1 (0.0764) = 0.9236$.

 \rightarrow And, since $\Phi(x) = \int_{-\infty}^{x} \phi(x) dx$ and $\int_{-\infty}^{\infty} \phi(x) dx = 1$ and $\int_{-\infty}^{0} \phi(x) dx = 1/2$, the other expressions all equal this, too! So, (F)!

POLL: e.g. Suppose $W \sim \text{Normal}(5, 4^2)$. What is $P(6 \le W \le 8)$? **(A)** $\Phi(1/4)$. **(B)** $\Phi(3/4)$. **(C)** $\Phi(3/4) + \Phi(1/4)$. **(D)** $\Phi(3/4) - \Phi(1/4)$. **(E)** $\Phi(7/8) - \Phi(1/8)$.

- \rightarrow Well, here W = 5 + 4Z where $Z \sim \text{Normal}(0, 1)$.
- → So, $P(6 \le W \le 8) = P(6 \le 5 + 4Z \le 8) = P(1/4 \le Z \le 3/4).$
- → By definition of Φ , this is $P(Z \le 3/4) P(Z \le 1/4) = \Phi(3/4) \Phi(1/4)$. (D)
- \rightarrow Then, this also equals

$$[1 - \Phi(-3/4)] - [1 - \Phi(-1/4)] = \Phi(-1/4) - \Phi(-3/4) = \Phi(-0.25) - \Phi(-0.75)$$

- \rightarrow From the Appendix D.2 table, this is $\doteq 0.4013 0.2266 = 0.1747$.
- \rightarrow So, here P(6 $\leq W \leq 8$) $\doteq 0.1747$.

Suggested Homework: 2.5.4, 2.5.5.

• Suppose that X is <u>absolutely continuous</u>, with density function $f_X(x)$, and cumulative distribution function $F_X(x)$. What is the relationship between f_X and F_X ?

 \rightarrow Well, we know that $F_X(x) := P(X \le x) = \int_{-\infty}^x f_X(u) du$.

 \rightarrow So, by the Fundamental Theorem of Calculus,

the derivative $F'_X(x) := \frac{d}{dx} F_X(x)$ equals $f_X(x)$, at least if f_X is continuous at x.

 \rightarrow That is, the derivative of the cdf is the density!

- e.g. Suppose $X \sim \text{Exponential}(1)$. Then we know $F_X(x) = 1 e^{-x}$ for $x \ge 0$. \rightarrow Then for x > 0, $F'_X(x) = \frac{d}{dx}[1 - e^{-x}] = -(-e^{-x}) = e^{-x} = f_X(x)$. Yep!
- e.g. Similarly, for any $\lambda > 0$, if $Y \sim \text{Exponential}(\lambda)$, then for y > 0, $F_Y(y) = 1 e^{-\lambda y}$, and $F'_Y(y) = \frac{d}{dy}[1 e^{-\lambda y}] = (-\lambda)(-e^{-\lambda y}) = \lambda e^{-\lambda y} = f_Y(y)$. Yep!
 - If $Z \sim \text{Normal}(0, 1)$, then we know $\Phi'(z) = \phi(z) = \frac{1}{\sqrt{2\pi}} e^{-z^2/2}$. \rightarrow Even though we don't really know exactly what $\Phi(z)$ is!
 - e.g. Suppose a r.v. X has cdf $F_X(x) = \begin{cases} 0, & x < 5\\ (x-5)^4, & 5 \le x < 6\\ 1, & x \ge 6 \end{cases}$
 - \rightarrow Valid cdf? (Yes! Increases from 0 to 1, right-continuous ...)

• Mixture Distributions (§2.5.4): e.g. Consider the following random variables:

- $\rightarrow Y$ is the result of rolling one fair six-sided die, with cdf $F_Y(y)$ as above.
- $\rightarrow Z \sim \text{Uniform}[2,5]$, with cdf $F_Z(z) = \frac{z-2}{3}$ for $2 \le z \le 5$ as above.
- $\rightarrow W \sim \text{Bernoulli}(1/3)$ (indep.), so P(W = 1) = 1/3 and P(W = 0) = 2/3.
- \rightarrow Then, we let $X = \begin{cases} Y, & W = 1 \\ Z, & W = 0 \end{cases}$

 \rightarrow Intuitively, X is equal <u>either</u> to the result of the die (with probability 1/3), <u>or</u> to a Uniform[2,5] variable (with probability 2/3).

POLL: Then what is, say, $F_X(4.4)$? **(A)** $F_Y(4.4) + F_Z(4.4)$. **(B)** $[F_Y(4.4) + F_Z(4.4)]/2$. **(C)** $(1/3)F_Y(4.4) + (1/3)F_Z(4.4)$. **(D)** $(1/3)F_Y(4.4) + (2/3)F_Z(4.4)$.

 \rightarrow Well, by the Law of Total Probability, $F_X(4.4) := P(X \le 4.4)$

- $= P(X \le 4.4, W = 1) + P(X \le 4.4, W = 0)$
- $= P(Y \le 4.4, W = 1) + P(Z \le 4.4, W = 0)$
- $= P(Y \le 4.4) P(W = 1) + P(Z \le 4.4) P(W = 0)$

 $= F_Y(4.4) (1/3) + F_Z(4.4) (2/3) = (4/6) (1/3) + (2.4/3) (2/3).$ (D)

- \rightarrow More generally, $F_X(x) = (1/3) F_Y(x) + (2/3) F_Z(x)$, for all $x \in \mathbf{R}$.
- \rightarrow (Can then plug in $F_Y(x)$ and $F_Z(x)$ to compute $F_X(x)$.)
- \rightarrow The distribution of X is a <u>mixture</u> of the distributions of Y and of Z.
- In this example, is X continuous?

 \rightarrow No! By independence, we have that e.g. P(X = 2) = P(W = 1, Y = 2) = P(W = 1) P(Y = 2) = (1/3)(1/6) = 1/18 > 0. Not zero, like for the continuous case.

• Ah, so then is X discrete?

 \rightarrow No! Here $\sum_{x \in \mathbf{R}} P(X = x) = \sum_{x=1}^{6} P(X = x) = \sum_{x=1}^{6} P(W = 1, Y = x) = \sum_{x=1}^{6} P(W = 1) P(Y = x) = \sum_{x=1}^{6} (1/3)(1/6) = 1/3 < 1$. Not one, like for the

discrete case.

• Here X is has a <u>mixture</u> distribution. Neither discrete nor continuous!

 \rightarrow (In this course we'll usually stick with <u>either</u> discrete <u>or</u> absolutely continuous. But there are other kinds of random variables too. Even "singular", beyond mixtures!)

Suggested Homework: 2.5.6, 2.5.13, 2.5.14, 2.5.15, 2.5.17, 2.5.18.

Change of Variable Formula (one-dimensional) (§2.6)

- Suppose X is a random variable, and $h : \mathbf{R} \to \mathbf{R}$ is some function.
 - \rightarrow Then we can define Y = h(X), i.e. Y(s) = h(X(s)) for all $s \in S$. (e.g. $Y = X^2$)
 - \rightarrow Then Y is another random variable. ("function of a random variable")
 - \rightarrow So, Y has its own distribution. What is it??
- Discrete Case: Suppose X discrete: $P(X = x_i) = p_i$ where $p_i \ge 0$ and $\sum_i p_i = 1$.
 - \rightarrow Then, Y is discrete too, with $P(Y = y) = P(h(X) = y) = \sum \{p_i : h(x_i) = y\}.$
 - \rightarrow That is, $P(Y = y) = P(X \in \{x : h(x) = y\}).$
 - \rightarrow Or, in terms of probability functions, $p_Y(y) = \sum_{x:h(x)=y} p_X(x)$.
 - \rightarrow Discrete Change-of-Variable Theorem.

<u>POLL</u>: e.g. $X = \text{roll of fair die, and } Y = (X - 3)^2$. What is P(Y = 4)? (A) 0. (B) 1/6. (C) 1/3. (D) 1/2. (E) 2/3. (F) 5/6.

 \rightarrow Well, P(Y = 4) = P(X \in \{x : (x-3)^2 = 4\}) = P(X \in \{1, 5\}) = (1/6) + (1/6) = 2/6 = 1/3.

 \rightarrow Also, P(Y = 1) = P(X \in \{x : (x-3)^2 = 1\}) = P(X \in \{2, 4\}) = (1/6) + (1/6) = 2/6 = 1/3.

- \rightarrow And, $P(Y = 9) = P(X \in \{x : (x 3)^2 = 9\}) = P(X \in \{6\}) = (1/6)$. More?
- → Yes! Also $P(Y = 0) = P(X \in \{x : (x 3)^2 = 0\}) = P(X \in \{3\}) = (1/6).$
- \rightarrow That is, $p_Y(y) = 1/3$ for y = 1, 4; $p_Y(y) = 1/6$ for y = 0, 9; otherwise 0.
- Easy! But what if X is continuous? Trickier!
- Absolutely Continuous Case: Suppose X has density $f_X(x)$, and Y = h(X).
 - \rightarrow Then what is the density function $f_Y(y)$ for Y?

<u>POLL</u>: Will Y necessarily be absolutely continuous at all?

(A) Yes, Y must be absolutely continuous (i.e., have a density).

(B) Well, Y must be continuous (i.e. P(Y=y) = 0 for all y), but not necessarily absolutely continuous.

- (C) Well, Y might not be continuous, but cannot be a discrete random variable.
- (D) Actually, Y could even be a discrete random variable.
- (E) No idea.
 - Well, let's consider an example ...

• e.g. $X \sim \text{Uniform}[0, 1]$, and $h(x) = \begin{cases} 2, & x \le 1/3 \\ 4, & x > 1/3 \end{cases}$

→ Then if Y = h(X), then $P(Y = 2) = P(X \le 1/3) = 1/3$, and P(Y = 4) = P(X > 1/3) = 1 - (1/3) = 2/3. That is, $p_Y(2) = 1/3$, and $p_Y(4) = 2/3$.

 \rightarrow So, Y is discrete! Not continuous at all!

• But what if *h* satisfies certain conditions?

 \rightarrow Then must Y be absolutely continuous, i.e. have a density $f_Y(y)$?

 \rightarrow And if yes, then what must $f_Y(y)$ equal?

END MONDAY #5

[<u>Reminder</u>: MIDTERM #1, Wednesday Oct 9, at regular lecture time, in Exam Centre (EX) room 320 or 100. Bring TCard, basic calculator.]

END WEDNESDAY #6 ——

[Reminder: Monday Oct 14 is THANKSGIVING – no classes.]

END MONDAY #6

<u>POLL</u>: Suppose X is absolutely continuous, with density function $f_X(x)$, and Y = h(X). Then Y must also be absolutely continuous, i.e. also have a density function, provided that h is: (A) Continuous. (B) Non-decreasing. (C) Strictly increasing. (D) Constant. (E) None of the above. (F) No idea.

• Absolutely Continuous Change-of-Variable Theorem: Suppose X has density $f_X(x)$, and Y = h(X), where $h : \mathbf{R} \to \mathbf{R}$ is differentiable and strictly increasing or decreasing (at least on $\{x : f_X(x) > 0\}$), with inverse function $h^{-1}(y)$. Then Y is also absolutely continuous, with density function $f_Y(y) = f_X(h^{-1}(y)) / |h'(h^{-1}(y))|$.

 \rightarrow That is, $f_Y(y) = f_X(x)/|h'(x)|$, where y = h(x) so $x = h^{-1}(y)$.

- Proof: Assume h is strictly increasing.
 - \rightarrow Then it has an <u>inverse</u> function, $h^{-1}(y)$, with $X = h^{-1}(Y)$.
 - \rightarrow By the Inverse Function Theorem, $\frac{d}{dy}h^{-1}(y) := (h^{-1})'(y) = 1 / h'(h^{-1}(y)).$
- <u>Method #1:</u>

 $\to \text{Here } P(a \le Y \le b) = P(h^{-1}(a) \le X \le h^{-1}(b)) = \int_{h^{-1}(a)}^{h^{-1}(b)} f_X(x) \, dx.$

 \rightarrow Now make the "substitution" $x = h^{-1}(y)$.

 \rightarrow Then by "integration by substitution" or the "chain rule" from calculus, we have $dx = d(h^{-1}(y)) = (h^{-1})'(y) dy = [1/h'(h^{-1}(y))] dy$.

- \rightarrow Hence, from above, $P(a \leq Y \leq b) = \int_a^b \left[f_X(h^{-1}(y)) / h'(h^{-1}(y)) \right] dy, \forall a \leq b.$
- \rightarrow But this equals $\int_a^b f_Y(y) \, dy$, so we must have $f_Y(y) = f_X(h^{-1}(y)) / h'(h^{-1}(y))$.

 \rightarrow (The first part $f_X(h^{-1}(y))$ is intuitive. The rest is from the chain rule.)

• Method #2:

=

→ Here
$$F_Y(y) = P(Y \le y) = P(h(X) \le y) = P(X \le h^{-1}(y)) = F_X(h^{-1}(y))$$
.
→ So, $f_Y(y) = \frac{d}{dy}F_Y(y) = \frac{d}{dy}F_X(h^{-1}(y)) = f_X(h^{-1}(y))\frac{d}{dy}h^{-1}(y)$
 $f_X(h^{-1}(y))[1/h'(h^{-1}(y))] = f_X(h^{-1}(y))/h'(h^{-1}(y)).$

• Note: We need h to be increasing <u>only</u> where $f_X(x) > 0$; other x don't matter.

• If instead h is strictly <u>decreasing</u>, then everything is still the same, except that h' and $(h^{-1})'$ are <u>negative</u>, so we need to put an <u>absolute value sign</u> on it.

→ Or, in Method #2, $P(Y \le y) = P(X \ge h^{-1}(y)) = 1 - P(X \le h^{-1}(y)) = 1 - F_X(h^{-1}(y))$ which gives a negative.

• e.g. Suppose $X \sim \text{Uniform}[0, 1]$, and Y = 5X + 4.

<u>POLL</u>: Will Y be absolutely continuous? (C) Yes. (D) No. (E) No idea.

POLL: What distribution do you think Y will have?

(A) Uniform[0,1]. (B) Uniform[0,5]. (C) Uniform[0,9]. (D) Uniform[4,9].

(E) Some other Uniform distribution. (F) Some non-Uniform distribution.

- \rightarrow Then $f_X(x) = 1$ for $0 \le x \le 1$, otherwise 0.
- \rightarrow Also h(x) = 5x + 4, strictly increasing, h'(x) = 5.
- \rightarrow And, if y = 5x + 4, then x = (y 4)/5, so $h^{-1}(y) = (y 4)/5$.
- \rightarrow So, $f_X(h^{-1}(y)) = f_X((y-4)/5)$, which = 1 for $4 \le y \le 9$ otherwise 0.
- \rightarrow And, $h'(h^{-1}(y)) = h'((y-4)/5) = 5.$
- \rightarrow So, $f_Y(y) = f_X(h^{-1}(y)) / |h'(h^{-1}(y))| = 1/5$ for $4 \le y \le 9$ otherwise 0.
- \rightarrow That is, $Y \sim$ Uniform[4,9], a familiar distribution! (Makes sense.) (D)

• Alternatively, use cdfs!

- \rightarrow In above example, for $4 \le y \le 9$:
- → $F_Y(y) = P(Y \le y) = P(5X + 4 \le y) = P(X \le (y 4)/5) = (y 4)/5.$
- \rightarrow Hence, for $4 \le y \le 9$, $f_Y(y) = \frac{d}{dy}F_Y(y) = \frac{d}{dy}(y-4)/5 = 1/5$. Same as before!
- e.g. Suppose $X \sim \text{Uniform}[0, 1]$, and $Y = X^2$.

<u>POLL</u>: Will Y be absolutely continuous? (C) Yes. (D) No. (E) No idea.

<u>POLL</u>: What distribution do you think *Y* will have?

(A) Uniform[0,1]. (B) Uniform[0,2]. (C) Uniform[0,4]. (D) Uniform[1,4].
(E) Some other Uniform distribution. (F) Some non-Uniform distribution.

- \rightarrow Then $f_X(x) = 1$ for $0 \le x \le 1$, otherwise 0.
- \rightarrow Also $h(x) = x^2$, strictly increasing for $x \ge 0$, and h'(x) = 2x.
- \rightarrow And, $h^{-1}(y) = \sqrt{y}$ for $y \ge 0$, so $f_X(h^{-1}(y))$ is 1 for $0 < y \le 1$ otherwise 0.
- \rightarrow Therefore, $h'(h^{-1}(y)) = 2h^{-1}(y) = 2\sqrt{y}$ for y > 0, otherwise 0.
- \rightarrow So, $f_Y(y) = f_X(h^{-1}(y)) / |h'(h^{-1}(y))| = 1/(2\sqrt{y})$ for $0 < y \le 1$ otherwise 0.

Suggested Homework: 2.6.1, 2.6.2, 2.6.3, 2.6.4, 2.6.5, 2.6.6, 2.6.7, 2.6.9, 2.6.10, 2.6.12, 2.6.14, 2.6.15.

• e.g. Suppose $X \sim \text{Exponential}(5)$, and $Y = X^2$.

<u>POLL</u>: Will Y be absolutely continuous? (C) Yes. (D) No. (E) No idea.

POLL: What distribution do you think Y will have?

(A) Uniform[0,1]. (B) Uniform[0,5]. (C) Exponential(10). (D) Exponential(25).
(E) Some other Uniform or Exponential distribution. (F) Some <u>non</u>-Uniform nor Exponential distribution.

→ Here for y > 0, $F_Y(y) = P(Y \le y) = P(X^2 \le y) = P(X \le \sqrt{y}) = 1 - e^{-5\sqrt{y}}$. → So, for y > 0, $f_Y(y) = \frac{d}{dy}F_Y(y) = \frac{d}{dy}[1 - e^{-5\sqrt{y}}] = -e^{-5\sqrt{y}}(-5y^{-1/2}/2)) = (5/2)e^{-5\sqrt{y}}/\sqrt{y}$. (Otherwise $f_Y(y) = 0$.) Crazy, but true! [Check: Integrates to 1.]

 \rightarrow Or, use the Theorem: Again $h(x) = x^2$, strictly increasing for $x \ge 0$, h'(x) = 2x, $h^{-1}(y) = \sqrt{y}$ for $y \ge 0$, and here $f_X(x) = 5e^{-5x}$ for $x \ge 0$, so for $y \ge 0$, $f_Y(y) = f_X(h^{-1}(y)) / |h'(h^{-1}(y))| = 5e^{-5\sqrt{y}}/2\sqrt{y}$. Same! (F)

• e.g. Suppose $Z \sim \text{Normal}(0, 1)$, and Y = 6 + 3Z.

<u>POLL</u>: Will Y be absolutely continuous? (C) Yes. (D) No. (E) No idea.

<u>POLL</u>: What distribution do you think *Y* will have?

(A) Normal(0,1). (B) Normal(0,9). (C) Normal $(3,6^2)$. (D) Normal $(6,3^2)$.

(E) Some other Normal distribution. (F) Some <u>non</u>-Normal distribution.

END WEDNESDAY #7

• Here
$$f_Z(z) = \phi(z) = \frac{1}{\sqrt{2\pi}} e^{-z^2/2}$$
.
 \rightarrow Also $h(z) = 6+3z$, strictly increasing, with $h'(z) = 3$. And, $h^{-1}(y) = (y-6)/3$.
 \rightarrow So, $f_Y(y) = f_Z(h^{-1}(y)) / |h'(h^{-1}(y))| = \phi((y-6)/3) / 3$
 $= \frac{1}{\sqrt{2\pi}} e^{-[(y-6)/3]^2/2} / 3 = \frac{1}{3\sqrt{2\pi}} e^{-(y-6)^2/(2\cdot3^2)}$.
 \rightarrow This is the same as $\frac{1}{\sigma\sqrt{2\pi}} e^{-(y-\mu)^2/(2\sigma^2)}$ where $\mu = 6$ and $\sigma = 3$.
 \rightarrow Hence, $Y \sim$ Normal $(6, 3^2)$, as might be expected. (D)
 \rightarrow (Similarly for any μ besides 6, and σ besides 3.)
 \rightarrow This demonstrates that if $Z \approx Normal(0, 1)$ and $Y = \mu + \sigma Z$ then $Y \approx 0$.

 \rightarrow This demonstrates that if $Z \sim \text{Normal}(0,1)$, and $Y = \mu + \sigma Z$, then $Y \sim \text{Normal}(\mu, \sigma^2)$, as we claimed before. (Phew.)

Joint Distributions (§2.7)

- Suppose X and Y are two random variables.
 - \rightarrow Suppose we know the distribution of X and also know the distribution of Y.
 - \rightarrow Does that tell us the whole story? Maybe not!

• e.g. Suppose we flip two fair (independent) coins.

 \rightarrow Let $X = I_{\text{first coin Heads}}$, i.e. X = 1 if first coin Heads, otherwise X = 0.

 \rightarrow Then $X \sim$ Bernoulli(1/2), i.e. P(X = 0) = P(X = 1) = 1/2.

 \rightarrow Let $Y_1 = X$, $Y_2 = 1 - X$, and $Y_3 = I_{\text{second coin Heads}}$.

<u>POLL</u>: What are the distributions of Y_1 and Y_2 and Y_3 ?

(A) $Y_1 \sim \text{Bernoulli}(1/2); Y_2 \sim \text{Bernoulli}(1/2); Y_3 \sim \text{Bernoulli}(1/2).$

(B) $Y_1 \sim \text{Bernoulli}(1/2); Y_2 \sim \text{Bernoulli}(-1/2); Y_3 \sim \text{Bernoulli}(3/2).$

(C) $Y_1 \sim \text{Bernoulli}(1/2); Y_2 \sim \text{Bernoulli}(0); Y_3 \sim \text{Bernoulli}(1).$

(D) $Y_1 \sim \text{Bernoulli}(1/2); Y_2 \sim \text{Bernoulli}(1); Y_3 \sim \text{Bernoulli}(1/2).$

(E) Some other Bernoulli distributions.

(F) Some other <u>non</u>-Bernoulli distributions.

• Here each of the Y_i is equally likely to equal 0 or 1.

 \rightarrow So $Y_1 \sim \text{Bernoulli}(1/2), Y_2 \sim \text{Bernoulli}(1/2), \text{ and } Y_3 \sim \text{Bernoulli}(1/2).$ (A)

 \rightarrow But what about their <u>relationships</u> to X? e.g. $P(X = 1 \text{ and } Y_i = 1)$?

POLL: What are $P(X=1, Y_1=1)$; and $P(X=1, Y_2=1)$; and $P(X=1, Y_3=1)$? (A) 1/4; 1/4; 1/4. (B) 1/2; 1/2; 1/2. (C) 1/2; 1/2; 0. (D) 1/2; 0; 1/2. (E) 1/2; 0; 1/4. (F) 1/4; 0; 1/2.

 \rightarrow Here P(X=1, Y₁=1) = 1/2 [since Y₁ = X, same], and P(X=1, Y₂=1) = 0 [since Y₂ = 1 - X, opposite], and P(X=1, Y₃=1) = 1/4 [since Y₃, X indep.]. (E)

 \rightarrow All <u>different</u>! Despite <u>same</u> individual distributions!

• To really understand multiple variables, we need their joint distribution.

 \rightarrow How to keep track? Joint probability functions (discrete case), joint density functions (absolutely continuous case), joint cdfs (most general; first).

Joint Cumulative Distribution Functions (§2.7.1)

• Given random variables X and Y, their joint cumulative distribution function or joint cdf is the function $F_{X,Y} : \mathbb{R}^2 \to [0,1]$ given by $F_{X,Y}(x,y) = \mathbb{P}(X \leq x, Y \leq y) \equiv \mathbb{P}(X \leq x \text{ and } Y \leq y).$

→ Like before, cdf's provide <u>all</u> information about <u>all</u> joint probabilities, e.g. $P(a < X \le b, c < Y \le d) = F_{X,Y}(b,d) - F_{X,Y}(a,d) - F_{X,Y}(b,c) + F_{X,Y}(a,c).$ [Why?]

 \rightarrow However, joint cdf's can be quite tricky, and difficult to work with.

 \rightarrow So, we will <u>omit</u> them here. (But feel free to ask about them!)

Joint Probability Functions (§2.7.3)

• If X and Y are discrete, then we can keep track of their relationship by the joint probability function $p_{X,Y}(x,y) := P(X = x, Y = y)$.

• Above example: $X = I_{\text{first coin Heads}}, Y_1 = X, Y_2 = 1 - X$, and $Y_3 = I_{\text{second coin Heads}}$.

POLL: What is $p_{X,Y_i}(x, y)$ with i = 1? (A) $p_{X,Y_i}(1,1) = 1/2$ and $p_{X,Y_i}(0,0) = 1/2$ (otherwise $p_{X,Y_i}(x,y) = 0$). (B) $p_{X,Y_i}(1,0) = 1/2$ and $p_{X,Y_i}(0,1) = 1/2$ (otherwise $p_{X,Y_i}(x,y) = 0$). (C) $p_{X,Y_i}(1,0) = 1/2$ and $p_{X,Y_i}(0,1) = p_{X,Y_i}(1,1) = 1/4$ (otherwise $p_{X,Y_i}(x,y) = 0$). (D) $p_{X,Y_i}(1,0) = p_{X,Y_i}(0,1) = p_{X,Y_i}(1,1) = 1/3$ (otherwise $p_{X,Y_i}(x,y) = 0$). (E) $p_{X,Y_i}(1,0) = p_{X,Y_i}(0,1) = p_{X,Y_i}(1,1) = p_{X,Y_i}(0,0) = 1/4$ (o.w. $p_{X,Y_i}(x,y) = 0$). (F) Other.

<u>POLL</u>: Same question (and answers), except with i = 2.

<u>POLL</u>: Same question (and answers), except with i = 3.

• If we know $p_{X,Y}(x, y)$, can we find $p_X(x)$ and $p_Y(y)$?

→ Yes! From the Law of Total Probability (Unconditioned Version), $p_X(x) = P(X = x) = \sum_y P(X = x, Y = y) = \sum_y p_{X,Y}(x, y)$ for all x. Similarly $p_Y(y) = \sum_x p_{X,Y}(x, y)$ for all y. ("marginals") So, $p_{X,Y}(x, y)$ has all the information.

• e.g. In above example, $p_X(1) = p_{X,Y_3}(1,0) + p_{X,Y_3}(1,1) = 1/4 + 1/4 = 1/2$, etc.

 \rightarrow Can also write e.g. $p_{X,Y_3}(x, y)$ in a table, with $p_X(x)$ and $p_{Y_3}(y)$ at the right and bottom margins, which is why they are called the "marginals":

	$Y_3 = 0$	$Y_3 = 1$	$p_X(x)$
X = 0	1/4	1/4	1/2
X = 1	1/4	1/4	1/2
$p_{Y_3}(y)$	1/2	1/2	

<u>POLL</u>: If we switch from Y_3 to Y_1 , which entries in the above table will <u>change</u>? (A) The blue ones, only. (B) The green ones, only. (C) The red ones, only.

(D) The blue and green but <u>not</u> red ones. (E) The blue and red but <u>not</u> green ones.

(F) The green and red but \underline{not} blue ones.

• Well, the marginal distribution of X (green) will not change.

 \rightarrow And, the marginal distribution of the Y_i (red) are all Bernoulli(1/2) so they will not change.

 \rightarrow But the joint (blue) probabilities will change, as discussed above. (A)

• Can we find <u>other</u> joint probabilities from $p_{X,Y}(x,y)$?

 \rightarrow e.g. can we find P($a \leq X \leq b, c \leq Y \leq d$), for any a < b and c < d?

 \rightarrow Yes! $P(a \le X \le b, c \le Y \le d) = \sum_{a \le x \le b} \sum_{c \le y \le d} p_{X,Y}(x,y)$, etc.

Suggested Homework: 2.7.3, 2.7.6.

Joint Density Functions (§2.7.4)

• Random variables X and Y are jointly absolutely continuous if there is a joint density function $f_{X,Y} : \mathbf{R}^2 \to \mathbf{R}$, which is ≥ 0 , with $\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f_{X,Y}(x,y) \, dx \, dy = 1$, such that $P(a \leq X \leq b, c \leq Y \leq d) = \int_{c}^{d} \int_{a}^{b} f_{X,Y}(x,y) \, dx \, dy$ for all $a \leq b$ and $c \leq d$.

- Two-dimensional ("iterated") integral! (e.g. Appendix A.6.) [MAT237 ...]
 - \rightarrow Compute the "inner" integral first, treating the outer variable as <u>constant</u>.
 - \rightarrow Then, integrate the resulting expression as the outer integral.

 \rightarrow Trickiest part: specify the inner limits of integration correctly, to ensure that the point (x, y) is always within the correct region (see examples below).

 \rightarrow Can integrate in either order ("Fubini's Thm"), provided you do it correctly!

• Marginals? Similar to discrete case – "add up" the other variable.

$$\to \mathbf{P}(a \le Y \le b) = \mathbf{P}(a \le Y \le b, \ -\infty < X < \infty) = \int_a^b \left(\int_{-\infty}^\infty f_{X,Y}(x,y) \, dx \right) dy.$$

- \rightarrow But $P(a \leq Y \leq b) = \int_a^b f_Y(y) \, dy$, for all $a \leq b$.
- \rightarrow So, $f_Y(y) = \int_{-\infty}^{\infty} f_{X,Y}(x,y) dx$.
- \rightarrow Similarly, $f_X(x) = \int_{-\infty}^{\infty} f_{X,Y}(x,y) \, dy.$

• SIMPLE EXAMPLE: $f_{X,Y}(x,y) = \frac{4}{3}x + y^2$ for $0 \le x \le 1$ and $0 \le y \le 1$, otherwise 0.

 $\rightarrow \text{Check:} \geq 0 \text{ (yes). And, } \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f_{X,Y}(x,y) \, dx \, dy = \int_{0}^{1} \left(\int_{0}^{1} \left(\frac{4}{3}x + y^{2} \right) \, dx \right) dy = \int_{0}^{1} \left(\frac{2}{3} + y^{2} \right) \, dy = \frac{2}{3} + \frac{1}{3} = 1. \text{ Yes.}$

 \rightarrow Or, in the other order: $\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f_{X,Y}(x,y) \, dy \, dx = \int_{0}^{1} \left(\int_{0}^{1} \left(\frac{4}{3}x + y^{2} \right) \, dy \right) dx = \int_{0}^{1} \left(\frac{4}{3}x + \frac{1}{3} \right) \, dx = \frac{4}{3} \frac{1}{2} + \frac{1}{3} = 1.$ Yes.

$$\rightarrow f_X(x) = \int_{-\infty}^{\infty} f_{X,Y}(x,y) \, dy = \int_0^1 \left(\frac{4}{3}x + y^2\right) \, dy = \frac{4}{3}x + \frac{1}{3} \text{ for } 0 \le x \le 1, \text{ o.w. } 0.$$

$$\rightarrow f_Y(y) = \int_{-\infty}^{\infty} f_{X,Y}(x,y) \, dx = \int_0^1 \left(\frac{4}{3}x + y^2\right) \, dx = \frac{2}{3} + y^2 \text{ for } 0 \le y \le 1, \text{ o.w. } 0.$$

 \rightarrow Check: $\int_0^1 \left(\frac{4}{3}x + \frac{1}{3}\right) dx = \frac{2}{3} + \frac{1}{3} = 1$, and $\int_0^1 \left(\frac{2}{3} + y^2\right) dy = \frac{2}{3} + \frac{1}{3} = 1$.

 $\rightarrow \text{And, } \mathbf{P}(X < \frac{1}{2}, Y < \frac{2}{3}) = \int_0^{\frac{2}{3}} \left(\int_0^{\frac{1}{2}} (\frac{4}{3}x + y^2) \, dx \right) dy = \int_0^{\frac{2}{3}} (\frac{4}{3} \frac{1}{8} + y^2 \frac{1}{2}) \, dy = \left(\frac{4}{3} \frac{1}{8} \frac{2}{3} + \left[(\frac{2}{3})^3 / 3 \right] \frac{1}{2} \right) = 13/81.$

 $\rightarrow \text{Or, } \mathbf{P}(X < \frac{1}{2}, Y < \frac{2}{3}) = \int_0^{\frac{1}{2}} \left(\int_0^{\frac{2}{3}} (\frac{4}{3}x + y^2) \, dy \right) dx = \int_0^{\frac{1}{2}} \left(\frac{4}{3}x \frac{2}{3} + \left[(\frac{2}{3})^3 / 3 \right] \right) dx = \left(\frac{4}{3} \frac{1}{8} \frac{2}{3} + \left[(\frac{2}{3})^3 / 3 \right] \frac{1}{2} \right) = 13/81.$ Same! Phew!

• RUNNING EXAMPLE: $f_{X,Y}(x,y) = \frac{15}{32}xy^2$ for $0 \le y \le x \le 2$, otherwise 0. Diagram:

• Valid joint density function?

$$\rightarrow \text{Here } f_{X,Y} \ge 0, \text{ and } \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f_{X,Y}(x,y) \, dx \, dy = \int_{0}^{2} \left(\int_{y}^{2} \left(\frac{15}{32} xy^{2} \right) \, dx \right) dy = \int_{0}^{2} \left(\frac{15}{32} \frac{1}{2} x^{2} y^{2} \right) \Big|_{x=y}^{x=2} \, dy = \int_{0}^{2} \left[\frac{15}{64} (2^{2} - y^{2}) y^{2} \right] \, dy = \frac{15}{64} [2^{2} \frac{1}{3} y^{3} - \frac{1}{5} y^{5}] \Big|_{y=0}^{y=2} = \frac{15}{64} [\frac{4}{3} (2^{3} - 0) - \frac{1}{5} (2^{5} - 0)] = 1.$$
 So, yes!

• What is $P(0 \le X \le 1/2, 0 \le Y \le 1/4)$? We compute this as ...

 $\rightarrow \int_{0}^{1/4} \int_{y}^{1/2} \left(\frac{15}{32} x y^{2}\right) dx \, dy = \int_{0}^{1/4} \left(\frac{15}{32} \frac{1}{2} x^{2} y^{2}\right) \Big|_{x=y}^{x=1/2} dy = \int_{0}^{1/4} \left[\frac{15}{64} \left((1/2)^{2} - y^{2}\right) y^{2}\right] dy = \frac{15}{64} \left[(1/2)^{2} \frac{1}{3} y^{3} - \frac{1}{5} y^{5}\right] \Big|_{y=0}^{y=1/4} = \frac{15}{64} \left[\frac{1}{12} \left((1/4)^{3} - 0\right) - \frac{1}{5} \left((1/4)^{5} - 0\right)\right] = 17/65536 \doteq 0.00026.$ $\rightarrow \text{ Exercise: Compute P}(7/4 \le X \le 2, \ 3/2 \le Y \le 2). \text{ Is it larger?}$

• What is $f_X(x)$, the density function of X?

 $\rightarrow \text{ For } 0 \le x \le 2, \ f_X(x) = \int_{-\infty}^{\infty} f_{X,Y}(x,y) \, dy = \int_0^x \left(\frac{15}{32}xy^2\right) dy = \left(\frac{15}{32}\frac{1}{3}xy^3\right)\Big|_{y=0}^{y=x} = \frac{15}{32}\frac{1}{3}x(x^3 - 0^3) = (5/32) \, x^4.$ (Otherwise $f_X(x) = 0$ if x < 0 or x > 2.)

 $\rightarrow \text{Check: } \int_{-\infty}^{\infty} f_X(x) \, dx = \int_0^2 (5/32) \, x^4 \, dx = (5/32) \left. \frac{1}{5} x^5 \right|_{x=0}^{x=2} = (5/32) \left. \frac{1}{5} (2^5 - 0^5) = 1. \right.$ Phew!

→ So e.g. $P(X \le 1/3) = \int_0^{1/3} f_X(x) dx = \int_0^{1/3} (5/32) x^4 dx = (5/32) \frac{1}{5} x^5 \Big|_{x=0}^{x=1/3} = (5/32) \frac{1}{5} ((1/3)^5 - 0^5) = 1/7776 \doteq 0.00013.$

• What is $f_Y(y)$, the density function of Y?

 $\rightarrow \text{ For } 0 \le y \le 2, \ f_Y(y) = \int_{-\infty}^{\infty} f_{X,Y}(x,y) \, dx = \int_y^2 \left(\frac{15}{32}xy^2\right) \, dx = \left(\frac{15}{32}\frac{1}{2}x^2y^2\right) \Big|_{x=y}^{x=2} = \frac{15}{32}\frac{1}{2}(2^2 - y^2)y^2 = \frac{15}{64}(4y^2 - y^4). \ \text{(Otherwise } f_Y(y) = 0 \text{ if } y < 0 \text{ or } y > 2.)$

 $\rightarrow \text{Check: } \int_{-\infty}^{\infty} f_Y(y) \, dy = \int_0^2 \frac{15}{64} (4y^2 - y^4) \, dy = \frac{15}{64} [4\frac{1}{3}y^3 - \frac{1}{5}y^5)] \Big|_{y=0}^{y=2} = \frac{15}{64} [4\frac{1}{3}(2^3 - 0^3) - \frac{1}{5}(2^5 - 0^5)] = 1. \text{ Phew!}$

• BONUS EXAMPLE: Suppose X and Y have joint density function $f_{X,Y}(x,y) = \frac{1}{780}x^3y^2$ for $1 \le x \le 3$ and $2 \le y \le 5$, otherwise 0. What is P(Y < X + 1)?

• SOLUTION #1: Integrate in the order dy dx.

POLL: Then
$$P(Y < X + 1)$$
 is equal to: **(A)** $\int_{1}^{3} \left(\int_{2}^{5} \frac{1}{780} x^{3} y^{2} dy \right) dx.$ **(B)** $\int_{1}^{3} \left(\int_{2}^{x+1} \frac{1}{780} x^{3} y^{2} dy \right) dx.$ **(C)** $\int_{1}^{y-1} \left(\int_{2}^{x+1} \frac{1}{780} x^{3} y^{2} dy \right) dx.$ **(D)** $\int_{1}^{y-1} \left(\int_{2}^{5} \frac{1}{780} x^{3} y^{2} dy \right) dx.$

• Need to integrate $f_{X,Y}(x,y)$ over the pink triangle:

 \rightarrow So x goes from 1 to 3.

 \rightarrow And, for each x, y goes from 2 to x + 1 (blue dashed line). (B) So,

$$\begin{split} \mathbf{P}(Y < X+1) &= \int_{1}^{3} \Big(\int_{2}^{x+1} \frac{1}{780} x^{3} y^{2} \, dy \Big) dx \ = \int_{1}^{3} \Big(\frac{1}{780} x^{3} \frac{y^{3}}{3} \Big|_{y=2}^{y=x+1} \Big) dx \\ &= \int_{1}^{3} \Big(\frac{1}{2340} x^{3} [(x+1)^{3} - 2^{3}] \Big) dx \ = \frac{1}{2340} \int_{1}^{3} [x^{6} + 3x^{5} + 3x^{4} - 7x^{3}] dx \\ &= \frac{1}{2340} \Big[\frac{x^{7}}{7} + 3\frac{x^{6}}{6} + 3\frac{x^{5}}{5} - 7\frac{x^{4}}{4} \Big] \Big|_{x=1}^{x=3} \\ &= \frac{1}{2340} \Big[\frac{3^{7} - 1}{7} + 3\frac{3^{6} - 1}{6} + 3\frac{3^{5} - 1}{5} - 7\frac{3^{4} - 1}{4} \Big] \\ &= \frac{1}{2340} \Big[\frac{26382}{35} \Big] \ = \frac{5963}{20475} \ \doteq 0.291233 \,. \end{split}$$

• SOLUTION #2: Integrate in the order dx dy.

POLL: Then P(Y < X + 1) is equal to: **(A)** $\int_{2}^{5} \left(\int_{1}^{3} \frac{1}{780} x^{3} y^{2} dx \right) dy.$ **(B)** $\int_{2}^{4} \left(\int_{y-1}^{3} \frac{1}{780} x^{3} y^{2} dx \right) dy.$ **(C)** $\int_{2}^{5} \left(\int_{y-1}^{3} \frac{1}{780} x^{3} y^{2} dx \right) dy.$ **(D)** $\int_{2}^{x+1} \left(\int_{2}^{5} \frac{1}{780} x^{3} y^{2} dx \right) dy.$

• Here y goes from 2 to 4 (not 5!).

 \rightarrow And, for each y, x goes from y - 1 to 3 (purple dashed line). (B) So,

$$\begin{split} \mathbf{P}(Y < X+1) &= \int_{2}^{4} \Big(\int_{y-1}^{3} \frac{1}{780} x^{3} y^{2} \, dx \Big) dy = \int_{2}^{4} \Big(\frac{1}{780} \frac{x^{4}}{4} y^{2} \Big|_{x=y-1}^{3} \Big) dy \\ &= \int_{2}^{4} \Big(\frac{1}{780} \frac{3^{4} - (y-1)^{4}}{4} y^{2} \Big) dy = \frac{1}{3120} \int_{2}^{4} \Big[3^{4} - (y-1)^{4} \Big] y^{2} \, dy \\ &= \frac{1}{3120} \int_{2}^{4} \Big[(3^{4} - 1) y^{2} - y^{6} + 4 y^{5} - 6 y^{4} + 4 y^{3} \Big] \, dy \\ &= \frac{1}{3120} \Big[(3^{4} - 1) \frac{y^{3}}{3} - \frac{y^{7}}{7} + 4 \frac{y^{6}}{6} - 6 \frac{y^{5}}{5} + 4 \frac{y^{4}}{4} \Big] \Big|_{y=2}^{y=4} \\ &= \frac{1}{3120} \Big[(3^{4} - 1) \frac{4^{3} - 2^{3}}{3} - \frac{4^{7} - 2^{7}}{7} + 4 \frac{4^{6} - 2^{6}}{6} - 6 \frac{4^{5} - 2^{5}}{5} + 4 \frac{4^{4} - 2^{4}}{4} \Big] \\ &= \frac{1}{3120} \Big[\frac{95408}{105} \Big] = \frac{5963}{20475} \doteq 0.291233. \end{split}$$

• So, we get the same answer either way, and either method is fine.

 \rightarrow Both ways are a bit messy, but hopefully not too bad.

Suggested Homework: 2.7.4, 2.7.7, 2.7.8, 2.7.9, 2.7.14, 2.7.15, 2.7.16.

Conditioning and Independence for Discrete Random Variables (§2.8.1)

• Suppose X and Y are discrete with joint probability function $p_{X,Y}$ given (in tabular form) by:

	Y = 5	Y = 6	$p_X(x)$
X = 2	0.0	0.1	0.1
X = 3	0.1	0.2	0.3
X = 4	0.2	0.4	0.6
$p_Y(y)$	0.3	0.7	

(Meaning that $p_{X,Y}(2,5) = 0.0$, $p_{X,Y}(3,5) = 0.1$, $p_{X,Y}(4,6) = 0.4$, etc.) (Marginals $p_X(x)$ and $p_Y(y)$ are also shown, found by summing.)

<u>POLL</u>: In this example, what is P(Y = 5 | X = 3)? (A) 1/6. (B) 1/5. (C) 1/4. (D) 1/3. (E) 1/2. (F) 1.

- We compute here that $P(Y = 5 | X = 3) = \frac{P(X=3, Y=5)}{P(X=3)} = \frac{0.1}{0.3} = 1/3.$ (D)
 - → Similarly $P(Y = 6 | X = 3) = \frac{P(X=3, Y=6)}{P(X=3)} = \frac{0.2}{0.3} = 2/3.$

 \rightarrow Can write this as $p_{Y|X}(5|3) = 1/3$, $p_{Y|X}(6|3) = 2/3$, otherwise $p_{Y|X}(y|3) = 0$.

 \rightarrow So, $p_{Y|X}(\cdot | 3)$ is a proper probability function (≥ 0 , and sums to 1): the conditional distribution of Y given that X = 3.

→ Also, $P(X = 2 | Y = 6) = \frac{P(X=2, Y=6)}{P(Y=6)} = \frac{0.1}{0.7} = 1/7$, and P(X = 3 | Y = 6) = 2/7, and P(X = 4 | Y = 6) = 4/7. So, $p_{X|Y}(2 | 6) = 1/7$, $p_{X|Y}(3 | 6) = 2/7$, $p_{X|Y}(4 | 6) = 4/7$, the conditional distribution of X given that Y = 6.

 \rightarrow Exercise: Find $p_{X|Y}(x|5)$ for all $x \in \mathbf{R}$, i.e. the conditional distribution of X given that Y = 5.

• In general, $p_{X|Y}(x \mid y) = \frac{P(X=x, Y=y)}{P(Y=y)}$, and $p_{Y|X}(y \mid x) = \frac{P(X=x, Y=y)}{P(X=x)}$. \rightarrow Then e.g. $P(a \leq Y \leq b \mid X = x) = \sum_{a \leq y \leq b} P(Y = y \mid X = x) = \sum_{a \leq y \leq b} p_{Y|X}(y|x) = \sum_{a \leq y \leq b} \frac{p_{X,Y}(x,y)}{p_X(x)} = \frac{P(a \leq Y \leq b, X=x)}{P(X=x)}$, as it should.

END MONDAY #7

	Y = 5	Y = 6	$p_X(x)$
X = 2	0.0	0.1	0.1
X = 3	0.1	0.2	0.3
X = 4	0.2	0.4	0.6
$p_Y(y)$	0.3	0.7	

<u>POLL</u>: In the above example, what is $P(X \ge 3 | Y = 6)$? (A) 2/3. (B) 3/4. (C) 4/5. (D) 5/6. (E) 6/7. (F) 7/8.

• What about independence?

• <u>Most general definition</u>: Two random variables X and Y are independent if the events $\{X \in B\}$ and $\{Y \in C\}$ are independent for all subsets $B, C \subseteq \mathbf{R}$, i.e. if we always have $P(X \in B, Y \in C) = P(X \in B) P(Y \in C)$.

 \rightarrow For example, if we take $B = (-\infty, x]$ and $C = (-\infty, y]$, this means that $P(X \leq x, Y \leq y) = P(X \leq x) P(Y \leq y)$, i.e. $F_{X,Y}(x, y) = F_X(x) F_Y(y)$ for all $x, y \in \mathbf{R}$. (Equivalent definition. Optional.)

 \rightarrow For <u>discrete</u> random variables X and Y, it suffices that the events $\{X = x\}$ and $\{Y = y\}$ are independent, i.e. P(X = x, Y = y) = P(X = x) P(Y = y), i.e. $p_{X,Y}(x,y) = p_X(x) p_Y(y)$ for <u>all</u> $x, y \in \mathbf{R}$.

 $\rightarrow \text{ Then for <u>any</u> } B \text{ and } C, \text{ we have } P(X \in B, Y \in C) = \sum_{x \in B} \sum_{y \in C} p_{X,Y}(x,y) = \sum_{x \in B} \sum_{y \in C} p_X(x) p_Y(y) = \left(\sum_{x \in B} p_X(x)\right) \left(\sum_{y \in C} p_Y(y)\right) = P(X \in B) P(Y \in C).$

<u>POLL</u>: If X and Y are discrete and independent, which of these <u>must</u> be true?

(A) $P(a \le X \le b, c \le Y \le d) = P(a \le X \le b) P(c \le Y \le d)$ for a < b and c < d.

(B) $p_{X|Y}(x|y) = p_X(x)$ for all x, y with $p_Y(y) > 0$.

(C) $p_{Y|X}(y|x) = p_Y(y)$ for all x, y with $p_X(x) > 0$.

- (D) $p_{X|Y}(x|y) = p_{Y|X}(y|x)$ for all x, y with $p_X(x), p_Y(y) > 0$.
- (E) $\underline{\text{All}}$ of the above.

(F) Just <u>three</u> of the above.

• Well, (A) follows by taking B = [a, b] and C = [c, d] above.

• And, if X and Y are discrete and independent, then $p_{X|Y}(x \mid y) = \frac{P(X=x, Y=y)}{P(Y=y)} = \frac{P(X=x) P(Y=y)}{P(Y=y)} = P(X = x)$, showing (B).

 \rightarrow Similarly, $p_{Y|X}(y \mid x) = P(Y = y)$, showing (C).

• But (D) is false (and crazy!). So, the answer is (F): just three of the above.

• Independence means the values of Y do not affect the probabilities for X.

 \rightarrow In above example, X and Y are <u>not</u> independent, since e.g. $p_{X,Y}(3,5) = 0.1$ but $p_X(3) p_Y(5) = (0.3)(0.3) = 0.09 \neq 0.1$.

Suggested Homework: 2.8.1, 2.8.2, 2.8.5, 2.8.9, 2.8.10, 2.8.12, 2.8.13, 2.8.20.

Conditioning and Independence for Continuous Random Variables (§2.8.2)

- Suppose X and Y have joint density function $f_{X,Y}(x,y)$. Conditionals?
- Does $P(a \le Y \le b | X = x)$ even make sense?
 - \rightarrow No, since P(X = x) = 0, so we can't divide by it.
 - \rightarrow Trick: Do it anyway!
 - \rightarrow We first consider certain limits . . .

 \rightarrow Intuitively, imagine replacing the event $\{X = x\}$ by the event $\{x \le X \le x + \epsilon\}$ for some small $\epsilon > 0$, so that $P(x \le X \le x + \epsilon) > 0$.

<u>POLL</u>: Suppose X and Y have continuous joint density $f_{X,Y}(x, y)$, and X has marginal density $f_X(x) = \int_{-\infty}^{\infty} f_{X,Y}(x, y) \, dy > 0$ for some x. Then for a < b,

$$\lim_{\epsilon \searrow 0} \mathbf{P}(a \le Y \le b \mid x \le X \le x + \epsilon)$$

is equal to: **(A)** $\int_{-\infty}^{\infty} \int_{a}^{b} f_{X,Y}(x,y) dx dy$. **(B)** $\int_{-\infty}^{\infty} \int_{a}^{b} f_{X,Y}(x,y) dy dx$. **(C)** $\int_{a}^{b} \frac{f_{X,Y}(x,y)}{f_{X}(x)} dy$. **(D)** $\frac{\int_{a}^{b} f_{X,Y}(x,y) dy}{\int_{a}^{b} f_{X}(x) dx}$. **(E)** $\frac{\int_{a}^{b} f_{Y}(y) dy}{\int_{a}^{b} f_{X}(x) dx}$. **(F)** No idea.

• We have that $P(x \le X \le x + \epsilon) = \int_x^{x+\epsilon} f_X(u) \, du$.

- \rightarrow If f_X is <u>continuous</u> at x, and $\epsilon > 0$ is small, then $P(x \le X \le x + \epsilon) \approx \epsilon f_X(x)$.
- \rightarrow ["First-order approximation": formally, $\lim_{\epsilon \searrow 0} \frac{1}{\epsilon} \int_{x}^{x+\epsilon} f_X(u) \, du = f_X(x)$.]
- \rightarrow But also, if $f_{X,Y}$ is <u>continuous</u> at (x,y) for $a \leq y \leq b$, then $P(x \leq X \leq x + \epsilon, a \leq Y \leq b) = \int_a^b \int_x^{x+\epsilon} f_{X,Y}(u,y) du dy \approx \epsilon \int_a^b f_{X,Y}(x,y) dy.$
 - \rightarrow So, $P(a \le Y \le b \mid x \le X \le x + \epsilon) \approx \frac{\epsilon \int_a^b f_{X,Y}(x,y) \, dy}{\epsilon f_X(x)} = \int_a^b \frac{f_{X,Y}(x,y)}{f_X(x)} \, dy.$ (C)

• Therefore, we <u>define</u> the conditional density of Y given that X = x, to be the density function $f_{Y|X}(y \mid x) = \frac{f_{X,Y}(x,y)}{f_X(x)}$, valid whenever $f_X(x) > 0$.

 \rightarrow Then we say that $P(a \leq Y \leq b \mid X = x) = \int_a^b f_{Y|X}(y \mid x) \, dy := \int_a^b \frac{f_{X,Y}(x,y)}{f_X(x)} \, dy.$

• What about independence?

 \rightarrow Idea: X and Y being independent should imply that $P(a \le Y \le b | X = x) = P(a \le Y \le b)$ for all a < b.

<u>POLL</u>: To ensure this, it suffices that:

(A) $f_{X,Y}(x,y) = 0$ for all x, y. (B) $f_{X,Y}(x,y) > f_X(x)$ for all x, y. (C) $f_{X,Y}(x,y) < f_Y(y)$ for all x, y. (D) $f_{X,Y}(x,y) = f_X(x)$ for all x, y. (E) $f_{X,Y}(x,y) = f_Y(y)$ for all x, y. (F) $f_{X,Y}(x,y) = f_X(x) f_Y(y)$ for all x, y.

• <u>Definition</u>: X and Y are independent if $f_{X,Y}(x,y) = f_X(x) f_Y(y)$ for "all" $x, y \in \mathbf{R}$. \rightarrow Then $f_{Y|X}(y \mid x) = \frac{f_{X,Y}(x,y)}{f_X(x)} = \frac{f_X(x)f_Y(y)}{f_X(x)} = f_Y(y)$ whenever $f_X(x) > 0$. \rightarrow And, $P(a \leq Y \leq b \mid X = x) = \int_a^b f_{Y|X}(y \mid x) dy = \int_a^b f_Y(y) dy = P(a \leq Y \leq b)$. \rightarrow Then for any B and C, we have $P(X \in B, Y \in C) = \int_{y \in C} \left(\int_{x \in B} f_{X,Y}(x,y) dx \right) dy$ $= \int_{y \in C} \left(\int_{x \in B} f_X(x) f_Y(y) dx \right) dy = \int_{y \in C} f_Y(y) \left(\int_{x \in B} f_X(x) dx \right) dy$ $= \left(\int_{x \in B} f_X(x) dx \right) \int_{y \in C} f_Y(y) dy = P(X \in B) P(Y \in C).$

• Previous "running example": $f_{X,Y}(x,y) = \frac{15}{32}xy^2$ for $0 \le y \le x \le 2$, otherwise 0.

 \rightarrow Found that $f_X(x) = (5/32)x^4$ for $0 \le x \le 2$, otherwise 0.

 \rightarrow And that $f_Y(y) = \frac{15}{64}(4y^2 - y^4)$ for $0 \le y \le 2$, otherwise 0.

POLL: In this example, are X and Y independent? (A) Yes. (B) No. (C) No idea.

 \rightarrow Here $f_{X,Y}(x,y) \neq f_X(x) f_Y(y)$, and $f_{Y|X}(y \mid x) \neq f_Y(y)$, so <u>not</u> independent.

 $\rightarrow \text{ Indeed, for } 0 \le y \le x \le 2, \text{ we have } f_{Y|X}(y \mid x) = \frac{f_{X,Y}(x,y)}{f_X(x)} = \frac{\frac{15}{32}xy^2}{(5/32)x^4} = 3x^{-3}y^2.$ $\rightarrow \text{ So e.g. } P(0 \le Y \le 1 \mid X = 3/2) = \int_0^1 f_{Y|X}(y \mid 3/2) \, dy = \int_0^1 (3(3/2)^{-3}y^2) \, dy = 3(3/2)^{-3} \frac{1}{3}(1^3 - 0^3) = (3/2)^{-3} = 8/27.$

 $\rightarrow \text{Also P}(0 \le Y \le 3/2 \mid X = 3/2) = \int_0^{3/2} f_{Y|X}(y \mid 3/2) \, dy = \int_0^{3/2} (3(3/2)^{-3}y^2) \, dy = 3(3/2)^{-3} \frac{1}{3}((3/2)^3 - 0^3) = (3/2)^{-3}(3/2)^3 = 1.$ Makes sense since here $0 \le Y \le X.$

<u>Summary – Independence of Random Variables (§2.8)</u>

- X and Y are independent if and only if <u>any one</u> of:
 - $\rightarrow P(X \in B, Y \in C) = P(X \in B) P(Y \in C)$ for all $B, C \subseteq \mathbf{R}$. (general)
 - $\rightarrow F_{X,Y}(x,y) = F_X(x) F_Y(y)$ for all $x, y \in \mathbf{R}$. (general; optional)

 $\rightarrow p_{X,Y}(x,y) = p_X(x) p_Y(y)$ for all $x, y \in \mathbf{R}$. (discrete)

 $\rightarrow p_{Y|X}(y \mid x) = p_Y(y)$ for "all" $x, y \in \mathbf{R}$, or vice-versa. (discrete)

- $\rightarrow f_{X,Y}(x,y) = f_X(x) f_Y(y)$ for "all" $x, y \in \mathbf{R}$. (abs. continuous)
- $\rightarrow f_{Y|X}(y \mid x) = f_Y(y)$ for "all" $x, y \in \mathbf{R}$, or vice-versa. (abs. continuous)

Suggested Homework: 2.8.3, 2.8.4, 2.8.7, 2.8.8, 2.8.14, 2.8.15, 2.8.17.

- <u>Note:</u> We are <u>omitting</u> a few topics from the end of Chapter 2, including:
 - \rightarrow Order Statistics (sorted sample values, from smallest to largest). (§2.8.4)
 - \rightarrow Multivariable Change-Of-Variable Theorem. (§2.9)
 - \rightarrow Computer algorithms to <u>simulate</u> probability distributions. (§2.10)
 - \rightarrow All interesting! Check them out! Try the exercises! Ask me questions!

[END OF TEXTBOOK CHAPTER #2]

Expected Values: Discrete Case (§3.1)

• Intuitively, the <u>expected</u> or <u>average</u> or <u>mean</u> value of a random variable is what it equals "on average".

 \rightarrow e.g. If P(X = 0) = P(X = 12) = 1/2, then E(X) = 6, the average value.

 \rightarrow e.g. If P(X = 0) = 2/3 and P(X = 12) = 1/3, then E(X) = 4: weighted av.

END WEDNESDAY #8

[Reminder: Next week is READING WEEK – no classes!.]